Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy
Abstract
1. Introduction
2. Approximating the Reduced Effective Mass
3. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Holt-Saunders: New York, NY, USA, 1976. [Google Scholar]
- Miura, N. Physics of Semiconductors in High Magnetic Fields; Oxford University Press: Oxford, UK, 2008; Volume 15. [Google Scholar]
- Dresselhaus, G.; Kip, A.F.; Kittel, C. Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals. Phys. Rev. 1955, 98, 368–384. [Google Scholar] [CrossRef]
- Arimoto, H.; Miura, N.; Nicholas, R.J.; Mason, N.J.; Walker, P.J. High-field cyclotron resonance in the conduction bands of GaSb and effective-mass parameters at the L points. Phys. Rev. B 1998, 58, 4560–4565. [Google Scholar] [CrossRef]
- Takeyama, S.; Kono, J.; Miura, N.; Yamanaka, M.; Shinohara, M.; Ikoma, K. Far-infrared cyclotron resonance in n-3C–SiC at megagauss magnetic fields. In Wide-Band-Gap Semiconductors; Van de Walle, C.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 384–388. [Google Scholar] [CrossRef]
- Tarucha, S.; Okamoto, H.; Iwasa, Y.; Miura, N. Exciton binding energy in GaAs quantum wells deduced from magneto-optical absorption measurement. Solid State Commun. 1984, 52, 815–819. [Google Scholar] [CrossRef]
- Pidgeon, C.R.; Brown, R.N. Interband Magneto-Absorption and Faraday Rotation in InSb. Phys. Rev. 1966, 146, 575–583. [Google Scholar] [CrossRef]
- Watanabe, K.; Uchida, K.; Miura, N. Magneto-optical effects observed for GaSe in megagauss magnetic fields. Phys. Rev. B Condens. Matter Mater. Phys. 2003, 68, 2–7. [Google Scholar] [CrossRef]
- Miura, N.; Kunimatsu, H.; Uchida, K.; Matsuda, Y.; Yasuhira, T.; Nakashima, H.; Sakuma, Y.; Awano, Y.; Futatsugi, T.; Yokoyama, N. Magneto-optical study of excitons in quantum wells, wires and dots in high magnetic fields. Phys. B Condens. Matter 1998, 256–258, 308–318. [Google Scholar] [CrossRef]
- Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J.T.W.; Stranks, S.D.; Snaith, H.J.; Nicholas, R.J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 2015, 11, 582–587. [Google Scholar] [CrossRef]
- Galkowski, K.; Mitioglu, A.; Miyata, A.; Plochocka, P.; Portugall, O.; Eperon, G.E.; Wang, J.T.W.; Stergiopoulos, T.; Stranks, S.D.; Snaith, H.J.; et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 2016, 9, 962–970. [Google Scholar] [CrossRef]
- Yang, Z.; Surrente, A.; Galkowski, K.; Bruyant, N.; Maude, D.K.; Haghighirad, A.A.; Snaith, H.J.; Plochocka, P.; Nicholas, R.J. Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite. J. Phys. Chem. Lett. 2017, 8, 1851–1855. [Google Scholar] [CrossRef]
- Galkowski, K.; Surrente, A.; Baranowski, M.; Zhao, B.; Yang, Z.; Sadhanala, A.; Mackowski, S.; Stranks, S.D.; Plochocka, P. Excitonic Properties of Low-Band-Gap Lead–Tin Halide Perovskites. ACS Energy Lett. 2019, 4, 615–621. [Google Scholar] [CrossRef]
- Dyksik, M.; Duim, H.; Zhu, X.; Yang, Z.; Gen, M.; Kohama, Y.; Adjokatse, S.; Maude, D.K.; Loi, M.A.; Egger, D.A.; et al. Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskites. ACS Energy Lett. 2020, 5, 3609–3616. [Google Scholar] [CrossRef]
- Dyksik, M.; Wang, S.; Paritmongkol, W.; Maude, D.K.; Tisdale, W.A.; Baranowski, M.; Plochocka, P. Tuning the Excitonic Properties of the 2D (PEA)2(MA)n-1PbnI3n+1 Perovskite Family via Quantum Confinement. J. Phys. Chem. Lett. 2021, 12, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.; Nie, W.; Blancon, J.C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ye, Z.; Hou, J.; Wu, J.; Zheng, Y.Z.; Tao, X. Efficient ambient-air-stable HTM-free carbon-based perovskite solar cells with hybrid 2D-3D lead halide photoabsorbers. J. Mater. Chem. A 2018, 6, 22626–22635. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Lim, E.L.; Kong, T.; Zhang, Y.; Song, J.; Hagfeldt, A.; Bi, D. Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering. J. Am. Chem. Soc. 2021, 143, 3911–3917. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Bie, T.; Yang, L.; Gao, Y.; Jin, X.; He, F.; Zheng, N.; Yu, Y.; Zhang, X. Over 21% Efficiency Stable 2D Perovskite Solar Cells. Adv. Mater. 2022, 34, 2107211. [Google Scholar] [CrossRef]
- Lai, X.; Li, W.; Gu, X.; Chen, H.; Zhang, Y.; Li, G.; Zhang, R.; Fan, D.; He, F.; Zheng, N.; et al. High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chem. Eng. J. 2022, 427, 130949. [Google Scholar] [CrossRef]
- Yuan, F.; Zheng, X.; Johnston, A.; Wang, Y.k.; Zhou, C.; Dong, Y.; Chen, B.; Chen, H.; Fan, J.Z.; Sharma, G.; et al. Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci. Adv. 2020, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Sandanayaka, A.S.D.; Zhao, C.; Matsushima, T.; Zhang, D.; Fujihara, T.; Adachi, C. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 2020, 585, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Mitzi, D.B.; Dimitrakopoulos, C.D.; Kosbar, L.L. Structurally Tailored Organic-Inorganic Perovskites: Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors. Chem. Mater. 2001, 13, 3728–3740. [Google Scholar] [CrossRef]
- Du, K.z.; Tu, Q.; Zhang, X.; Han, Q.; Liu, J.; Zauscher, S.; Mitzi, D.B. Two-dimensional lead (II) halide-based hybrid perovskites templated by acene alkylamines: Crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 2017, 56, 9291–9302. [Google Scholar] [CrossRef] [PubMed]
- Knutson, J.L.; Martin, J.D.; Mitzi, D.B. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 2005, 44, 4699–4705. [Google Scholar] [CrossRef] [PubMed]
- Katan, C.; Mercier, N.; Even, J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 2019, 119, 3140–3192. [Google Scholar] [CrossRef]
- Hong, X.; Ishihara, T.; Nurmikko, A. Dielectric confinement effect on excitons in PbI 4-based layered semiconductors. Phys. Rev. B 1992, 45, 6961. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hoffman, J.M.; Kanatzidis, M.G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 2021, 121, 2230–2291. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.Q.; Sakakura, H.; Kondo, T.; Takeyama, S.; Miura, N.; Takahashi, Y.; Kumata, K.; Ito, R. Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40 T. Solid State Commun. 1991, 79, 249–253. [Google Scholar] [CrossRef]
- Kataoka, T.; Kondo, T.; Ito, R.; Sasaki, S.; Uchida, K.; Miura, N. Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4. Phys. Rev. B 1993, 47, 2010. [Google Scholar] [CrossRef]
- Hirasawa, M.; Ishihara, T.; Goto, T.; Sasaki, S.; Uchida, K.; Miura, N. Magnetoreflection of the lowest exciton in a layered perovskite-type compound (C10H21NH3)2PbI4. Solid State Commun. 1993, 86, 479–483. [Google Scholar] [CrossRef]
- Urban, J.M.; Chehade, G.; Dyksik, M.; Menahem, M.; Surrente, A.; Trippé-Allard, G.; Maude, D.K.; Garrot, D.; Yaffe, O.; Deleporte, E.; et al. Revealing Excitonic Phonon Coupling in (PEA)2(MA)n-1PbnI3n+1 2D Layered Perovskites. J. Phys. Chem. Lett. 2020, 11, 5830–5835. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Takahashi, T.; Kondo, T.; Umeda, K.; Ema, K.; Umebayashi, T.; Asai, K.; Uchida, K.; Miura, N. Electronic and excitonic structures of inorganic–organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4. Jpn. J. Appl. Phys. 2005, 44, 5923. [Google Scholar] [CrossRef]
- Ema, K.; Umeda, K.; Toda, M.; Yajima, C.; Arai, Y.; Kunugita, H.; Wolverson, D.; Davies, J.J. Huge exchange energy and fine structure of excitons in an organic-inorganic quantum well material. Phys. Rev. B 2006, 73, 241310. [Google Scholar] [CrossRef]
- Goto, T.; Makino, H.; Yao, T.; Chia, C.H.; Makino, T.; Segawa, Y.; Mousdis, G.A.; Papavassiliou, G.C. Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4. Phys. Rev. B 2006, 73, 115206. [Google Scholar] [CrossRef]
- Dyksik, M.; Duim, H.; Maude, D.K.; Baranowski, M.; Loi, M.A.; Plochocka, P. Brightening of dark excitons in 2D perovskites. Sci. Adv. 2021, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, M.; Ishihara, T.; Goto, T.; Uchida, K.; Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Phys. B Condens. Matter 1994, 201, 427–430. [Google Scholar] [CrossRef]
- Blancon, J.C.; Stier, A.V.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Traore, B.; Pedesseau, L.; Kepenekian, M.; Katsutani, F.; Noe, G.; et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 2018, 9, 2254. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Peng, J.; Tang, J.; Zheng, K.; Liang, Z. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 2018, 30, 1703487. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Feild, C.A.; Harrison, W.T.A.; Guloy, A.M. Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467–469. [Google Scholar] [CrossRef]
- Chen, Y.; He, M.; Peng, J.; Sun, Y.; Liang, Z. Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals. Adv. Sci. 2016, 3, 1500392. [Google Scholar] [CrossRef]
- Straus, D.B.; Kagan, C.R. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties. J. Phys. Chem. Lett. 2018, 9, 1434–1447. [Google Scholar] [CrossRef]
- Neutzner, S.; Thouin, F.; Cortecchia, D.; Petrozza, A.; Silva, C.; Srimath Kandada, A.R. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2018, 2, 064605. [Google Scholar] [CrossRef]
- Feldstein, D.; Perea-Causin, R.; Wang, S.; Dyksik, M.; Watanabe, K.; Taniguchi, T.; Plochocka, P.; Malic, E. Microscopic picture of electron–phonon interaction in two-dimensional halide perovskites. J. Phys. Chem. Lett. 2020, 11, 9975–9982. [Google Scholar] [CrossRef]
- Çelik, H.; Cankurtaran, M.; Bayrakli, A.; Tiras, E.; Balkan, N. Well-width dependence of the in-plane effective mass and quantum lifetime of electrons in multiple quantum wells. Semicond. Sci. Technol. 1997, 12, 389. [Google Scholar] [CrossRef]
- Städele, M.; Hess, K. Effective-mass enhancement and nonparabolicity in thin GaAs quantum wells. J. Appl. Phys. 2000, 88, 6945–6947. [Google Scholar] [CrossRef]
- Nag, B.; Mukhopadhyay, S. In-plane effective mass in narrow quantum wells of nonparabolic semiconductors. Appl. Phys. Lett. 1993, 62, 2416–2418. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Cao, D.H.; Clark, D.J.; Young, J.; Rondinelli, J.M.; Jang, J.I.; Hupp, J.T.; Kanatzidis, M.G. Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chem. Mater. 2016, 28, 2852–2867. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, W. How the Structures and Properties of Two-Dimensional Layered Perovskites MAPbI 3 and CsPbI 3 Vary with the Number of Layers. J. Phys. Chem. Lett. 2017, 8, 1517–1523. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Ma, Q.R.; Liu, B.; Yu, Z.L.; Yang, J.; Cai, M.Q. Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA) 2 PbI 4. Nanoscale 2018, 10, 8677–8688. [Google Scholar] [CrossRef] [PubMed]
- Pitaro, M.; Tekelenburg, E.K.; Shao, S.; Loi, M.A. Tin Halide Perovskites: From Fundamental Properties to Solar Cells. Adv. Mater. 2022, 34, 2105844. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, M.; Zelewski, S.J.; Kepenekian, M.; Traoré, B.; Urban, J.M.; Surrente, A.; Galkowski, K.; Maude, D.K.; Kuc, A.; Booker, E.P.; et al. Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden–Popper Perovskites. ACS Energy Lett. 2019, 4, 2386–2392. [Google Scholar] [CrossRef]
- Wang, Z.; Ganose, A.M.; Niu, C.; Scanlon, D.O. First-principles insights into tin-based two-dimensional hybrid halide perovskites for photovoltaics. J. Mater. Chem. A 2018, 6, 5652–5660. [Google Scholar] [CrossRef]
- Silver, S.; Yin, J.; Li, H.; Brédas, J.L.; Kahn, A. Characterization of the Valence and Conduction Band Levels of n = 1 2D Perovskites: A Combined Experimental and Theoretical Investigation. Adv. Energy Mater. 2018, 8, 1703468. [Google Scholar] [CrossRef]
- Zibouche, N.; Islam, M.S. Structure-Electronic Property Relationships of 2D Ruddlesden-Popper Tin- And Lead-based Iodide Perovskites. ACS Appl. Mater. Interfaces 2020, 12, 15328–15337. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, T.; Kondo, T.; Umebayashi, T.; Asai, K.; Ema, K. Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. B 2005, 71, 045312. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, Z.; Yoo, P.; Shi, E.; Zeller, M.; Zhu, C.; Liao, P.; Dou, L. Highly Stable Lead-Free Perovskite Field-Effect Transistors Incorporating Linear π-Conjugated Organic Ligands. J. Am. Chem. Soc. 2019, 141, 15577–15585. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, K.; Koshimizu, M.; Nishikido, F.; Saito, H.; Kishimoto, S. Poly[bis(phenethylammonium) [dibromidoplumbate(II)]-di-μ-bromido]]. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, m1323–m1324. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Hou, J.; Wang, H.; Sidhik, S.; Miao, J.; Gu, H.; Zhang, H.; Liu, S.; Fakhraai, Z.; Even, J.; et al. Determination of Dielectric Functions and Exciton Oscillator Strength of Two-Dimensional Hybrid Perovskites. ACS Mater. Lett. 2021, 3, 148–159. [Google Scholar] [CrossRef]
- Billing, D.G.; Lemmerer, A. Synthesis, characterization and phase transitions in the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 4, 5 and 6. Acta Crystallogr. Sect. B 2007, 63, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Lemmerer, A.; Billing, D.G. Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(C n H 2n+1 NH 3 ) 2 PbI 4 ], n = 7, 8, 9 and 10. Dalton Trans. 2012, 41, 1146–1157. [Google Scholar] [CrossRef] [PubMed]
- Pedesseau, L.; Sapori, D.; Traore, B.; Robles, R.; Fang, H.H.; Loi, M.A.; Tsai, H.; Nie, W.; Blancon, J.C.; Neukirch, A.; et al. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. ACS Nano 2016, 10, 9776–9786. [Google Scholar] [CrossRef] [PubMed]
- Soe, C.M.M.; Nagabhushana, G.P.; Shivaramaiah, R.; Tsai, H.; Nie, W.; Blancon, J.C.; Melkonyan, F.; Cao, D.H.; Traoré, B.; Pedesseau, L.; et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. USA 2019, 116, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Hong, X.; Ding, J.; Nurmikko, A. Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surf. Sci. 1992, 267, 323–326. [Google Scholar] [CrossRef]
- Ishihara, T. Optical properties of PbI-based perovskite structures. J. Lumin. 1994, 60–61, 269–274. [Google Scholar] [CrossRef]
- Koutselas, I.B.; Ducasse, L.; Papavassiliou, G.C. Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. J. Phys. Condens. Matter 1996, 8, 1217–1227. [Google Scholar] [CrossRef]
- Wang, J.; Shen, H.; Li, W.; Wang, S.; Li, J.; Li, D. The Role of Chloride Incorporation in Lead-Free 2D Perovskite (BA) 2 SnI 4: Morphology, Photoluminescence, Phase Transition, and Charge Transport. Adv. Sci. 2019, 6, 1802019. [Google Scholar] [CrossRef] [PubMed]
- Thouin, F.; Valverde-Chávez, D.A.; Quarti, C.; Cortecchia, D.; Bargigia, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Kandada, A.R.S. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 2019, 18, 349–356. [Google Scholar] [CrossRef]
- Yamada, Y.; Mino, H.; Kawahara, T.; Oto, K.; Suzuura, H.; Kanemitsu, Y. Polaron Masses in CH_{3}NH_{3}PbX_{3} Perovskites Determined by Landau Level Spectroscopy in Low Magnetic Fields. Phys. Rev. Lett. 2021, 126, 237401. [Google Scholar] [CrossRef]
- Hodby, J.W.; Borders, J.A.; Brown, F.C.; Foner, S. Cyclotron Resonance of the Polaron in KCl, KBr, KI, RbCl, AgCl, AgBr, and TlCl. Phys. Rev. Lett. 1967, 19, 952–955. [Google Scholar] [CrossRef]
- Jenkin, G.T.; Hodby, J.W.; Gross, U. Cyclotron resonance of polarons in KI. Dependence of carrier temperature on chemical purity. J. Phys. Solid State Phys. 1971, 4, L89–L91. [Google Scholar] [CrossRef]
c (eVT) | L (nm) | L (nm) | |||
---|---|---|---|---|---|
(PEA)PbI | 0.36 [14] | 3.32 [27] | 6.1 [27] | 0.993 [24] | 0.641 [24] |
(PEA)SnI | 0.68 [14] | 3.32 [27] | 5.19 | 0.978 [57] | 0.632 [57] |
(PEA)PbBr | 0.07 [36] | 3.32 [27] | 4.88 | 1.062 [58] | 0.606 [58] |
(BA)PbI | 0.13 [52] | 2.1 [59] | 6.5 [59] | 0.693 [60] | 0.618 [60] |
(HA)PbI | 0.21 [56] | 2.1 [30] | 6.5 [59] | 0.976 [30] | 0.636 [30] |
(DA)PbI | 0.16 [52] | 2.44 [27] | 6.5 [59] | 1.499 [61] | 0.641 [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyksik, M. Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. Int. J. Mol. Sci. 2022, 23, 12531. https://doi.org/10.3390/ijms232012531
Dyksik M. Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. International Journal of Molecular Sciences. 2022; 23(20):12531. https://doi.org/10.3390/ijms232012531
Chicago/Turabian StyleDyksik, Mateusz. 2022. "Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy" International Journal of Molecular Sciences 23, no. 20: 12531. https://doi.org/10.3390/ijms232012531
APA StyleDyksik, M. (2022). Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. International Journal of Molecular Sciences, 23(20), 12531. https://doi.org/10.3390/ijms232012531