Quality Control of Bacterial Extracellular Vesicles with Total Protein Content Assay, Nanoparticles Tracking Analysis, and Capillary Electrophoresis
Abstract
:1. Introduction
2. Results
2.1. Isolation Protocol
2.2. Quantification of EVs
2.3. Negative Control
2.4. Iodixanol Density Gradient UC
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Protein Assay Kit
4.3. Nanoparticles Tracking Analysis
4.4. Dynamic Light Scattering
4.5. Capillary Electrophoresis
4.6. Bacteria Culturing and EVs Isolation
4.7. Transmission Electron Microscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tkach, M.; Kowal, J.; Théry, C. Why the Need and How to Approach the Functional Diversity of Extracellular Vesicles. Philos. Trans. B 2017, 373, 20160479. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.P.; Dittmer, D.P. Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. J. Neuroimmune Pharmacol. 2020, 15, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Manning, A.J.; Kuehn, M.J. Functional Advantages Conferred by Extracellular Prokaryotic Membrane Vesicles. J. Mol. Microbiol. Biotechnol. 2013, 23, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Schinkel, M.; van Essen, M.; Schiffelers, R.M. Bacterial Membrane Vesicles as Promising Vaccine Candidates. Eur. J. Pharm. Biopharm. 2019, 145, 1–6. [Google Scholar] [CrossRef]
- Wiklander, O.P.B.; Brennan, M.; Lötvall, J.; Breakefield, X.O.; Andaloussi, S.E.L. Advances in Therapeutic Applications of Extracellular Vesicles. Sci. Transl. Med. 2019, 11, 492. [Google Scholar] [CrossRef]
- Shah, R.; Patel, T.; Freedman, J.E. Circulating Extracellular Vesicles in Human Disease. N. Engl. J. Med. 2018, 379, 958–966. [Google Scholar] [CrossRef]
- Ramirez, M.I.; Amorim, M.G.; Gadelha, C.; Milic, I.; Welsh, J.A.; Freitas, V.M.; Nawaz, M.; Akbar, N.; Couch, Y.; Makin, L.; et al. Technical Challenges of Working with Extracellular Vesicles. Nanoscale 2018, 10, 881–906. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.D.; Shah, S. Methods of Isolating Extracellular Vesicles Impact Down-Stream Analyses of Their Cargoes. Methods 2015, 87, 3–10. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Veerman, R.E.; Teeuwen, L.; Czarnewski, P.; Güclüler Akpinar, G.; Sandberg, A.S.; Cao, X.; Pernemalm, M.; Orre, L.M.; Gabrielsson, S.; Eldh, M. Molecular Evaluation of Five Different Isolation Methods for Extracellular Vesicles Reveals Different Clinical Applicability and Subcellular Origin. J. Extracell. Vesicles 2021, 10, e12128. [Google Scholar] [CrossRef]
- Kato, K.; Kobayashi, M.; Hanamura, N.; Akagi, T.; Kosaka, N.; Ochiya, T.; Ichiki, T. Electrokinetic Evaluation of Individual Exosomes by On-Chip Microcapillary Electrophoresis with Laser Dark-Field Microscopy. Jpn. J. Appl. Phys. 2013, 52, 06GK10. [Google Scholar] [CrossRef]
- Akagi, T.; Kato, K.; Hanamura, N.; Kobayashi, M.; Ichiki, T. Evaluation of Desialylation Effect on Zeta Potential of Extracellular Vesicles Secreted from Human Prostate Cancer Cells by On-Chip Microcapillary Electrophoresis. Jpn. J. Appl. Phys. 2014, 53, 06JL01. [Google Scholar] [CrossRef]
- Akagi, T.; Kato, K.; Kobayashi, M.; Kosaka, N.; Ochiya, T.; Ichiki, T. On-Chip Immunoelectrophoresis of Extracellular Vesicles Released from Human Breast Cancer Cells. PLoS ONE 2015, 10, e0123603. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, S.; Minamisawa, T.; Suga, K.; Kishita, H.; Akagi, T.; Ichiki, T.; Ichikawa, Y.; Shiba, K. Subtypes of Tumour Cell-Derived Small Extracellular Vesicles Having Differently Externalized Phosphatidylserine. J. Extracell. Vesicles 2019, 8, 1579451. [Google Scholar] [CrossRef] [Green Version]
- Akagi, T.; Ichiki, T. Microcapillary Chip-Based Extracellular Vesicle Profiling System; Humana Press: New York, NY, USA, 2017; Volume 1660, ISBN 9781493972531. [Google Scholar]
- Lan, T.; Xi, X.; Chu, Q.; Zhao, L.; Chen, A.; Lu, J.J.; Wang, F.; Zhang, W. A Preliminary Origin-Tracking Study of Different Densities Urinary Exosomes. Electrophoresis 2018, 39, 2316–2320. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Ciura, K.; Zalewska, M.; Dawid, M.; Correia, B.; Sawicka, P.; Lewczuk, B.; Kasprzyk, J.; Sola, L.; Piekoszewski, W.; et al. Capillary Zone Electrophoresis of Bacterial Extracellular Vesicles: A Proof of Concept. J. Chromatogr. A 2020, 1621, 461047. [Google Scholar] [CrossRef] [PubMed]
- Dziomba, S.; Wysocka, M.; Jońca, J.; Sola, L.; Steć, A.; Waleron, K.; Wielgomas, B. Investigation of Selected Parameters of Capillary Zone Electrophoresis Method for Analysis of Isolates of Outer Membrane Vesicles. Electrophoresis 2021, 42, 2010–2017. [Google Scholar] [CrossRef]
- Morani, M.; Mai, T.D.; Krupova, Z.; Defrenaix, P.; Multia, E.; Riekkola, M.L.; Taverna, M. Electrokinetic Characterization of Extracellular Vesicles with Capillary Electrophoresis: A New Tool for Their Identification and Quantification. Anal. Chim. Acta 2020, 1128, 42–51. [Google Scholar] [CrossRef]
- Tani, Y.; Kaneta, T. Indirect Capillary Electrophoresis Immunoassay of Membrane Protein in Extracellular Vesicles. J. Chromatogr. A 2020, 1629, 461513. [Google Scholar] [CrossRef]
- Dou, Y.; Ren, L.; Kulabhusan, P.K.; Zaripov, E.A.; Berezovski, M.V. Quantitative Capillary Electrophoresis for Analysis of Extracellular Vesicles (Evqce). Separations 2021, 8, 110. [Google Scholar] [CrossRef]
- Jonca, J.; Waleron, M.; Czaplewska, P.; Bogucka, A.; Stec, A.; Dziomba, S.; Jasiecki, J.; Waleron, K. Membrane Vesicles of Pectobacterium as an Effective Protein Secretion System. Int. J. Mol. Sci. 2021, 22, 12574. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Pawelec, A.; Buszewska-Forajta, M.; Markuszewski, M.J.; Nowakowska, J.; Prahl, A.; Wielgomas, B.; Dziomba, S. Evaluation of Sample Injection Precision in Respect to Sensitivity in Capillary Electrophoresis Using Various Injection Modes. J. Sep. Sci. 2017, 40, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.L.; Ballou, N.E. Effects of Capillary Temperature Control and Electrophoretic Heterogeneity on Parameters Characterizing Separations of Particles by Capillary Zone Electrophoresis. Anal. Chem. 1992, 64, 1676–1681. [Google Scholar] [CrossRef]
- Gardiner, C.; Di Vizio, D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques Used for the Isolation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey. J. Extracell. Vesicles 2016, 5, 32945. [Google Scholar] [CrossRef]
- Linares, R.; Tan, S.; Gounou, C.; Arraud, N.; Brisson, A.R. High-Speed Centrifugation Induces Aggregation of Extracellular Vesicles. J. Extracell. Vesicles 2015, 4, 29509. [Google Scholar] [CrossRef]
- Mol, E.A.; Goumans, M.J.; Doevendans, P.A.; Sluijter, J.P.G.; Vader, P. Higher Functionality of Extracellular Vesicles Isolated Using Size-Exclusion Chromatography Compared to Ultracentrifugation. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2061–2065. [Google Scholar] [CrossRef]
- Petersen, S.L.; Ballou, N.E. Separation of Micrometer-Size Oxide Particles by Capillary Zone Electrophoresis. J. Chromatogr. A 1999, 834, 445–452. [Google Scholar] [CrossRef]
- Dziomba, S.; Ciura, K.; Correia, B.; Wielgomas, B. Stabilization and Isotachophoresis of Unmodified Gold Nanoparticles in Capillary Electrophoresis. Anal. Chim. Acta 2019, 1047, 248–256. [Google Scholar] [CrossRef]
- Gupta, S.; Rawat, S.; Arora, V.; Kottarath, S.K.; Dinda, A.K.; Vaishnav, P.K.; Nayak, B.; Mohanty, S. An Improvised One-Step Sucrose Cushion Ultracentrifugation Method for Exosome Isolation from Culture Supernatants of Mesenchymal Stem Cells. Stem Cell Res. Ther. 2018, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Langevin, S.M.; Kuhnell, D.; Orr-Asman, M.A.; Biesiada, J.; Zhang, X.; Medvedovic, M.; Thomas, H.E. Balancing Yield, Purity and Practicality: A Modified Differential Ultracentrifugation Protocol for Efficient Isolation of Small Extracellular Vesicles from Human Serum. RNA Biol. 2019, 16, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Webber, J.; Clayton, A. How Pure Are Your Vesicles? J. Extracell. Vesicles 2013, 2, 19861. [Google Scholar] [CrossRef] [PubMed]
- Vogel, R.; Savage, J.; Muzard, J.; Della Camera, G.; Vella, G.; Law, A.; Marchioni, M.; Mehn, D.; Geiss, O.; Peacock, B.; et al. Measuring Particle Concentration of Multimodal Synthetic Reference Materials and Extracellular Vesicles with Orthogonal Techniques: Who Is up to the Challenge? J. Extracell. Vesicles 2021, 10, e12052. [Google Scholar] [CrossRef] [PubMed]
- Van Deun, J.; Mestdagh, P.; Sormunen, R.; Cocquyt, V.; Vermaelen, K.; Vandesompele, J.; Bracke, M.; De Wever, O.; Hendrix, A. The Impact of Disparate Isolation Methods for Extracellular Vesicles on Downstream RNA Profiling. J. Extracell. Vesicles 2014, 3, 24858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, K.; Martin, K.; FitzGerald, S.P.; O’Sullivan, J.; Wu, Y.; Blanco, A.; Richardson, C.; Mc Gee, M.M. A Comparison of Methods for the Isolation and Separation of Extracellular Vesicles from Protein and Lipid Particles in Human Serum. Sci. Rep. 2020, 10, 1039. [Google Scholar] [CrossRef] [Green Version]
- Duong, P.; Chung, A.; Bouchareychas, L.; Raffai, R.L. Cushioned-Density Gradient Ultracentrifugation (C-DGUC) Improves the Isolation Efficiency of Extracellular Vesicles. PLoS ONE 2019, 14, e0215324. [Google Scholar] [CrossRef]
- Pysher, M.D.; Hayes, M.A. Examination of the Electrophoretic Behavior of Liposomes. Langmuir 2004, 20, 4369–4375. [Google Scholar] [CrossRef]
- Pysher, M.D.; Hayes, M.A. Effects of Deformability, Uneven Surface Charge Distributions, and Multipole Moments on Biocolloid Electrophoretic Migration. Langmuir 2005, 21, 3572–3577. [Google Scholar] [CrossRef]
- Chen, S.B. Electrophoretic Mobility of a Spherical Liposome. J. Colloid Interface Sci. 2010, 348, 177–182. [Google Scholar] [CrossRef]
- Bartling, S.; Wegener, C.; Olsen, O. Synergism between Erwinia Pectate Lyase Isoenzymes That Depolymerize Both Pectate and Pectin. Microbiology 1995, 141, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Mougán, M.; Fraga, F.; Meijide, F.; Rodríguez-Núñez, E.; Vázquez-Tato, J. Aggregation Behaviour of Polygalacturonic Acid in Aqueous Solution. Carbohydr. Polym. 2003, 51, 37–45. [Google Scholar] [CrossRef]
- Noyes, A.; Godavarti, R.; Titchener-Hooker, N.; Coffman, J.; Mukhopadhyay, T. Quantitative High Throughput Analytics to Support Polysaccharide Production Process Development. Vaccine 2014, 32, 2819–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Cruz, C.; Carrion, O.; Delgado, L.; Martinez, G.; Mercade, E. New Type of Outer Membrane Vesicle Produced by the Gram- Negative Bacterium Shewanella Vesiculosa M7 T: Implications for DNA. Appl. Environ. Microbiol. 2013, 79, 1874–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, C.; Ferreira, Y.J.; Dragovic, R.A.; Redman, C.W.G.; Sargent, I.L. Extracellular Vesicle Sizing and Enumeration by Nanoparticle Tracking Analysis. J. Extracell. Vesicles 2013, 2, 19671. [Google Scholar] [CrossRef]
- Waleron, M.; Misztak, A.; Waleron, M.; Franczuk, M.; Jońca, J.; Wielgomas, B.; Mikiciński, A.; Popovic, T.; Waleron, K. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst. Appl. Microbiol. 2019, 42, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.G.; Leveau, J.H.J.; Lindow, S.E. Improved Gfp and InaZ Broad-Host-Range Promoter-Probe Vectors. Mol. Plant-Microbe Interact. 2000, 13, 1243–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perombelon, M.C.M.; Burnett, E.M. Two Modified Crystal Violet Pectate (CVP) Media for the Detection, Isolation and Enumeration of Soft Rot Erwinias. Potato Res. 1991, 34, 79–85. [Google Scholar] [CrossRef]
- Elbing, K.; Brent, R. Media Preparation and Bacteriological Tools. In Current Protocols in Molecular Biology; John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 1.1.1–1.1.7. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steć, A.; Jońca, J.; Waleron, K.; Waleron, M.; Płoska, A.; Kalinowski, L.; Wielgomas, B.; Dziomba, S. Quality Control of Bacterial Extracellular Vesicles with Total Protein Content Assay, Nanoparticles Tracking Analysis, and Capillary Electrophoresis. Int. J. Mol. Sci. 2022, 23, 4347. https://doi.org/10.3390/ijms23084347
Steć A, Jońca J, Waleron K, Waleron M, Płoska A, Kalinowski L, Wielgomas B, Dziomba S. Quality Control of Bacterial Extracellular Vesicles with Total Protein Content Assay, Nanoparticles Tracking Analysis, and Capillary Electrophoresis. International Journal of Molecular Sciences. 2022; 23(8):4347. https://doi.org/10.3390/ijms23084347
Chicago/Turabian StyleSteć, Aleksandra, Joanna Jońca, Krzysztof Waleron, Małgorzata Waleron, Agata Płoska, Leszek Kalinowski, Bartosz Wielgomas, and Szymon Dziomba. 2022. "Quality Control of Bacterial Extracellular Vesicles with Total Protein Content Assay, Nanoparticles Tracking Analysis, and Capillary Electrophoresis" International Journal of Molecular Sciences 23, no. 8: 4347. https://doi.org/10.3390/ijms23084347
APA StyleSteć, A., Jońca, J., Waleron, K., Waleron, M., Płoska, A., Kalinowski, L., Wielgomas, B., & Dziomba, S. (2022). Quality Control of Bacterial Extracellular Vesicles with Total Protein Content Assay, Nanoparticles Tracking Analysis, and Capillary Electrophoresis. International Journal of Molecular Sciences, 23(8), 4347. https://doi.org/10.3390/ijms23084347