Next Article in Journal
Characterization and Seasonal Modulation of Adenosine A1 Receptors in the Arctic Ground Squirrel Brain
Next Article in Special Issue
Myelin Basic Protein Fragmentation by Engineered Human Proteasomes with Different Catalytic Phenotypes Revealed Direct Peptide Ligands of MS-Associated and Protective HLA Class I Molecules
Previous Article in Journal
Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy
Previous Article in Special Issue
High Dose Pharmaceutical Grade Biotin (MD1003) Accelerates Differentiation of Murine and Grafted Human Oligodendrocyte Progenitor Cells In Vivo
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Myelinodegeneration vs. Neurodegeneration in MS Progressive Forms

1
Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
2
Stem-Cell and Brain Research Institute, 18 Avenue de Doyen Lépine, F-69500 Bron, France
3
Lyon-Est School of Medicine, University Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, F-69100 Villeurbanne, France
Int. J. Mol. Sci. 2023, 24(2), 1596; https://doi.org/10.3390/ijms24021596
Submission received: 9 December 2022 / Accepted: 14 December 2022 / Published: 13 January 2023
In MS patients with a progressive form of the disease, the slow deterioration of neurological functions is thought to result from a combination of neuronal cell death, axonal damages and synaptic dysfunctions. Axonal alterations were first reported in the historical neuropathological observations made by Charcot in the 19th century [1]. However, approximately 25 years ago, the notion of inflammation-associated neurodegeneration was put on the front line of MS pathophysiology. Indeed, in the late 1990s, axonal alterations up to the stage of axonal transection were demonstrated in active MS lesions [2,3]. Axonal loss was then found to occur throughout the normal-appearing white matter (NAWM) in patients suffering from a primary progressive or a secondary progressive form of MS [4,5]. Such diffuse axonal alterations were proposed to essentially result from the sum of retrograde and anterograde degenerative processes initiated eitherat sites of axonal transection or from dying neurons [6,7]. Several works also provided evidence that axonal degeneration in MS may stem from a failure of mitochondrial energy metabolism [8,9,10]. On this basis, MS progression was proposed to arise from a diffuse axonopathy targeting predominantly long axons, i.e., axons with a high energy demand [11]. Although diffuse parenchymal inflammation was shown to correlate with diffuse axonal loss [4,5], the neurodegeneration-promoting impact of meningeal inflammation drew increasing interest in the last decade. In particular, neuropathological studies demonstrated that meningeal inflammation correlates with either the extent of neuronal cell loss in MS brains [12,13] or the level of axonal loss in MS spinal cords [14]. Importantly, a causative link between meningeal inflammation and MS-associated neurodegeneration was recently demonstrated in vivo in a rat model of experimentally induced meningeal inflammation [15]. More specifically, the over-expression of lymphotoxin-alpha in meningeal cells was shown to cause the death of cortical neurons and to induce the formation of meningeal tertiary lymphoid structures (TLS) [15]. In this regard, it should be noticed that TLS are essentially observed in MS patients with an accelerated and aggressive course of the disease [16]. Thus, one may argue that mechanisms involved in MS “aggressiveness” may not relate to those involved in MS “progressiveness”. Furthermore, although supported by a substantial amount of data, the neuroinflammation/neurodegeneration hypothesis fails to integrate the existence of diffuse myelin alterations in the central nervous system (CNS) of MS patients. Notably, we and others demonstrated large areas of partial demyelination in periplaque regions, which are associated with low levels of inflammation [17,18,19]. Interestingly, irrespective of localization (brain vs. spinal cord) and plaque activity (chronic–active vs. silent) an important molecular feature shared by periplaques is the down-regulation of NDRG1, an oligodendrocyte gene that plays a crucial role in myelin maintenance [20,21]. This observation is reminiscent of previous work that demonstrated the epigenetic silencing of NDRG1 in “pathology-free” MS brain areas [22]. Additionally, in contrast with the expected inflammatory profile, periplaques exhibit a TGF-beta molecular signature reflecting an anti-inflammatory rather than a pro-inflammatory response [20,21,23]. Other works firmly demonstrated that, beyond periplaques, oligodendrocytes exhibit profound molecular and functional alterations throughout the CNS. This has been demonstrated ex vivo by epigenetics analyses, as mentioned above [22] but also, more recently, via single-cell RNA-seq analyses [24]. Similarly, the in vivo measures of myelin water fraction (MWF) by magnetic resonance imaging (MRI) clearly illustrate the occurrence of diffuse myelin alterations in the brain of MS patients [25,26]. Moreover, in MS patients, such decreased levels of MWF correlate with cognitive decline [27], disability scores [28], and extent of axonal loss [29]. This later point is of particular interest, as it raises the possibility that a process of myelinodegeneration may precede or at least accompany neurodegeneration, as previously proposed [30,31]. Indeed, the functional coupling between oligodendrocytes and axons is now acknowledged, and oligodendrocytes were shown to support axonal energy metabolism via specific glycolytic functions [32,33]. Supporting this view, it was previously shown that mice KO for the myelin genes Mag, Plp or Cnp develop a neurodegenerative process characterized by a diffuse axonopathy [34,35,36,37]. Finally, in mice, genetically determined alterations of myelinating oligodendrocyte are sufficient to provoke or amplify CNS neuroinflammation [38,39].
Future studies should aim to further characterize myelinodegeneration in the CNS of MS patients and determine how diffuse myelin alterations, neuroinflammation and neurodegeneration develop concurrently during the course of MS progressive forms.

Funding

This research received no external funding.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Kornek, B.; Lassmann, H. Axonal pathology in multiple sclerosis. A historical note. Brain Pathol. 1999, 9, 651–656. [Google Scholar] [CrossRef] [PubMed]
  2. Trapp, B.D.; Peterson, J.; Ransohoff, R.M.; Rudick, R.; Mörk, S.; Bö, L. Axonal Transection in the Lesions of Multiple Sclerosis. N. Engl. J. Med. 1998, 338, 278–285. [Google Scholar] [CrossRef] [PubMed]
  3. Ferguson, B.; Matyszak, M.K.; Esiri, M.M.; Perry, V.H. Axonal damage in acute multiple sclerosis lesions. Brain 1997, 120, 393–399. [Google Scholar] [CrossRef]
  4. Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Kutzelnigg, A.; Lucchinetti, C.F.; Stadelmann, C.; Brück, W.; Rauschka, H.; Bergmann, M.; Schmidbauer, M.; Parisi, J.E.; Lassmann, H. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005, 128, 2705–2712. [Google Scholar] [CrossRef] [PubMed]
  6. Balk, L.J.; Steenwijk, M.D.; Tewarie, P.; Daams, M.; Killestein, J.; Wattjes, M.P.; Vrenken, H.; Barkhof, F.; Polman, C.H.; Uitdehaag, B.M.J.; et al. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 419–424. [Google Scholar] [CrossRef] [PubMed]
  7. Gabilondo, I.; Martínez-Lapiscina, E.H.; Martínez-Heras, E.; Fraga-Pumar, E.; Llufriu, S.; Ortiz, S.; Bullich, S.; Sepulveda, M.; Falcon, C.; Berenguer, J.; et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann. Neurol. 2014, 75, 98–107. [Google Scholar] [CrossRef]
  8. Lassmann, H.; Van Horssen, J.; Mahad, D. Progressive multiple sclerosis: Pathology and pathogenesis. Nat. Rev. Neurol. 2012, 8, 647–656. [Google Scholar] [CrossRef]
  9. Licht-Mayer, S.; Campbell, G.R.; Canizares, M.; Mehta, A.R.; Gane, A.B.; McGill, K.; Ghosh, A.; Fullerton, A.; Menezes, N.; Dean, J.; et al. Enhanced axonal response of mitochondria to demyelination offers neuroprotection: Implications for multiple sclerosis. Acta Neuropathol. 2020, 140, 143–167. [Google Scholar] [CrossRef]
  10. Campbell, G.R.; Worrall, J.T.; Mahad, D.J. The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult. Scler. J. 2014, 20, 1806–1813. [Google Scholar] [CrossRef]
  11. Giovannoni, G.; Cutter, G.; Pia-Sormani, M.; Belachew, S.; Hyde, R.; Koendgen, H.; Knappertz, V.; Tomic, D.; Leppert, D.; Herndon, R.; et al. Is multiple sclerosis a length-dependent central axonopathy? The case for therapeutic lag and the asynchronous progressive MS hypotheses. Mult. Scler. Relat. Disord. 2017, 12, 70–78. [Google Scholar] [CrossRef] [Green Version]
  12. Magliozzi, R.; Fadda, G.; Brown, R.A.; Bar-Or, A.; Howell, O.W.; Hametner, S.; Marastoni, D.; Poli, A.; Nicholas, R.; Calabrese, M.; et al. “Ependymal-in” Gradient of Thalamic Damage in Progressive Multiple Sclerosis. Ann. Neurol. 2022, 92, 670–685. [Google Scholar] [CrossRef]
  13. Magliozzi, R.; Howell, O.W.; Reeves, C.; Roncaroli, F.; Nicholas, R.; Serafini, B.; Aloisi, F.; Reynolds, R. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 2010, 68, 477–493. [Google Scholar] [CrossRef]
  14. Androdias, G.; Reynolds, R.; Chanal, M.; Ritleng, C.; Confavreux, C.; Nataf, S. Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords. Ann. Neurol. 2010, 68, 465–476. [Google Scholar] [CrossRef]
  15. James Bates, R.E.; Browne, E.; Schalks, R.; Jacobs, H.; Tan, L.; Parekh, P.; Magliozzi, R.; Calabrese, M.; Mazarakis, N.D.; Reynolds, R. Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain 2022, 12. [Google Scholar] [CrossRef]
  16. Howell, O.W.; Reeves, C.A.; Nicholas, R.; Carassiti, D.; Radotra, B.; Gentleman, S.M.; Serafini, B.; Aloisi, F.; Roncaroli, F.; Magliozzi, R.; et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011, 134, 2755–2771. [Google Scholar] [CrossRef] [Green Version]
  17. Möller, J.R.; Yanagisawa, K.; Brady, R.O.; Tourtellotte, W.W.; Quarles, R.H. Myelin-associated glycoprotein in multiple sclerosis lesions: A quantitative and qualitative analysis. Ann. Neurol. 1987, 22, 469–474. [Google Scholar] [CrossRef]
  18. Johnson, D.; Sato, S.; Quarles, R.H.; Inuzuka, T.; Brady, R.O.; Tourtellotte, W.W. Quantitation of the Myelin-Associated Glycoprotein in Human Nervous Tissue from Controls and Multiple Sclerosis Patients. J. Neurochem. 1986, 46, 1086–1093. [Google Scholar] [CrossRef]
  19. Lieury, A.; Chanal, M.; Androdias, G.; Reynolds, R.; Cavagna, S.; Giraudon, P.; Confavreux, C.; Nataf, S. Tissue remodeling in periplaque regions of multiple sclerosis spinal cord lesions. Glia 2014, 62, 1645–1658. [Google Scholar] [CrossRef]
  20. Nataf, S.; Guillen, M.; Pays, L. Irrespective of plaque activity, multiple sclerosis brain periplaques exhibit alterations of myelin genes and a TGF-beta signature. Int. J. Mol. Sci. 2022, 23, 14993. [Google Scholar] [CrossRef]
  21. Nataf, S.; Barritault, M.; Pays, L. A unique TGFB1-driven genomic program links astrocytosis, low-grade inflammation and partial demyelination in spinal cord periplaques from progressive multiple sclerosis patients. Int. J. Mol. Sci. 2017, 18, 2097. [Google Scholar] [CrossRef] [PubMed]
  22. Huynh, J.L.; Garg, P.; Thin, T.H.; Yoo, S.; Dutta, R.; Trapp, B.D.; Haroutunian, V.; Zhu, J.; Donovan, M.J.; Sharp, A.J.; et al. Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat. Neurosci. 2014, 17, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Nataf, S.; Guillen, M.; Pays, L. TGFB1-mediated gliosis in multiple sclerosis spinal cords is favored by the regionalized expression of HOXA5 and the age-dependent decline in androgen receptor ligands. Int. J. Mol. Sci. 2019, 20, 5934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Jäkel, S.; Agirre, E.; Mendanha Falcão, A.; van Bruggen, D.; Lee, K.W.; Knuesel, I.; Malhotra, D.; Ffrench-Constant, C.; Williams, A.; Castelo-Branco, G. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 2019, 566, 543–547. [Google Scholar] [CrossRef]
  25. Johnson, P.; Vavasour, I.M.; Stojkova, B.J.; Abel, S.; Lee, L.E.; Laule, C.; Tam, R.; Li, D.K.B.; Ackermans, N.; Schabas, A.J.; et al. Myelin heterogeneity for assessing normal appearing white matter myelin damage in multiple sclerosis. J. Neuroimaging, 2022; Online ahead of print. [Google Scholar] [CrossRef]
  26. Laule, C.; Vavasour, I.M.; Moore, G.R.W.; Oger, J.; Li, D.K.B.; Paty, D.W.; MacKay, A.L. Water content and myelin water fraction in multiple sclerosis: A T 2 relaxation study. J. Neurol. 2004, 251, 284–293. [Google Scholar] [CrossRef]
  27. Abel, S.; Vavasour, I.; Lee, L.E.; Johnson, P.; Ackermans, N.; Chan, J.; Dvorak, A.; Schabas, A.; Wiggermann, V.; Tam, R.; et al. Myelin Damage in Normal Appearing White Matter Contributes to Impaired Cognitive Processing Speed in Multiple Sclerosis. J. Neuroimaging 2020, 30, 205–211. [Google Scholar] [CrossRef]
  28. Kolind, S.; Matthews, L.; Johansen-Berg, H.; Leite, M.I.; Williams, S.C.R.; Deoni, S.; Palace, J. Myelin water imaging reflects clinical variability in multiple sclerosis. Neuroimage 2012, 60, 263–270. [Google Scholar] [CrossRef] [Green Version]
  29. Yik, J.T.; Becquart, P.; Gill, J.; Petkau, J.; Traboulsee, A.; Carruthers, R.; Kolind, S.H.; Devonshire, V.; Sayao, A.L.; Schabas, A.; et al. Serum neurofilament light chain correlates with myelin and axonal magnetic resonance imaging markers in multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 57, 103366. [Google Scholar] [CrossRef]
  30. Laule, C.; Vavasour, I.M.; Leung, E.; Li, D.K.B.; Kozlowski, P.; Traboulsee, A.L.; Oger, J.; MacKay, A.L.; Wayne Moore, G.R. Pathological basis of diffusely abnormal white matter: Insights from magnetic resonance imaging and histology. Mult. Scler. J. 2011, 17, 144–150. [Google Scholar] [CrossRef]
  31. Laule, C.; Pavlova, V.; Leung, E.; Zhao, G.; Mackay, A.L.; Kozlowski, P.; Traboulsee, A.L.; Li, D.K.B.; Moore, G.R.W. Diffusely abnormal white matter in multiple sclerosis: Further histologic studies provide evidence for a primary lipid abnormality with neurodegeneration. J. Neuropathol. Exp. Neurol. 2013, 72, 42–52. [Google Scholar] [CrossRef] [Green Version]
  32. Saab, A.S.; Tzvetanova, I.D.; Nave, K.A. The role of myelin and oligodendrocytes in axonal energy metabolism. Curr. Opin. Neurobiol. 2013, 23, 1065–1072. [Google Scholar] [CrossRef]
  33. Fünfschilling, U.; Supplie, L.M.; Mahad, D.; Boretius, S.; Saab, A.S.; Edgar, J.; Brinkmann, B.G.; Kassmann, C.M.; Tzvetanova, I.D.; Möbius, W.; et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012, 485, 517–521. [Google Scholar] [CrossRef] [Green Version]
  34. Lappe-Siefke, C.; Goebbels, S.; Gravel, M.; Nicksch, E.; Lee, J.; Braun, P.E.; Griffiths, I.R.; Navel, K.A. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 2003, 33, 366–374. [Google Scholar] [CrossRef]
  35. Griffiths, I.; Klugmann, M.; Anderson, T.; Yool, D.; Thomson, C.; Schwab, M.H.; Schneider, A.; Zimmermann, F.; McCulloch, M.; Nadon, N.; et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 1998, 280, 1610–1613. [Google Scholar] [CrossRef]
  36. Quarles, R.H. Myelin-associated glycoprotein (MAG): Past, present and beyond. J. Neurochem. 2007, 100, 1431–1448. [Google Scholar] [CrossRef]
  37. Pan, B.; Fromholt, S.E.; Hess, E.J.; Crawford, T.O.; Griffin, J.W.; Sheikh, K.A.; Schnaar, R.L. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: Neuropathology and behavioral deficits in single- and double-null mice. Exp. Neurol. 2005, 195, 208–217. [Google Scholar] [CrossRef] [Green Version]
  38. Madsen, P.M.; Desu, H.L.; Vaccari, J.P.d.R.; Florimon, Y.; Ellman, D.G.; Keane, R.W.; Clausen, B.H.; Lambertsen, K.L.; Brambilla, R. Oligodendrocytes modulate the immune-inflammatory response in EAE via TNFR2 signaling. Brain. Behav. Immun. 2020, 84, 132–146. [Google Scholar] [CrossRef]
  39. Qiu, S.; Palavicini, J.P.; Wang, J.; Gonzalez, N.S.; He, S.; Dustin, E.; Zou, C.; Ding, L.; Bhattacharjee, A.; Van Skike, C.E.; et al. Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment. Mol. Neurodegener. 2021, 16, 64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Nataf, S. Myelinodegeneration vs. Neurodegeneration in MS Progressive Forms. Int. J. Mol. Sci. 2023, 24, 1596. https://doi.org/10.3390/ijms24021596

AMA Style

Nataf S. Myelinodegeneration vs. Neurodegeneration in MS Progressive Forms. International Journal of Molecular Sciences. 2023; 24(2):1596. https://doi.org/10.3390/ijms24021596

Chicago/Turabian Style

Nataf, Serge. 2023. "Myelinodegeneration vs. Neurodegeneration in MS Progressive Forms" International Journal of Molecular Sciences 24, no. 2: 1596. https://doi.org/10.3390/ijms24021596

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop