Effect of 1,2-propanediol on the Critical Micelle Concentration of Decyltrimethylammonium Bromide at Temperatures from 293.15 K to 308.15 K
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tadros, T.F. Applied Surfactants: Principles and Applications, 1st ed.; Wiley-VCH Verlag GmbH & Co KGaA: Wenheim, Germany, 2005; ISBN 978-3-527-30629-9. [Google Scholar]
- van Os, N.M.; Haak, J.R.; Rupert, L.A.M. Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants Part II: Alkyltrimethylammonium Salts, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 109–136. ISBN 978044460028. [Google Scholar]
- Gómez-Díaz, D.; Navaza, J.M.; Sanjurjo, B. Density, Kinematic Viscosity, Speed of Sound, and Surface Tension of Hexyl, Octyl, and Decyl Trimethyl Ammonium Bromide Aqueous Solutions. J. Chem. Eng. Data 2007, 52, 889–891. [Google Scholar] [CrossRef]
- Mukerjee, P.; Mysels, K.J. Critical Micelle Concentrations of Aqueous Surfactant Systems; National Standard Reference Data System; NSRDS-NBS 36; National Bureau of Standards: Washington, DC, USA, 1971. [Google Scholar]
- Sharker, K.K.; Yusa, S.; Phan, C.M. Micellar formation of cationic surfactants. Heliyon 2019, 5, e02425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakharova, L.Y.; Pashirova, T.N.; Doktorovova, S.; Fernandes, A.R.; Sanchez-Lopez, E.; Silva, A.M.; Souto, S.B.; Souto, E.B. Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications. Int. J. Mol. Sci. 2019, 20, 5534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lisi, R.; Ostiguy, C.; Perron, G.; Desnoyers, J.E. Complete thermodynamic properties of nonyl- and decyltrimethylammonium bromides in water. J. Colloid Interface Sci. 1979, 71, 147–166. [Google Scholar] [CrossRef]
- Oremusová, J. Micellization of Alkyl Trimethyl Ammonium Bromides in Aqueous Solutions. Part 1: Critical Micelle Concentration (CMC) and Ionization Degree. Tenside Surfact. Det. 2012, 49, 231–240. [Google Scholar] [CrossRef]
- Evans, D.F.; Allen, M.; Ninham, B.W.; Fouda, A. Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25° to 160 °C. J. Solution Chem. 1984, 13, 87–101. [Google Scholar] [CrossRef]
- Edler, K.J.; Bowron, D.T. Temperature and concentration effects on decyltrimethylammonium micelles in water. Molec. Phys. 2019, 117, 3389–3397. [Google Scholar] [CrossRef]
- Zielinski, R.; Ikeda, S.; Nomura, H.; Kato, S. Effect of Temperature on Micelle Formation in Aqueous Solutions of Alkyltrimethylammonium Bromides. J. Colloid Interface Sci. 1989, 129, 16–20. [Google Scholar] [CrossRef]
- Shaikh, V.R.; Abdul, A.; Patil, K.J. Thermodynamic studies of aggregation behaviour of cationic surfactants (octyltrimethylammonium chloride/tetradecyltrimethylammonium chloride) in aqueous solutions at different temperatures. J. Chem. Thermodyn. 2021, 152, 106282. [Google Scholar] [CrossRef]
- Perger, T.M.; Bešter-Rogac, M. Thermodynamics of micelle formation of alkyltrimethylammonium chlorides from high performance electric conductivity measurements. J. Colloid Interface Sci. 2007, 313, 288–295. [Google Scholar] [CrossRef]
- Li, W.; Han, Y.; Zhang, J.; Wang, B. Effect of Ethanol on the Aggregation Properties of Cetyltrimethylammonium Bromide Surfactant. Colloid J. 2005, 67, 159–163. [Google Scholar] [CrossRef]
- Castedo, A.; Castillo, J.L.D.; Suárez-Filloy, M.J.; Rodríguez, J.R. Effect of Temperature on the Mixed Micellar Tetradecyltrimethylammonium Bromide-Butanol System. J. Colloid Interface Sci. 1997, 196, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Zana, R. Effect of Alcohol on the Properties of Micellar Systems. J. Colloid Interface Sci. 1981, 80, 208–223. [Google Scholar] [CrossRef]
- Shah, S.K.; Chatterjee, S.K.; Bhattarai, A. Micellization of cationic surfactants in alcohol-water mixed solvent media. J. Mol. Liq. 2016, 222, 906–914. [Google Scholar] [CrossRef]
- Kuperkar, K.C.; Mata, J.P.; Bahadur, P. Effect of 1-alkanols/salt on the cationic surfactant micellar aqueous solutions-A dynamic light scattering study. Colloids Surf. A Physicochem. Eng. Asp. 2011, 380, 60–65. [Google Scholar] [CrossRef]
- Aicart, E.; Jobe, D.J.; Skalski, B.; Verrau, R.E. Ultrasonic Relaxation Studies of Mixed Micelles Formed from Propanol-Decyltrimethylammonium Bromide-Water. J. Phys. Chem. 1992, 96, 2348–2355. [Google Scholar] [CrossRef]
- Chavda, S.; Singh, K.; Marangoni, D.G.; Aswal, V.K.; Bahadur, P. Cationic Micelles Modulated in the Presence of α,ω-Alkanediols: A SANS, NMR and Conductometric Study. J. Surfact. Deterg. 2012, 15, 317–325. [Google Scholar] [CrossRef]
- Rodríguez, A.; Muñoz, M.; Graciani, M.M.; Moyá, M.L. Role of the counterion in the effects of added ethylene glycol to aqueous alkyltrimethylammonium micellar solutions. J. Colloid Interface Sci. 2006, 298, 942–951. [Google Scholar] [CrossRef]
- Rodríguez, A.; Graciani, M.M.; Fernandez, G.; Moyá, M.L. Effects of glycols on the thermodynamic and micellar properties of TTAB in water. J. Colloid Interface Sci. 2009, 338, 207–215. [Google Scholar] [CrossRef]
- Rodríguez, A.; Graciani, M.D.M.; Moyá, M.L. Effects of addition of polar organic solvents on micellization. Langmuir 2008, 24, 12785–12792. [Google Scholar] [CrossRef]
- Abdel-Rahem, R.A. 1,3-Butanediol as a co-solvent for the surfactant solutions. Colloid Polym. Sci. 2012, 290, 907–917. [Google Scholar] [CrossRef]
- Palepu, R.; Gharibi, H.; Bloor, D.M.; Wyn-Jones, E. Electrochemical Studies Associated with the Micellization of Cationic Surfactants in Aqueous Mixtures of Ethylene Glycol and Glycerol. Langmuir 1993, 9, 110–112. [Google Scholar] [CrossRef]
- Backlund, S.; Bergenståhl, B.; Molander, O.; Wärnheim, T. Aggregation of Tetradecyltrimethylammonium Bromide in Water, 1,2-Ethanediol, and Their Mixtures. J. Colloid Interface Sci. 1989, 131, 393–401. [Google Scholar] [CrossRef]
- Ruiz, C.C.; Aguiar, J. Self-assembly of tetradecyltrimethylammonium bromide in glycerol aqueous mixtures: A thermodynamic and structural study. J. Colloid Interface Sci. 2007, 305, 293–300. [Google Scholar] [CrossRef]
- Moyá, M.L.; Rodríguez, A.; Graciani, M.M.; Fernandez, G. Role of the solvophobic effect on micellization. J. Colloid Interface Sci. 2007, 316, 787–795. [Google Scholar] [CrossRef]
- D’Errico, G.; Ciccarelli, D.; Ortona, O. Effect of glycerol on micelle formation by ionic and nonionic surfactants at 25 °C. J. Colloid Interface Sci. 2005, 286, 747–754. [Google Scholar] [CrossRef]
- Sansanwal, P.K. Effect of co-solutes on the physico-chemical properties of surfactant solutions. J. Sci. Ind. Res. 2006, 65, 57–64. [Google Scholar]
- Ruiz, C.C. Thermodynamics of micellization of tetradecyltrimethylammonium bromide in ethylene glycol- water binary mixtures. Colloid Polym. Sci. 1999, 277, 701–707. [Google Scholar] [CrossRef]
- Kennedy, C.A.; MacMillan, S.N.; Mcalduff, M.; Marangoni, G.D. The interaction of isomeric hexanediols with sodium dodecyl sulfate and dodecyltrimethylammonium bromide micelles. Colloid Polym. Sci. 2001, 7, 1–7. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Lobo, V.M.M.; Valente, A.J.M.; Azevedo, E.F.G.; Miguel, M.G.; Burrows, H.D. Transport properties of alkyltrimethylammonium bromide surfactants in aqueous solutions. Colloid Polym. Sci. 2004, 283, 277–283. [Google Scholar] [CrossRef]
- Harun-Al-Rashid, M.; Tofaz, T.; Islam, M.M.; Biswas, T. Sound Velocities and Micellar Behaviour Studies of Dodecyltrimethylammonium Bromide in Aqueous Solutions at 295.15, 302.15 and 309.15 K. Int. J. Chem. 2015, 7, 213–222. [Google Scholar] [CrossRef]
- Nishikawa, S.; Huang, H. Volumetric Properties of Surfactant in Water and in Mixed Solvent from Sound Velocity and Density Measurements. Bull. Chem. Soc. Jpn. 2002, 75, 1215–1221. [Google Scholar] [CrossRef]
- Romero, C.M.; Paez, M.S. Volumetric Properties of Aqueous Binary Mixtures of 1-Butanol, Butanediols, 1,2,4-Butanetriol and Butanetetrol at 298.15 K. J. Solution Chem. 2007, 36, 237–245. [Google Scholar] [CrossRef]
- Romero, C.M.; Paez, M.S.; Perez, D. A comparative study of the volumetric properties of dilute aqueous solutions of 1-propanol, 1,2-propanediol, 1,3-propanediol, and 1,2,3-propanetriol at various temperatures. J. Chem. Thermodyn. 2008, 40, 1645–1653. [Google Scholar] [CrossRef]
- Sengwa, R.J.; Chaudhary, R.; Mehrotra, S.C. Dielectric behaviour of propylene glycol-water mixtures studied by time domain reflectometry. Mol. Phys. 2001, 99, 1805–1812. [Google Scholar] [CrossRef]
- Gudelj, M.; Šurina, P.; Jurko, L.; Prkic, A.; Boškovic, P. The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties. Molecules 2021, 26, 3773. [Google Scholar] [CrossRef]
- Origlia-Luster, M.L.; Patterson, B.A.; Woolley, E.M. Apparent molar volumes and apparent molar heat capacities of aqueous ethane-1,2-diol, propane-1,2-diol, and propane-1,3-diol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 2002, 34, 511–526. [Google Scholar] [CrossRef]
- George, J.; Sastry, N.V. Densities, dynamic viscosities, speeds of sound, and relative permittivities for water+ alkanediols (propane-1, 2-and-1, 3-diol and butane-1, 2-,-1, 3-,-1, 4-, and-2, 3-diol) at different temperatures. J. Chem. Eng. Data 2003, 48, 1529–1539. [Google Scholar] [CrossRef]
- Hoke, B.C.; Patton, E.F. Surface Tensions of Propylene Glycol + Water. J. Chem. Eng. Data. 1992, 37, 331–333. [Google Scholar] [CrossRef]
- Berr, S.S.; Caponetti, E.; Johnson, J.S., Jr.; Jones, R.R.; Magid, L.J. Small-Angle Neutron Scattering from Hexadecyltrimethylammonium Bromide Micelles in Aqueous Solutions. J. Phys. Chem. 1986, 90, 5766–5770. [Google Scholar] [CrossRef]
- Blandamer, M.J.; Cullis, P.M.; Soldi, L.G.; Engberts, J.B.F.N.; Kacperska, A.; van Os, N.M.; Subha, M.C.S. Thermodynamics of micellar systems: Comparison of mass action and phase equilibrium models for the calculation of standard Gibbs energies of micelle formation. Adv. Colloid Interface Sci. 1995, 58, 171–209. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lim, K. A model on the temperature dependence of critical micelle concentration. Colloids Surf. A Physicochem. Eng. Asp. 2004, 235, 121–128. [Google Scholar] [CrossRef]
- Kristen, N.; Simulescu, V.; Vüllings, A.; Laschewsky, A.; Miller, R.; von Klitzing, R. No Charge Reversal at Foam Film Surfaces after Addition of Oppositely Charged Polyelectrolytes? J. Phys. Chem. B. 2009, 113, 7986–7990. [Google Scholar] [CrossRef] [PubMed]
- Bales, B.L. A Definition of the Degree of Ionization of a Micelle Based on Its Aggregation. J. Phys. Chem. B 2001, 105, 6798–6804. [Google Scholar] [CrossRef]
- Muller, N. Temperature Dependence of Critical Micelle Concentrations and Heat Capacities of Micellization for Ionic Surfactant. Langmuir 1993, 9, 96–100. [Google Scholar] [CrossRef]
- Mosquera, V.; del Río, J.M.; Attwood, D.; García, M.; Jones, M.N. A Study of the Aggregation Behavior of Hexyltrimethylammonium Bromide in Aqueous Solution. J. Colloid Interface Sci. 1998, 206, 66–76. [Google Scholar] [CrossRef]
- Riddick, J.A.; Bunger, W.B.; Sakano, T.K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed.; John Wiley & Sons Inc.: New York, NY, USA, 1986; ISBN 978-0471084679. [Google Scholar]
- Del Grosso, V.A.; Mader, C.W. Speed of Sound in Pure Water. J. Acoust. Soc. Am. 1972, 52, 1442–1446. [Google Scholar] [CrossRef]
- Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1994. [Google Scholar]
m/(mol⋅kg−1) | ρ/(g⋅cm−3) | u/(m⋅s−1) | σ/(mN⋅m−1) | ρ/(g⋅cm−3) | u/(m⋅s−1) | σ/(mN⋅m−1) |
---|---|---|---|---|---|---|
293.15 K | 298.15 K | |||||
0 | 0.998203 | 1482.66 | 72.55 | 0.997047 | 1497.00 | 71.89 |
0.00998 | 0.998475 | 1484.78 | 63.35 | 0.997353 | 1498.58 | 63.04 |
0.01966 | 0.998733 | 1486.74 | 56.47 | 0.997592 | 1500.44 | 56.10 |
0.02952 | 0.998987 | 1488.78 | 51.55 | 0.997830 | 1502.31 | 51.42 |
0.04417 | 0.999347 | 1491.66 | 46.30 | 0.998170 | 1504.93 | 46.10 |
0.05870 | 0.999686 | 1494.61 | 42.17 | 0.998494 | 1507.55 | 42.10 |
0.06800 | 0.999892 | 1496.25 | 40.72 | 0.998694 | 1508.99 | 40.58 |
0.07841 | 1.000113 | 1496.81 | 40.54 | 0.998911 | 1509.51 | 40.56 |
0.09865 | 1.000516 | 1497.51 | 40.48 | 0.999312 | 1509.96 | 40.47 |
0.11767 | 1.000859 | 1497.97 | 40.28 | 0.999664 | 1510.30 | 40.31 |
0.13524 | 1.001147 | 1498.36 | 40.19 | 0.999970 | 1510.55 | 40.26 |
0.15712 | 1.001466 | 1498.81 | 40.06 | 1.000318 | 1510.90 | 40.24 |
303.15 K | 308.15 K | |||||
0 | 0.995645 | 1509.44 | 70.99 | 0.994029 | 1520.12 | 70.36 |
0.00998 | 0.995943 | 1510.82 | 62.88 | 0.994334 | 1521.33 | 62.70 |
0.01966 | 0.996173 | 1512.48 | 55.88 | 0.994556 | 1522.81 | 55.65 |
0.02952 | 0.996401 | 1514.16 | 51.28 | 0.994775 | 1524.36 | 51.14 |
0.04417 | 0.996728 | 1516.55 | 45.81 | 0.995090 | 1526.53 | 45.13 |
0.05870 | 0.997039 | 1518.92 | 42.08 | 0.995389 | 1528.65 | 42.05 |
0.06800 | 0.997230 | 1520.16 | 40.47 | 0.995573 | 1529.79 | 40.31 |
0.07841 | 0.997438 | 1520.63 | 40.39 | 0.995773 | 1530.19 | 40.18 |
0.09865 | 0.997822 | 1520.94 | 40.29 | 0.996142 | 1530.36 | 40.10 |
0.11767 | 0.998159 | 1521.15 | 40.14 | 0.996466 | 1530.45 | 40.06 |
0.13524 | 0.998450 | 1521.26 | 40.09 | 0.996744 | 1530.55 | 40.00 |
0.15712 | 0.998783 | 1521.50 | 40.05 | 0.997064 | 1530.68 | 39.95 |
m/(mol⋅kg−1) | ρ/(g⋅cm−3) | u/(m⋅s−1) | σ/(mN⋅m−1) | ρ/(g⋅cm−3) | u/(m⋅s−1) | σ/(mN⋅m−1) |
---|---|---|---|---|---|---|
293.15 K | 298.15 K | |||||
0 | 1.00552 | 1544.89 | 61.39 | 1.004125 | 1553.96 | 60.79 |
0.00980 | 1.00579 | 1546.78 | 56.03 | 1.004380 | 1555.73 | 56.26 |
0.01934 | 1.00607 | 1548.29 | 51.50 | 1.004641 | 1556.97 | 51.45 |
0.02946 | 1.00635 | 1550.00 | 48.75 | 1.004903 | 1558.61 | 48.52 |
0.04412 | 1.00672 | 1552.63 | 44.33 | 1.005259 | 1560.89 | 44.15 |
0.05906 | 1.00707 | 1554.40 | 40.07 | 1.005590 | 1562.87 | 40.12 |
0.06864 | 1.00728 | 1555.65 | 39.64 | 1.005787 | 1563.67 | 39.58 |
0.07923 | 1.00749 | 1556.22 | 39.89 | 1.005989 | 1564.18 | 39.53 |
0.09779 | 1.00783 | 1556.15 | 39.58 | 1.006306 | 1564.00 | 39.49 |
0.11756 | 1.00813 | 1556.07 | 39.47 | 1.006592 | 1563.79 | 39.36 |
0.13768 | 1.00838 | 1555.96 | 39.32 | 1.006828 | 1563.60 | 39.30 |
0.15645 | 1.00856 | 1555.88 | 39.25 | 1.006998 | 1563.41 | 39.23 |
303.15 K | 308.15 K | |||||
0 | 1.002520 | 1561.82 | 60.51 | 1.000735 | 1568.42 | 59.92 |
0.00980 | 1.002763 | 1563.39 | 55.93 | 1.000945 | 1569.69 | 55.49 |
0.01934 | 1.003008 | 1564.48 | 51.34 | 1.001173 | 1570.64 | 51.10 |
0.02946 | 1.003256 | 1565.91 | 48.35 | 1.001403 | 1571.91 | 48.17 |
0.04412 | 1.003591 | 1567.95 | 44.10 | 1.001718 | 1573.69 | 44.00 |
0.05906 | 1.003904 | 1569.69 | 40.23 | 1.002014 | 1575.26 | 40.36 |
0.06864 | 1.004091 | 1570.42 | 39.62 | 1.002191 | 1575.82 | 39.49 |
0.07923 | 1.004283 | 1570.88 | 39.50 | 1.002374 | 1576.27 | 39.39 |
0.09779 | 1.004587 | 1570.65 | 39.36 | 1.002667 | 1575.97 | 39.32 |
0.11756 | 1.004862 | 1570.31 | 39.32 | 1.002936 | 1575.54 | 39.27 |
0.13768 | 1.005092 | 1570.10 | 39.20 | 1.003166 | 1575.10 | 39.15 |
0.15645 | 1.005260 | 1569.82 | 39.12 | 1.003341 | 1574.77 | 39.11 |
m/(mol⋅kg−1) | ρ/(g⋅cm−3) | u/(m⋅s−1) | σ/(mN⋅m−1) | ρ/(g⋅cm−3) | u/(m⋅s−1) | σ/(mN⋅m−1) |
---|---|---|---|---|---|---|
293.15 K | 298.15 K | |||||
0 | 1.008555 | 1568.06 | 59.81 | 1.007058 | 1575.30 | 59.10 |
0.00961 | 1.008855 | 1569.45 | 55.44 | 1.007342 | 1576.54 | 55.25 |
0.01685 | 1.009040 | 1570.52 | 51.70 | 1.007519 | 1577.44 | 51.62 |
0.02938 | 1.009349 | 1572.48 | 48.17 | 1.007812 | 1579.28 | 48.11 |
0.04419 | 1.009693 | 1574.56 | 44.02 | 1.008139 | 1580.95 | 44.00 |
0.05896 | 1.010013 | 1576.37 | 40.95 | 1.008443 | 1582.54 | 40.97 |
0.06863 | 1.010211 | 1577.06 | 40.06 | 1.008631 | 1583.07 | 40.05 |
0.07851 | 1.010403 | 1577.77 | 39.73 | 1.008813 | 1583.66 | 39.71 |
0.08829 | 1.010583 | 1577.48 | 39.43 | 1.008984 | 1583.32 | 39.43 |
0.09819 | 1.010756 | 1577.26 | 39.28 | 1.009147 | 1583.04 | 39.15 |
0.11766 | 1.011065 | 1576.68 | 39.25 | 1.009440 | 1582.61 | 39.09 |
0.13600 | 1.011321 | 1576.34 | 39.13 | 1.009682 | 1582.22 | 38.98 |
0.15687 | 1.011571 | 1576.00 | 39.00 | 1.009916 | 1581.78 | 38.97 |
303.15 K | 308.15 K | |||||
0 | 1.005343 | 1581.28 | 58.42 | 1.003431 | 1586.09 | 57.85 |
0.00961 | 1.005623 | 1582.38 | 55.20 | 1.003612 | 1587.08 | 55.06 |
0.01685 | 1.005786 | 1583.20 | 51.45 | 1.003768 | 1587.99 | 51.30 |
0.02938 | 1.006057 | 1584.75 | 47.95 | 1.004026 | 1588.96 | 47.98 |
0.04419 | 1.006360 | 1586.34 | 43.99 | 1.004316 | 1590.36 | 43.98 |
0.05896 | 1.006644 | 1587.64 | 41.03 | 1.004587 | 1591.44 | 41.09 |
0.06863 | 1.006819 | 1588.11 | 40.09 | 1.004755 | 1591.85 | 40.14 |
0.07851 | 1.006991 | 1588.56 | 39.75 | 1.004919 | 1592.19 | 39.68 |
0.08829 | 1.007152 | 1588.31 | 39.46 | 1.005073 | 1591.87 | 39.41 |
0.09819 | 1.007308 | 1587.93 | 39.34 | 1.005222 | 1591.51 | 39.33 |
0.11766 | 1.007588 | 1587.45 | 39.13 | 1.005491 | 1590.95 | 39.11 |
0.13600 | 1.007824 | 1586.89 | 39.01 | 1.005717 | 1590.30 | 38.97 |
0.15687 | 1.008056 | 1586.27 | 38.94 | 1.005940 | 1589.72 | 38.83 |
m/(mol⋅kg−1) | ρ/(g⋅cm−3) | u/(m⋅s−1) | σ/(mN⋅m−1) | ρ/(g⋅cm−3) | u/(m⋅s−1) | σ/(mN⋅m−1) |
---|---|---|---|---|---|---|
293.15 K | 298.15 K | |||||
0 | 1.012820 | 1599.25 | 57.02 | 1.011122 | 1603.79 | 56.28 |
0.00987 | 1.013052 | 1600.17 | 53.70 | 1.011337 | 1604.55 | 53.45 |
0.03011 | 1.013535 | 1602.50 | 47.06 | 1.011792 | 1606.50 | 47.03 |
0.04340 | 1.013828 | 1603.37 | 43.68 | 1.012069 | 1607.27 | 43.62 |
0.05884 | 1.014142 | 1604.92 | 40.75 | 1.012369 | 1608.46 | 40.80 |
0.06860 | 1.014328 | 1605.43 | 39.93 | 1.012546 | 1608.84 | 39.90 |
0.07863 | 1.014507 | 1605.79 | 39.57 | 1.012718 | 1609.30 | 39.54 |
0.08839 | 1.014671 | 1605.65 | 39.24 | 1.012876 | 1609.07 | 39.23 |
0.09846 | 1.014829 | 1605.33 | 39.14 | 1.013028 | 1608.67 | 39.06 |
0.11824 | 1.015106 | 1604.50 | 39.02 | 1.013299 | 1607.80 | 38.91 |
0.13769 | 1.015336 | 1603.86 | 38.84 | 1.013527 | 1607.10 | 38.80 |
0.14823 | 1.015443 | 1603.47 | 38.76 | 1.013635 | 1606.78 | 38.75 |
303.15 K | 308.15 K | |||||
0 | 1.009218 | 1607.02 | 55.71 | 1.007121 | 1609.30 | 54.99 |
0.00987 | 1.009423 | 1607.79 | 52.72 | 1.007308 | 1609.98 | 52.95 |
0.03011 | 1.009852 | 1609.45 | 46.50 | 1.007709 | 1611.29 | 46.97 |
0.04340 | 1.010113 | 1610.06 | 43.18 | 1.007953 | 1611.79 | 43.64 |
0.05884 | 1.010394 | 1611.07 | 40.54 | 1.008218 | 1612.57 | 41.01 |
0.06860 | 1.010560 | 1611.57 | 39.54 | 1.008374 | 1613.02 | 40.02 |
0.07863 | 1.010721 | 1611.73 | 39.08 | 1.008527 | 1613.16 | 39.51 |
0.08839 | 1.010869 | 1611.45 | 38.80 | 1.008668 | 1612.87 | 39.21 |
0.09846 | 1.011012 | 1610.98 | 38.60 | 1.008804 | 1612.34 | 39.03 |
0.11824 | 1.011265 | 1610.08 | 38.43 | 1.009047 | 1611.40 | 38.92 |
0.13769 | 1.011476 | 1609.28 | 38.32 | 1.009253 | 1610.52 | 38.77 |
0.14823 | 1.011576 | 1608.74 | 38.22 | 1.009351 | 1610.00 | 38.69 |
T/K | 102⋅CMCu /(mol⋅kg−1) | 102⋅CMCσ/(mol⋅kg−1) | 102⋅CMClit/(mol⋅kg−1) |
---|---|---|---|
Water | |||
293.15 | 6.96 | 6.95 | 6.77 [11] |
298.15 | 6.96 | 6.96 | 6.63 [11], 5.7 [7], 6.76 [9], |
6.0, 6.5 mol⋅L−1 [3], | |||
6.02 mol⋅L−1 [43] | |||
303.15 | 6.92 | 6.93 | 6.50 [11] |
308.15 | 6.96 | 6.97 | 6.68 [11] |
XOH = 0.02481 | |||
293.15 | 7.06 | 7.06 | |
298.15 | 7.04 | 7.03 | |
303.15 | 7.04 | 7.03 | |
308.15 | 7.13 | 7.11 | |
XOH = 0.03466 | |||
293.15 | 7.12 | 7.13 | |
298.15 | 7.10 | 7.12 | |
303.15 | 7.10 | 7.10 | |
308.15 | 7.20 | 7.14 | |
XOH = 0.04963 | |||
293.15 | 7.33 | 7.33 | |
298.15 | 7.32 | 7.33 | |
303.15 | 7.32 | 7.32 | |
308.15 | 7.51 | 7.44 |
XOH | β | ΔmicG°/(kJ⋅mol−1) | ΔmicH°/(kJ⋅mol−1) | ΔmicS°/(J⋅mol−1K) |
---|---|---|---|---|
0 | 0.30 | −28.15 a; −29.0 b; −29.2 c | −0.10 a; 0.00 b; 0.2 c | 94.1 a; 97.0 b; 98.6 c |
0.02481 | 0.30 | −28.12 a | −0.03 a | 94.21 a |
0.03466 | 0.30 | −28.07 a | −0.03 a | 94.05 a |
0.04963 | 0.30 | −27.94 a | 0.00 a | 93.71 a |
Name | Source | CAS Number | Mass Fraction Purity |
---|---|---|---|
(C10TAB) | Alfa Aesar | 2082-84-0 | 0.98 |
1,2-Propanediol | Alfa Aesar | 57-55-6 | >0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, C.M.; Escamilla, A.P.; Ribeiro, A.C.F.; Esteso, M.A. Effect of 1,2-propanediol on the Critical Micelle Concentration of Decyltrimethylammonium Bromide at Temperatures from 293.15 K to 308.15 K. Int. J. Mol. Sci. 2022, 23, 15884. https://doi.org/10.3390/ijms232415884
Romero CM, Escamilla AP, Ribeiro ACF, Esteso MA. Effect of 1,2-propanediol on the Critical Micelle Concentration of Decyltrimethylammonium Bromide at Temperatures from 293.15 K to 308.15 K. International Journal of Molecular Sciences. 2022; 23(24):15884. https://doi.org/10.3390/ijms232415884
Chicago/Turabian StyleRomero, Carmen M., Andrea P. Escamilla, Ana C. F. Ribeiro, and Miguel A. Esteso. 2022. "Effect of 1,2-propanediol on the Critical Micelle Concentration of Decyltrimethylammonium Bromide at Temperatures from 293.15 K to 308.15 K" International Journal of Molecular Sciences 23, no. 24: 15884. https://doi.org/10.3390/ijms232415884
APA StyleRomero, C. M., Escamilla, A. P., Ribeiro, A. C. F., & Esteso, M. A. (2022). Effect of 1,2-propanediol on the Critical Micelle Concentration of Decyltrimethylammonium Bromide at Temperatures from 293.15 K to 308.15 K. International Journal of Molecular Sciences, 23(24), 15884. https://doi.org/10.3390/ijms232415884