Current Knowledge about CD3+CD20+ T Cells in Patients with Multiple Sclerosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Involvement
2.2. Identification of Studies
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection
2.5. Ethical Approval
3. Results
4. Discussion
4.1. CD3+CD20+ T Cells in CSF
4.2. Occurrence of CD3+CD20+ T Cells in Progressive and Relapsing MS Patients
4.3. Role of CD3+CD20+ T Cells in the Immune Pathology of MS
4.4. Role of CD3+CD20+ T Cells in MS Treatment
4.5. Take-Home Message
4.6. Practical Use
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frisch, E.S.; Pretzsch, R.; Weber, M.S. A Milestone in Multiple Sclerosis Therapy: Monoclonal Antibodies Against CD20—Yet Progress Continues. Neurotherapeutics 2021, 18, 1602–1622. [Google Scholar] [CrossRef] [PubMed]
- de Sèze, J.; Maillart, E.; Gueguen, A.; Laplaud, D.A.; Michel, L.; Thouvenot, E.; Zephir, H.; Zimmer, L.; Biotti, D.; Liblau, R. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front. Immunol. 2023, 14, 1004795. [Google Scholar] [CrossRef] [PubMed]
- Holley, J.E.; Bremer, E.; Kendall, A.C.; De Bruyn, M.; Helfrich, W.; Tarr, J.M.; Newcombe, J.; Gutowski, N.J.; Eggleton, P. CD20+inflammatory T-cells are present in blood and brain of multiple sclerosis patients and can be selectively targeted for apoptotic elimination. Mult. Scler. Relat. Disord. 2014, 3, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.; Otto, C.; Jones, T.C.; Pache, F.; Schindler, P.; Niederschweiberer, M.; Schmidt, F.A.; Drosten, C.; Corman, V.M.; Ruprecht, K. Preserved T cell responses to SARS-CoV-2 in anti-CD20 treated multiple sclerosis. Mult. Scler. J. 2022, 28, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K. Regulatory T cells in multiple sclerosis. Clin. Exp. Neuroimmunol. 2020, 11, 148–155. [Google Scholar] [CrossRef]
- Garff-Tavernier, L.; Herbi, L.; De Romeuf, C.; Nguyen-Khac, F.; Davi, F.; Grelier, A.; Boudjoghra, M.; Maloum, K.; Choquet, S.; Urbain, R.; et al. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia 2014, 28, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Alam, S.S.; Kundu, S.; Ahmed, S.; Sultana, S.; Patar, A.; Hossan, T. Mesenchymal stem cell therapy in multiple sclerosis: A systematic review and meta-analysis. J. Clin. Med. 2023, 12, 6311. [Google Scholar] [CrossRef] [PubMed]
- Calahorra, L.; Camacho-Toledano, C.; Serrano-Regal, M.P.; Ortega, M.C.; Clemente, D. Regulatory cells in multiple sclerosis: From blood to brain. Biomedicines 2022, 10, 335. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, J.J., Jr.; Wilson, M.R.; Calabresi, P.A.; Hauser, S.L.; Schneck, J.P.; Zamvil, S.S. Anti-CD20 therapy depletes activated myelin-specific CD8+ T cells in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2019, 116, 25800–25807. [Google Scholar] [CrossRef] [PubMed]
- Gingele, S.; Jacobus, T.L.; Konen, F.F.; Hümmert, M.W.; Sühs, K.W.; Schwenkenbecher, P.; Ahlbrecht, J.; Möhn, N.; Müschen, L.H.; Bönig, L.; et al. Ocrelizumab depletes CD20+ T cells in multiple sclerosis patients. Cells 2018, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Schuh, E.; Berer, K.; Mulazzani, M.; Feil, K.; Meinl, I.; Lahm, H.; Krane, M.; Lange, R.; Pfannes, K.; Subklewe, M.; et al. Features of human CD3+ CD20+ T cells. J. Immunol. 2016, 197, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Sellebjerg, F.; Blinkenberg, M.; Sorensen, P.S. Anti-CD20 monoclonal antibodies for relapsing and progressive multiple sclerosis. CNS Drugs 2020, 34, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Palanichamy, A.; Jahn, S.; Nickles, D.; Derstine, M.; Abounasr, A.; Hauser, S.L.; Baranzini, S.E.; Leppert, D.; von Buedingen, H. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J. Immunol. 2014, 193, 580–586. [Google Scholar] [CrossRef] [PubMed]
- von Essen, M.R.; Ammitzbøll, C.; Hansen, R.H.; Petersen, E.R.; McWilliam, O.; Marquart, H.V.; Damm, P.; Sellebjerg, F. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain 2019, 142, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yuan, S.; Sun, H.; Peng, L. CD3+ CD20+ T cells and their roles in human diseases. Hum. Immunol. 2019, 80, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Delgado, S.R.; Faissner, S.; Linker, R.A.; Rammohan, K. Key characteristics of anti-CD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. J. Neurol. 2023, 271, 1515–1535. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.H.; Stark, J.L.; Lauber, J.; Ramsbottom, M.J.; Lyons, J.A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol. 2006, 180, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Meinl, E.; Hohlfeld, R. CD20+ T cells as pathogenic players and therapeutic targets in MS. Ann. Neurol. 2021, 90, 722–724. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, V.O.; Quintiliano, R.P.; Silva, L.S.; Damasceno, A.; Santos, L.M.; Farias, A.S. Cytotoxic profile of CD3+ CD20+ T cells in progressive multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 52, 103013. [Google Scholar] [CrossRef] [PubMed]
- Gingele, S.; Skripuletz, T.; Jacobs, R. Role of CD20+ T cells in multiple sclerosis: Implications for treatment with ocrelizumab. Neural Regen. Res. 2020, 15, 663. [Google Scholar]
- von Essen, M.R.; Talbot, J.; Hansen, R.H.; Chow, H.H.; Lundell, H.; Siebner, H.R.; Sellebjerg, F. Intrathecal CD8+ CD20+ T cells in primary progressive multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200140. [Google Scholar] [CrossRef] [PubMed]
- Howlett-Prieto, Q.; Feng, X.; Kramer, J.F.; Kramer, K.J.; Houston, T.W.; Reder, A.T. Anti-CD20 therapy corrects a CD8 regulatory T cell deficit in multiple sclerosis. Mult. Scler. J. 2021, 27, 2170–2179. [Google Scholar] [CrossRef]
- Shinoda, K.; Li, R.; Rezk, A.; Mexhitaj, I.; Patterson, K.R.; Kakara, M.; Zuroff, L.; Bennett, J.L.; von Büdingen, H.C.; Carruthers, R.; et al. Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity. Proc. Natl. Acad. Sci. USA 2023, 120, e2207291120. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y. CD20+ T cells: An emerging T cell subset in human pathology. Inflamm. Res. 2022, 71, 1181–1189. [Google Scholar] [CrossRef]
- Van Nierop, G.P.; van Luijn, M.M.; Michels, S.S.; Melief, M.J.; Janssen, M.; Langerak, A.W.; Ouwendijk, W.J.; Hintzen, R.Q.; Verjans, G.M. Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathol. 2017, 134, 383–401. [Google Scholar] [CrossRef]
- Fransen, N.L.; Hsiao, C.C.; van der Poel, M.; Engelenburg, H.J.; Verdaasdonk, K.; Vincenten, M.C.; Remmerswaal, E.B.; Kuhlmann, T.; Mason, M.R.; Hamann, J.; et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 2020, 143, 1714–1730. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, J.L.; Zhang, L.; Pecsok, M.K.; Perlman, K.; Zografou, C.; Raddassi, K.; Abulaban, A.; Krishnaswamy, S.; Antel, J.; van Dijk, D.; et al. Transcriptomic and clonal characterization of T cells in the human central nervous system. Sci. Immunol. 2020, 5, eabb8786. [Google Scholar] [CrossRef]
- Gilmore, W.; Lund, B.T.; Li, P.; Levy, A.M.; Kelland, E.E.; Akbari, O.; Groshen, S.; Cen, S.Y.; Pelletier, D.; Weiner, L.P.; et al. Repopulation of T, B, and NK cells following alemtuzumab treatment in relapsing-remitting multiple sclerosis. J. Neuroinflamm. 2020, 17, 189. [Google Scholar] [CrossRef]
- Bar-Or, A.; O’Brien, S.M.; Sweeney, M.L.; Fox, E.J.; Cohen, J.A. Clinical perspectives on the molecular and pharmacological attributes of anti-CD20 therapies for multiple sclerosis. CNS Drugs 2021, 35, 985–997. [Google Scholar] [CrossRef]
- Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a028936. [Google Scholar] [CrossRef]
- Khani, L.; Jazayeri, M.H.; Nedaeinia, R.; Bozorgmehr, M.; Nabavi, S.M.; Ferns, G.A. The frequencies of peripheral blood CD5+ CD19+ B cells, CD3− CD16+ CD56+ NK, and CD3+ CD56+ NKT cells and serum interleukin-10 in patients with multiple sclerosis and neuromyelitis optica spectrum disorder. Allergy Asthma Clin. Immunol. 2022, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Goods, B.A.; Raddassi, K.; Nepom, G.T.; Kwok, W.W.; Love, J.C.; Hafler, D.A. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 2015, 7, 287ra74. [Google Scholar] [CrossRef]
- Boross, P.; Leusen, J.H. Mechanisms of action of CD20 antibodies. Am. J. Cancer Res. 2012, 2, 676–690. [Google Scholar]
- Van Langelaar, J.; Rijvers, L.; Smolders, J.; Van Luijn, M.M. B and T cells driving multiple sclerosis: Identity, mechanisms and potential triggers. Front. Immunol. 2020, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Florou, D.; Katsara, M.; Feehan, J.; Dardiotis, E.; Apostolopoulos, V. Anti-CD20 agents for multiple sclerosis: Spotlight on ocrelizumab and ofatumumab. Brain Sci. 2020, 10, 758. [Google Scholar] [CrossRef]
- Alunno, A.; Carubbi, F.; Bistoni, O.; Caterbi, S.; Bartoloni, E.; Di Benedetto, P.; Cipriani, P.; Giacomelli, R.; Gerli, R. Interleukin (IL)-17-producing pathogenic T lymphocytes co-express CD20 and are depleted by rituximab in primary Sjögren’s syndrome: A pilot study. Clin. Exp. Immunol. 2016, 184, 284–292. [Google Scholar] [CrossRef]
- Schneider, R. CD20+ T cells in multiple sclerosis. Mult. Scler. Relat. Disord. 2015, 4, 58–59. [Google Scholar] [CrossRef]
- Ancau, M.; Berthele, A.; Hemmer, B. CD20 monoclonal antibodies for the treatment of multiple sclerosis: Up-to-date. Expert Opin. Biol. Ther. 2019, 19, 829–843. [Google Scholar] [CrossRef]
- Nissimov, N.; Hajiyeva, Z.; Torke, S.; Grondey, K.; Brück, W.; Häusser-Kinzel, S.; Weber, M.S. B cells reappear less mature and more activated after their anti-CD20–mediated depletion in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2020, 117, 25690–25699. [Google Scholar] [CrossRef]
- Jones, A.P.; Kermode, A.G.; Lucas, R.M.; Carroll, W.M.; Nolan, D.; Hart, P.H. Circulating immune cells in multiple sclerosis. Clin. Exp. Immunol. 2017, 187, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Pröbstel, A.K.; Hauser, S.L. Multiple sclerosis: B cells take center stage. J. Neuroophthalmol. 2018, 38, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Ochs, J.; Nissimov, N.; Torke, S.; Freier, M.; Grondey, K.; Koch, J.; Klein, M.; Feldmann, L.; Gudd, C.; Bopp, T.; et al. Proinflammatory CD20+ T cells contribute to CNS-directed autoimmunity. Sci. Transl. Med. 2022, 14, eabi4632. [Google Scholar] [CrossRef] [PubMed]
- Agahozo, M.C.; Peferoen, L.; Baker, D.; Amor, S. CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis—Targeting T or B cells. Mult. Scler. Relat. Disord. 2016, 9, 110–117. [Google Scholar] [CrossRef]
- Quách, T.D.; Rodríguez-Zhurbenko, N.; Hopkins, T.J.; Guo, X.; Hernández, A.M.; Li, W.; Rothstein, T.L. Distinctions among circulating antibody-secreting cell populations, including B-1 cells, in human adult peripheral blood. J. Immunol. 2016, 196, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Roach, C.A.; Cross, A.H. Anti-CD20 B cell treatment for relapsing multiple sclerosis. Front. Neurol. 2021, 11, 595547. [Google Scholar] [CrossRef]
- von Essen, M.R.; Hansen, R.H.; Højgaard, C.; Ammitzbøll, C.; Wiendl, H.; Sellebjerg, F. Ofatumumab modulates inflammatory T cell responses and migratory potential in patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200004. [Google Scholar] [CrossRef]
- Quendt, C.; Ochs, J.; Häusser-Kinzel, S.; Häusler, D.; Weber, M.S. Proinflammatory CD20+ T cells are differentially affected by multiple sclerosis therapeutics. Ann. Neurol. 2021, 90, 834–839. [Google Scholar] [CrossRef]
- D’Amico, E.; Zanghì, A.; Gastaldi, M.; Patti, F.; Zappia, M.; Franciotta, D. Placing CD20-targeted B cell depletion in multiple sclerosis therapeutic scenario: Present and future perspectives. Autoimmun. Rev. 2019, 18, 665–672. [Google Scholar] [CrossRef]
- Strachan-Whaley, M.; Rivest, S.; Yong, V.W. Interactions between microglia and T cells in multiple sclerosis pathobiology. J. Interf. Cytokine Res. 2014, 34, 615–622. [Google Scholar] [CrossRef]
- Vakrakou, A.G.; Paschalidis, N.; Pavlos, E.; Giannouli, C.; Karathanasis, D.; Tsipota, X.; Velonakis, G.; Stadelmann-Nessler, C.; Evangelopoulos, M.E.; Stefanis, L.; et al. Specific myeloid signatures in peripheral blood differentiate active and rare clinical phenotypes of multiple sclerosis. Front. Immunol. 2023, 14, 1071623. [Google Scholar] [CrossRef]
- Arneth, B. Activated CD4+ and CD8+ T cell proportions in multiple sclerosis patients. Inflammation 2016, 39, 2040–2044. [Google Scholar] [CrossRef] [PubMed]
- Salou, M.; Nicol, B.; Garcia, A.; Laplaud, D.A. Involvement of CD8+ T cells in multiple sclerosis. Front. Immunol. 2015, 6, 604. [Google Scholar] [CrossRef]
- Bell, L.; Lenhart, A.; Rosenwald, A.; Monoranu, C.M.; Berberich-Siebelt, F. Lymphoid aggregates in the CNS of progressive multiple sclerosis patients lack regulatory T cells. Front. Immunol. 2020, 10, 3090. [Google Scholar] [CrossRef]
- Spencer, C.M.; Crabtree-Hartman, E.C.; Lehmann-Horn, K.; Cree, B.A.; Zamvil, S.S. Reduction of CD8+ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2, e76. [Google Scholar] [CrossRef]
- Sinha, S.; Boyden, A.W.; Itani, F.R.; Crawford, M.P.; Karandikar, N.J. CD8+ T-cells as immune regulators of multiple sclerosis. Front. Immunol. 2015, 6, 619. [Google Scholar] [CrossRef]
- Lovett-Racke, A.E.; Gormley, M.; Liu, Y.; Yang, Y.; Graham, C.; Wray, S.; Racke, M.K.; Shubin, R.; Twyman, C.; Alvarez, E.; et al. B cell depletion with ublituximab reshapes the T cell profile in multiple sclerosis patients. J. Neuroimmunol. 2019, 332, 187. [Google Scholar] [CrossRef] [PubMed]
- Lovett-Racke, A.; Yang, Y.; Liu, Y.; Gormley, M.; Kraus, E.; Graham, C.; Wray, S.; Racke, M.; Alvarez, E.; Bass, A.; et al. B cell depletion changes the immune cell profile in multiple sclerosis patients: One-year report. J. Neuroimmunol. 2021, 359, 577676. [Google Scholar] [CrossRef]
- Sinha, S.; Itani, F.R.; Karandikar, N.J. Immune regulation of multiple sclerosis by CD8+ T cells. Immunol. Res. 2014, 59, 254–265. [Google Scholar] [CrossRef]
- Kaskow, B.J.; Baecher-Allan, C. Effector T cells in multiple sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a029025. [Google Scholar] [CrossRef] [PubMed]
- Høglund, R.A.; Maghazachi, A.A. Multiple sclerosis and the role of immune cells. World J. Exp. Med. 2014, 4, 27. [Google Scholar] [CrossRef]
- Sospedra, M.; Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 2016, 23, 683–747. [Google Scholar] [CrossRef]
- Khaibullin, T.; Ivanova, V.; Martynova, E.; Cherepnev, G.; Khabirov, F.; Granatov, E.; Rizvanov, A.; Khaiboullina, S. Elevated levels of proinflammatory cytokines in cerebrospinal fluid of multiple sclerosis patients. Front. Immunol. 2017, 8, 531. [Google Scholar] [CrossRef] [PubMed]
Study Name | Title | Year |
---|---|---|
Sabatino et al. [9]. | CD20 therapy depletes activated myelin-specific CD8+ T cells in multiple sclerosis. Proceedings of the National Academy of Sciences. | 2019 |
Gingele et al. [10]. | Role of CD20+ T cells in multiple sclerosis: Implications for treatment with ocrelizumab. | 2020 |
Schuh et al. [11]. | Features of human CD3+ CD20+ T cells. The Journal of Immunology. | 2019 |
Sellebjerg et al. [12]. | Anti-CD20 monoclonal antibodies for relapsing and progressive multiple sclerosis. CNS drugs. | 2020 |
Palanichamy et al. [13]. | Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. | 2014 |
Von Essen et al. [14]. | Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. | 2019 |
Chen et al. [15]. | CD3+ CD20+ T cells and their roles in human diseases. Human Immunology. | 2019 |
Delgado et al. [16]. | Key characteristics of anti-CD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. | 2023 |
Cross et al. [17]. | Rituximab reduces B cells and T cells in the cerebrospinal fluid of multiple sclerosis patients. | 2016 |
Meinl and Hohlfeld [18]. | CD20+ T cells as pathogenic players and therapeutic targets in MS. | 2021 |
Boldrini et al. [19]. | Cytotoxic profile of CD3+ CD20+ T cells in progressive multiple sclerosis. Multiple sclerosis and related disorders. | 2021 |
Gingele et al. [20]. | Ocrelizumab depletes CD20+ T cells in multiple sclerosis patients. | 2018 |
Von Essen et al. [21]. | Intrathecal CD8+ CD20+ T cells in primary progressive multiple sclerosis. Neurology: Neuroimmunology & Neuroinflammation. | 2023 |
Howlett-Prieto et al. [22]. | Anti-CD20 therapy corrects multiple sclerosis’s CD8 regulatory T-cell deficit. | 2021 |
Shinoda et al. [23]. | Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication for CD20-expressing CD8 T cells in MS disease activity. | 2023 |
Findings | |
---|---|
1 | CD3+CD20+ T cells pervade the bone marrow, thymus, and secondary lymphatic organs [24]. |
2 | CD3+CD20+ T cells are found in the CSF of MS patients [25]. |
3 | Anti-CD20 monoclonal antibodies selectively deplete CD20+ B and T cells, efficiently suppressing inflammatory disease activity [26]. |
4 | CD20+ T cells, which are reduced during rituximab therapy, play a pathogenic role in MS treatment [27]. |
5 | Monoclonal antibodies targeting CD20 reduce the number of relapses in MS [28]. |
6 | Rituximab and ublituximab efficiently deplete the increased population of CD20-expressing T cells in MS [29]. |
7 | There is an increased frequency of CD20+ T cells in inflammatory conditions like MS [30]. |
8 | A strong response of the CD20 T-cell population is often observed in disease-modifying treatments [31]. |
9 | The immunopathogenesis of MS is primarily driven by deregulated T cells [32]. |
10 | Disease-modifying therapies for MS mitigate inflammation by suppressing the activity of peripheral lymphocytes [33]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arneth, B. Current Knowledge about CD3+CD20+ T Cells in Patients with Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 8987. https://doi.org/10.3390/ijms25168987
Arneth B. Current Knowledge about CD3+CD20+ T Cells in Patients with Multiple Sclerosis. International Journal of Molecular Sciences. 2024; 25(16):8987. https://doi.org/10.3390/ijms25168987
Chicago/Turabian StyleArneth, Borros. 2024. "Current Knowledge about CD3+CD20+ T Cells in Patients with Multiple Sclerosis" International Journal of Molecular Sciences 25, no. 16: 8987. https://doi.org/10.3390/ijms25168987
APA StyleArneth, B. (2024). Current Knowledge about CD3+CD20+ T Cells in Patients with Multiple Sclerosis. International Journal of Molecular Sciences, 25(16), 8987. https://doi.org/10.3390/ijms25168987