Effect of Water Vapor on Oxidation Processes of the Cu(111) Surface and Sublayer
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Situ Observations of Oxidations
2.2. Surface Oxidation Mechanisms of Dry and Humid Oxidation
2.3. Different Thickness of the Cu2O by the Subsurface Oxidations
3. Materials and Methods
3.1. Preparation of Cu(111) Single Crystal Surface
3.2. Operando Observations Using NAP-STM
3.3. Operando Observations and Analysis Using NAP-XPS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poulston, S.; Parlett, P.M.; Stone, P.; Bowker, M. Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820. [Google Scholar] [CrossRef]
- Therrien, A.J.; Zhang, R.; Lucci, F.R.; Marcinkowski, M.D.; Hensley, A.; McEwen, J.-S.; Sykes, E.C.H. Structurally Accurate Model for the “29”-Structure of CuxO/Cu(111): A DFT and STM Study. J. Phys. Chem. C 2016, 120, 10879–10886. [Google Scholar] [CrossRef]
- Wang, C.; Tissot, H.; Escudero, C.; Pérez-Dieste, V.; Stacchiola, D.; Weissenrieder, J. Redox Properties of Cu2O(100) and (111) Surfaces. J. Phys. Chem. C 2018, 122, 28684–28691. [Google Scholar] [CrossRef]
- Lee, S.Y.; Mettlach, N.; Nguyen, N.; Sun, Y.M.; White, J.M. Copper Oxide Reduction through Vacuum Annealing. Appl. Surf. Sci. 2003, 206, 102–109. [Google Scholar] [CrossRef]
- Yamamoto, S.; Andersson, K.; Bluhm, H.; Ketteler, G.; Starr, D.E.; Schiros, T.; Ogasawara, H.; Pettersson, L.G.M.; Salmeron, M.; Nilsson, A. Hydroxyl-Induced Wetting of Metals by Water at Near-Ambient Conditions. J. Phys. Chem. C 2007, 111, 7848–7850. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Tong, X.; Zhou, G. Enhancing Dissociative Adsorption of Water on Cu(111) via Chemisorbed Oxygen. J. Phys. Chem. C 2017, 121, 12117–12126. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.-S.; Song, R.; Cao, T.; Luo, L.; Chen, X.; Gao, Y.; Lu, J.; Li, W.-X.; Huang, W. The Most Active Cu Facet for Low-Temperature Water Gas Shift Reaction. Nat. Commun. 2017, 8, 488. [Google Scholar] [CrossRef] [Green Version]
- Jernigan, G.G.; Somorjai, G.A. Carbon Monoxide Oxidation over Three Different Oxidation States of Copper: Metallic Copper, Copper (I) Oxide, and Copper (II) Oxide—A Surface Science and Kinetic Study. J. Catal. 1994, 147, 567–577. [Google Scholar] [CrossRef]
- Baber, A.E.; Xu, F.; Dvorak, F.; Mudiyanselage, K.; Soldemo, M.; Weissenrieder, J.; Senanayake, S.D.; Sadowski, J.T.; Rodriguez, J.A.; Matolín, V.; et al. In Situ Imaging of Cu2O under Reducing Conditions: Formation of Metallic Fronts by Mass Transfer. J. Am. Chem. Soc. 2013, 135, 16781–16784. [Google Scholar] [CrossRef]
- Ren, Y.; Yuan, K.; Zhou, X.; Sun, H.; Wu, K.; Bernasek, S.L.; Chen, W.; Xu, G.Q. Catalytic Intermediates of CO2 Hydrogenation on Cu(111) Probed by In Operando Near-Ambient Pressure Technique. Chem. A Eur. J. 2018, 24, 16097–16103. [Google Scholar] [CrossRef]
- Eren, B.; Weatherup, R.S.; Liakakos, N.; Somorjai, G.A.; Salmeron, M. Dissociative Carbon Dioxide Adsorption and Morphological Changes on Cu(100) and Cu(111) at Ambient Pressures. J. Am. Chem. Soc. 2016, 138, 8207–8211. [Google Scholar] [CrossRef]
- Eren, B.; Heine, C.; Bluhm, H.; Somorjai, G.A.; Salmeron, M. Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-Ray Photoelectron Spectroscopy and Near Edge X-Ray Adsorption Fine Structure Spectroscopy. J. Am. Chem. Soc. 2015, 137, 11186–11190. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, C.; Michaelides, A. Atomistic Details of Oxide Surfaces and Surface Oxidation: The Example of Copper and Its Oxides. Surf. Sci. Rep. 2015, 70, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Wiame, F.; Maurice, V.; Marcus, P. Initial Stages of Oxidation of Cu(111). Surf. Sci. 2007, 601, 1193–1204. [Google Scholar] [CrossRef]
- Matsumoto, T.; Bennett, R.A.; Stone, P.; Yamada, T.; Domen, K.; Bowker, M. Scanning Tunneling Microscopy Studies of Oxygen Adsorption on Cu(111). Surf. Sci. 2001, 471, 225–245. [Google Scholar] [CrossRef]
- Yang, F.; Choi, Y.; Liu, P.; Stacchiola, D.; Hrbek, J.; Rodriguez, J.A. Identification of 5–7 Defects in a Copper Oxide Surface. J. Am. Chem. Soc. 2011, 133, 11474–11477. [Google Scholar] [CrossRef]
- Ly, T.T.; Lee, T.; Kim, S.; Lee, Y.-J.; Duvjir, G.; Jang, K.; Palotás, K.; Jeong, S.-Y.; Soon, A.; Kim, J. Growing Ultrathin Cu2O Films on Highly Crystalline Cu(111): A Closer Inspection from Microscopy and Theory. J. Phys. Chem. C 2019, 123, 12716–12721. [Google Scholar] [CrossRef]
- Kim, J.; Park, W.H.; Doh, W.H.; Lee, S.W.; Noh, M.C.; Gallet, J.J.; Bournel, F.; Kondoh, H.; Mase, K.; Jung, Y.; et al. Adsorbate-Driven Reactive Interfacial Pt-NiO1−x Nanostructure Formation on the Pt3Ni(111) Alloy Surface. Sci. Adv. 2018, 4, eaat3151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.I.J.; Kim, T.-S.; Kim, D.; Lee, S.W.; Park, J.Y. Operando Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles. ACS Nano 2020, 14, 16392–16413. [Google Scholar] [CrossRef]
- Kim, J.; Choi, H.; Kim, D.; Park, J.Y. Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catal. 2021, 11, 8645–8677. [Google Scholar] [CrossRef]
- Somorjai, G.A.; Park, J.Y. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure. Chem. Soc. Rev. 2008, 37, 2155–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somorjai, G.A.; Park, J.Y. Frontiers of Surface Science. Phys. Today 2007, 60, 10–48. [Google Scholar] [CrossRef]
- Pérez León, C.; Sürgers, C.v.; Löhneysen, H. Formation of Copper Oxide Surface Structures via Pulse Injection of Air onto Cu(111) Surfaces. Phys. Rev. B 2012, 85, 035434. [Google Scholar] [CrossRef]
- Lawton, T.J.; Pushkarev, V.; Broitman, E.; Reinicker, A.; Sykes, E.C.H.; Gellman, A.J. Initial Oxidation of Cu(Hkl) Surfaces Vicinal to Cu(111): A High-Throughput Study of Structure Sensitivity. J. Phys. Chem. C 2012, 116, 16054–16062. [Google Scholar] [CrossRef]
- Forster, M.; Raval, R.; Carrasco, J.; Michaelides, A.; Hodgson, A. Water-Hydroxyl Phases on an Open Metal Surface: Breaking the Ice Rules. Chem. Sci. 2012, 3, 93–102. [Google Scholar] [CrossRef]
- Pang, Z.; Duerrbeck, S.; Kha, C.; Bertel, E.; Somorjai, G.A.; Salmeron, M. Adsorption and Reactions of Water on Oxygen-Precovered Cu(110). J. Phys. Chem. C 2016, 120, 9218–9222. [Google Scholar] [CrossRef]
- Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H.; Salmeron, M.; Nilsson, A. In Situ X-Ray Photoelectron Spectroscopy Studies of Water on Metals and Oxides at Ambient Conditions. J. Phys. Condens. Matter 2008, 20, 184025. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Sorescu, D.C.; Jordan, K.D.; Yates, J.T. Hydroxyl Chain Formation on the Cu(110) Surface: Watching Water Dissociation. J. Phys. Chem. C 2008, 112, 17672–17677. [Google Scholar] [CrossRef]
- Jiang, Z.; Fang, T. Dissociation Mechanism of H2O on Clean and Oxygen-Covered Cu (111) Surfaces: A Theoretical Study. Vacuum 2016, 128, 252–258. [Google Scholar] [CrossRef]
- Andersson, K.; Ketteler, G.; Bluhm, H.; Yamamoto, S.; Ogasawara, H.; Pettersson, L.G.M.; Salmeron, M.; Nilsson, A. Autocatalytic Water Dissociation on Cu(110) at Near Ambient Conditions. J. Am. Chem. Soc. 2008, 130, 2793–2797. [Google Scholar] [CrossRef]
- Nian, Y.; Dong, Z.; Wang, S.; Wang, Y.; Han, Y.; Wang, C.; Luo, L. Atomic-Scale Dynamic Interaction of H2O Molecules with Cu Surface. Phys. Rev. Lett. 2020, 125, 156101. [Google Scholar] [CrossRef] [PubMed]
- Smoluchowski, R. Anisotropy of the Electronic Work Function of Metals. Phys. Rev. 1941, 60, 661–674. [Google Scholar] [CrossRef]
- Xu, Y.; Mavrikakis, M. The Adsorption and Dissociation of O2 Molecular Precursors on Cu: The Effect of Steps. Surf. Sci. 2003, 538, 219–232. [Google Scholar] [CrossRef]
- Li, L.; Luo, L.; Ciston, J.; Saidi, W.A.; Stach, E.A.; Yang, J.C.; Zhou, G. Surface-Step-Induced Oscillatory Oxide Growth. Phys. Rev. Lett. 2014, 113, 136104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.C.; Yeadon, M.; Kolasa, B.; Gibson, J.M. Oxygen Surface Diffusion in Three-Dimensional Cu2O Growth on Cu(001) Thin Films. Appl. Phys. Lett. 1997, 70, 3522–3524. [Google Scholar] [CrossRef]
- Morgenstern, M.; Michely, T.; Comsa, G. Anisotropy in the Adsorption of H2O at Low Coordination Sites on Pt(111). Phys. Rev. Lett. 1996, 77, 703–706. [Google Scholar] [CrossRef]
- Morgenstern, K. Scanning Tunnelling Microscopy Investigation of Water in Submonolayer Coverage on Ag(111). Surf. Sci. 2002, 504, 293–300. [Google Scholar] [CrossRef]
- Park, J.Y.; Sacha, G.M.; Enachescu, M.; Ogletree, D.F.; Ribeiro, R.A.; Canfield, P.C.; Jenks, C.J.; Thiel, P.A.; Sáenz, J.J.; Salmeron, M. Sensing Dipole Fields at Atomic Steps with Combined Scanning Tunneling and Force Microscopy. Phys. Rev. Lett. 2005, 95, 136802. [Google Scholar] [CrossRef] [Green Version]
- Kronawitter, C.X.; Riplinger, C.; He, X.; Zahl, P.; Carter, E.A.; Sutter, P.; Koel, B.E. Hydrogen-Bonded Cyclic Water Clusters Nucleated on an Oxide Surface. J. Am. Chem. Soc. 2014, 136, 13283–13288. [Google Scholar] [CrossRef]
- Möller, C.; Nilius, N. Water Adsorption on Cu2O(111) Surfaces: A Scanning Tunneling Microscopy Study. J. Phys. Chem. C 2017, 121, 20877–20881. [Google Scholar] [CrossRef]
- Lin, C.; Avidor, N.; Corem, G.; Godsi, O.; Alexandrowicz, G.; Darling, G.R.; Hodgson, A. Two-Dimensional Wetting of a Stepped Copper Surface. Phys. Rev. Lett. 2018, 120, 076101. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wang, X.; Li, B.; Zhu, C.; Huang, M.; Qiu, L.; Wang, M.; Jin, S.; Kim, M.; Ding, F.; et al. The Wet--Oxidation of a Cu(111) Foil Coated by Single Crystal Graphene. Adv. Mater. 2021, 33, 2102697. [Google Scholar] [CrossRef] [PubMed]
- Ford, D.C.; Nilekar, A.U.; Xu, Y.; Mavrikakis, M. Partial and Complete Reduction of O2 by Hydrogen on Transition Metal Surfaces. Surf. Sci. 2010, 604, 1565–1575. [Google Scholar] [CrossRef]
- Biesinger, M.C. Advanced Analysis of Copper X-Ray Photoelectron Spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
- Roy, K.; Gopinath, C.S. UV Photoelectron Spectroscopy at Near Ambient Pressures: Mapping Valence Band Electronic Structure Changes from Cu to CuO. Anal. Chem. 2014, 86, 3683–3687. [Google Scholar] [CrossRef]
- Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. J. Phys. Chem. C 2008, 112, 1101–1108. [Google Scholar] [CrossRef]
- Iijima, J.; Lim, J.-W.; Hong, S.-H.; Suzuki, S.; Mimura, K.; Isshiki, M. Native Oxidation of Ultra High Purity Cu Bulk and Thin Films. Appl. Surf. Sci. 2006, 253, 2825–2829. [Google Scholar] [CrossRef]
- Zheng, C.; Cao, J.; Zhang, Y.; Zhao, H. Insight into the Oxidation Mechanism of a Cu-Based Oxygen Carrier (Cu → Cu2O → CuO) in Chemical Looping Combustion. Energy Fuels 2020, 34, 8718–8725. [Google Scholar] [CrossRef]
- Bloch, J.; Bottomley, D.J.; Janz, S.; van Driel, H.M.; Timsit, R.S. Kinetics of Oxygen Adsorption, Absorption, and Desorption on the Cu(111) Surface. J. Chem. Phys. 1993, 98, 9167–9176. [Google Scholar] [CrossRef]
- Moritani, K.; Okada, M.; Sato, S.; Goto, S.; Kasai, T.; Yoshigoe, A.; Teraoka, Y. Photoemission Study of the Translational Energy Induced Oxidation Processes on Cu(111). J. Vac. Sci. Technol. A Vac. Surf. Film. 2004, 22, 1625–1630. [Google Scholar] [CrossRef]
- Salmeron, M.; Schlögl, R. Ambient Pressure Photoelectron Spectroscopy: A New Tool for Surface Science and Nanotechnology. Surf. Sci. Rep. 2008, 63, 169–199. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Noh, M.C.; Doh, W.H.; Park, J.Y. In Situ Observation of Competitive CO and O2 Adsorption on the Pt(111) Surface Using Near-Ambient Pressure Scanning Tunneling Microscopy. J. Phys. Chem. C 2018, 122, 6246–6254. [Google Scholar] [CrossRef]
- Lawless, K.R. The Oxidation of Metals. Rep. Prog. Phys. 1974, 37, 231–316. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, Y.I.; Lamichhane, B.; Kim, Y.-H.; Lee, Y.; Cho, C.R.; Cheon, M.; Kim, J.C.; Jeong, H.Y.; Ha, T.; et al. Flat-Surface-Assisted and Self-Regulated Oxidation Resistance of Cu(111). Nature 2022, 603, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Handoko, A.D.; Chan, K.W.; Yeo, B.S. –CH3 Mediated Pathway for the Electroreduction of CO2 to Ethane and Ethanol on Thick Oxide-Derived Copper Catalysts at Low Overpotentials. ACS. Energy Lett. 2017, 2, 2103–2109. [Google Scholar] [CrossRef]
- Kim, J.; Noh, M.C.; Doh, W.H.; Park, J.Y. Thermal Evolution and Instability of CO-Induced Platinum Clusters on the Pt(557) Surface at Ambient Pressure. J. Am. Chem. Soc. 2016, 138, 1110–1113. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Doh, W.H.; Kim, Y.; Kim, K.J.; Park, J.Y. Water-Assisted Growth of Cobalt Oxide and Cobalt Hydroxide Overlayers on the Pt3Co(111) Surface. ACS Appl Energy Mater 2019, 2, 8580–8586. [Google Scholar] [CrossRef]
- Kim, T.S.; Kim, J.; Song, H.C.; Kim, D.; Jeong, B.; Lee, J.; Shin, J.W.; Ryoo, R.; Park, J.Y. Catalytic Synergy on PtNi Bimetal Catalysts Driven by Interfacial Intermediate Structures. ACS Catal. 2020, 10, 10459–10467. [Google Scholar] [CrossRef]
- Choi, H.; Lee, J.; Kim, D.; Kumar, A.; Jeong, B.; Kim, K.; Lee, H.; Park, J.Y. Influence of Lattice Oxygen on the Catalytic Activity of Blue Titania Supported Pt Catalyst for CO Oxidation. Catal. Sci. Technol. 2021, 11, 1698–1708. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.J.; Kim, D.; Kim, Y.; Jeong, Y.; Jeong, B.; Park, J.Y. Effect of Water Vapor on Oxidation Processes of the Cu(111) Surface and Sublayer. Int. J. Mol. Sci. 2023, 24, 810. https://doi.org/10.3390/ijms24010810
Kim YJ, Kim D, Kim Y, Jeong Y, Jeong B, Park JY. Effect of Water Vapor on Oxidation Processes of the Cu(111) Surface and Sublayer. International Journal of Molecular Sciences. 2023; 24(1):810. https://doi.org/10.3390/ijms24010810
Chicago/Turabian StyleKim, Young Jae, Daeho Kim, Yongman Kim, Yongchan Jeong, Beomgyun Jeong, and Jeong Young Park. 2023. "Effect of Water Vapor on Oxidation Processes of the Cu(111) Surface and Sublayer" International Journal of Molecular Sciences 24, no. 1: 810. https://doi.org/10.3390/ijms24010810