Human Amniotic Epithelial Cells as a Tool to Investigate the Effects of Cyanidin 3-O-Glucoside on Cell Differentiation
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Gene Expression Profiling in hAECs
2.2. Changes of Gene Expression in Cy3G-Treated hAECs
2.3. Significantly Enriched Gene Sets and Gene Ontologies (GO)
3. Discussion
4. Materials and Methods
4.1. Extraction of AECs and Cell Culture Maintenance
4.2. Three-Dimension Amnion Epithelial Cells, Culture Spheroid Formation, and Treatment with Cyanidin
4.3. RNA Extraction and Microarray Analysis
4.4. Microarray Analysis for Gene Expression Profiling in Cy3G-Treated hAECs
4.5. Ethics Approval
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2011, 16, 251–280. [Google Scholar] [CrossRef] [PubMed]
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81 (Suppl. S1), 317S–325S. [Google Scholar] [CrossRef] [Green Version]
- Matsukawa, T.; Inaguma, T.; Han, J.; Villareal, M.O.; Isoda, H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J. Nutr. Biochem. 2015, 26, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517s–520s. [Google Scholar] [CrossRef]
- Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Asp. Med. 2010, 31, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Miki, T. Amnion-derived stem cells: In quest of clinical applications. Stem Cell Res. Ther. 2011, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdousi, F.; Kondo, S.; Sasaki, K.; Uchida, Y.; Ohkohchi, N.; Zheng, Y.W.; Isoda, H. Microarray analysis of verbenalin-treated human amniotic epithelial cells reveals therapeutic potential for Alzheimer’s Disease. Aging 2020, 12, 5516–5538. [Google Scholar] [CrossRef] [PubMed]
- Ferdousi, F.; Sasaki, K.; Ohkohchi, N.; Zheng, Y.-W.; Isoda, H. Exploring the Potential Role of Rosmarinic Acid in Neuronal Differentiation of Human Amnion Epithelial Cells by Microarray Gene Expression Profiling. Front. Neurosci. 2019, 13, 779. [Google Scholar] [CrossRef] [Green Version]
- Uchida, Y.; Ferdousi, F.; Zheng, Y.-W.; Oda, T.; Isoda, H. Global Gene Expression Profiling Reveals Isorhamnetin Induces Hepatic-Lineage Specific Differentiation in Human Amniotic Epithelial Cells. Front. Cell Dev. Biol. 2020, 8, 578036. [Google Scholar] [CrossRef]
- Bejaoui, M.; Ferdousi, F.; Zheng, Y.-W.; Oda, T.; Isoda, H. Regulating cell fate of human amnion epithelial cells using natural compounds: An example of enhanced neural and pigment differentiation by 3,4,5-tri-O-caffeoylquinic acid. Cell Commun. Signal. 2021, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sytar, O.; Bośko, P.; Živčák, M.; Brestic, M.; Smetanska, I. Bioactive phytochemicals and antioxidant properties of the grains and sprouts of colored wheat genotypes. Molecules 2018, 23, 2282. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Pittman, H.E., 3rd; Prior, R.L. Fate of anthocyanins and antioxidant capacity in contents of the gastrointestinal tract of weanling pigs following black raspberry consumption. J. Agric. Food Chem. 2006, 54, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Azis, H.R.; Etteieb, S.; Takahashi, S.; Koshiyama, M.; Fujisawa, H.; Isoda, H. Effect of prohydrojasmon on total phenolic content, anthocyanin accumulation and antioxidant activity in komatsuna and lettuce. Biosci. Biotechnol. Biochem. 2020, 84, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Fimognari, C.; Berti, F.; Cantelli-Forti, G.; Hrelia, P. Effect of cyanidin 3-O-beta-glucopyranoside on micronucleus induction in cultured human lymphocytes by four different mutagens. Environ. Mol. Mutagen. 2004, 43, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Vanella, L.; Acquaviva, R.; Cardile, V.; Giofre, S.; Di Giacomo, C. Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int. J. Oncol. 2015, 47, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.D.R.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Alvarez-Parrilla, E.; González-Aguilar, G.A.; De la Rosa, L.A.; Ramos-Jiménez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef] [Green Version]
- Matsukawa, T.; Motojima, H.; Sato, Y.; Takahashi, S.; Villareal, M.O.; Isoda, H. Upregulation of skeletal muscle PGC-1 alpha through the elevation of cyclic AMP levels by Cyanidin-3-glucoside enhances exercise performance. Sci. Rep. 2017, 7. [Google Scholar]
- Matsukawa, T.; Villareal, M.O.; Motojima, H.; Isoda, H. Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes. J. Nutr. Biochem. 2017, 40, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Nair, M.G.; Claycombe, K.J. Synergistic inhibition of interleukin-6 production in adipose stem cells by tart cherry anthocyanins and atorvastatin. Phytomedicine 2012, 19, 878–881. [Google Scholar] [CrossRef]
- Miller, R.E.; Jones, J.C.; Tometsko, M.; Blake, M.L.; Dougall, W.C. RANKL Inhibition Blocks Osteolytic Lesions and Reduces Skeletal Tumor Burden in Models of Non-Small-Cell Lung Cancer Bone Metastases. J. Thorac. Oncol. 2014, 9, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saulite, L.; Jekabsons, K.; Klavins, M.; Muceniece, R.; Riekstina, U. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine 2019, 53, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Gang, X.; Sun, C.; Wang, G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J. Diabetes Res. 2017, 2017, 9328347. [Google Scholar] [CrossRef] [PubMed]
- Szwergold, B.S.; Howell, S.; Beisswenger, P.J. Human fructosamine-3-kinase: Purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 2001, 50, 2139–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.L.; Li, Z.Y.; Song, J.; Liu, J.M.; Miao, C.Y. Metrnl: A secreted protein with new emerging functions. Acta Pharmacol. Sin. 2016, 37, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, A.J.; Jollivet, F.; Horgan, C.P.; Khan, A.R.; Raposo, G.; McCaffrey, M.W.; Goud, B. Identification and characterization of multiple novel Rab-myosin Va interactions. Mol. Biol. Cell 2013, 24, 3420–3434. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Sakaizumi, M.; Hata, M.; Sawara, Y.; Eah, J.; Kim, C.B.; Nonaka, M. Dichotomous haplotypic lineages of the immunoproteasome subunit genes, PSMB8 and PSMB10, in the MHC class I region of a Teleost Medaka, Oryzias latipes. Mol. Biol. Evol. 2009, 26, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.M.; Cater, M.A.; Mercer, J.F.B.; La Fontaine, S. Copper-dependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases. Biochem. Bioph. Res. Commun. 2006, 348, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Iio, A.; Takagi, T.; Miki, K.; Naoe, T.; Nakayama, A.; Akao, Y. DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Bba Gene Regul. Mech. 2013, 1829, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Younis, S.; Kamel, W.; Falkeborn, T.; Wang, H.; Yu, D.; Daniels, R.; Essand, M.; Hinkula, J.; Akusjarvi, G.; Andersson, L. Multiple nuclear-replicating viruses require the stress-induced protein ZC3H11A for efficient growth. Proc. Natl. Acad. Sci. USA 2018, 115, E3808–E3816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derunes, C.; Briknarova, K.; Geng, L.Q.; Li, S.; Gessner, C.R.; Hewitt, K.; Wu, S.D.; Huang, S.; Woods, V.I.; Ely, K.R. Characterization of the PR domain of RIZ1 histone methyltransferase. Biochem. Bioph. Res. Commun. 2005, 333, 925–934. [Google Scholar] [CrossRef]
- Dou, C.; Li, J.; Kang, F.; Cao, Z.; Yang, X.; Jiang, H.; Yang, B.; Xiang, J.; Xu, J.; Dong, S. Dual Effect of Cyanidin on RANKL-Induced Differentiation and Fusion of Osteoclasts. J. Cell. Physiol. 2016, 231, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.R.; Long, J.Z.; White, J.P.; Svensson, K.J.; Lou, J.; Lokurkar, I.; Jedrychowski, M.P.; Ruas, J.L.; Wrann, C.D.; Lo, J.C.; et al. Meteorin-like Is a Hormone that Regulates Immune-Adipose Interactions to Increase Beige Fat Thermogenesis. Cell 2014, 157, 1279–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.L.; Zhang, F.; Zhang, X.; Xue, C.Y.; Namwanje, M.; Fan, L.H.; Reilly, M.P.; Hu, F.; Qiang, L. Distinct functions of PPAR gamma isoforms in regulating adipocyte plasticity. Biochem. Bioph. Res. Commun. 2016, 481, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular Stress Responses: Cell Survival and Cell Death. Int. J. Cell Biol. 2010, 2010, 214074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windahl, S.H.; Andersson, N.; Borjesson, A.E.; Swanson, C.; Svensson, J.; Moverare-Skrtic, S.; Sjogren, K.; Shao, R.; Lagerquist, M.K.; Ohlsson, C. Reduced bone mass and muscle strength in male 5alpha-reductase type 1 inactivated mice. PLoS ONE 2011, 6, e21402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, M.F.; Pelletier, M.; Tchernof, A. Characterization of 5 alpha-reductase activity and isoenzymes in human abdominal adipose tissues. J. Steroid. Biochem. 2016, 161, 45–53. [Google Scholar] [CrossRef]
- Arimochi, H.; Sasaki, Y.; Kitamura, A.; Yasutomo, K. Differentiation of preadipocytes and mature adipocytes requires PSMB8. Sci. Rep. 2016, 6, 26791. [Google Scholar] [CrossRef]
- Kakurina, G.V.; Kolegova, E.S.; Shashova, E.E.; Cheremisina, O.V.; Choynzonov, E.L.; Kondakova, I.V. Relationship between the mRNA Expression Levels of Calpains 1/2 and Proteins Involved in Cytoskeleton Remodeling. Acta Nat. 2020, 12, 110–113. [Google Scholar] [CrossRef]
- Yang, W.; Guo, X.; Thein, S.; Xu, F.; Sugii, S.; Baas, P.W.; Radda, G.K.; Han, W. Regulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase MEC-17-dependent acetylation of alpha-tubulin. Biochem. J. 2013, 449, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Marcon, B.H.; Rebelatto, C.K.; Cofre, A.R.; Dallagiovanna, B.; Correa, A. DDX6 Helicase Behavior and Protein Partners in Human Adipose Tissue-Derived Stem Cells during Early Adipogenesis and Osteogenesis. Int. J. Mol. Sci. 2020, 21, 2607. [Google Scholar] [CrossRef] [Green Version]
- Manavalan, A.P.C.; Pilarova, K.; Kluge, M.; Bartholomeeusen, K.; Rajecky, M.; Oppelt, J.; Khirsariya, P.; Paruch, K.; Krejci, L.; Friedel, C.C.; et al. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes. EMBO Rep. 2019, 20, e47592. [Google Scholar]
- Zhang, Y.F.; Jiang, R.; Li, J.D.; Zhang, X.Y.; Zhao, P.; He, M.; Zhang, H.Z.; Sun, L.P.; Shi, D.L.; Zhang, G.X.; et al. SMC1A knockdown induces growth suppression of human lung adenocarcinoma cells through G1/S cell cycle phase arrest and apoptosis pathways in vitro. Oncol. Lett. 2013, 5, 749–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruijtenberg, S.; van den Heuvel, S. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 2016, 15, 196–212. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Kim, J.N.; Han, S.N.; Nam, J.H.; Na, H.N.; Ha, T.J. Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr. Res. 2012, 32, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Lee, M.; Cheon, Y.P. A Testa Extract of Black Soybean (Glycine max (L.) Merr.) suppresses Adipogenic Activity of Adipose-derived Stem Cells. Dev. Reprod. 2015, 19, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Miki, T.; Strom, S.C. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2006, 2, 133–141. [Google Scholar] [CrossRef]
- Jiawen, S.; Jianjun, Z.; Jiewen, D.; Dedong, Y.; Hongbo, Y.; Jun, S.; Xudong, W.; Shen, S.G.; Lihe, G. Osteogenic differentiation of human amniotic epithelial cells and its application in alveolar defect restoration. Stem Cells Transl. Med. 2014, 3, 1504–1513. [Google Scholar] [CrossRef]
- Murphy, S.; Rosli, S.; Acharya, R.; Mathias, L.; Lim, R.; Wallace, E.; Jenkin, G. Amnion epithelial cell isolation and characterization for clinical use. Curr. Protoc. Stem. Cell Biol. 2010, 13, 1E.6.1–1E.6.25. [Google Scholar] [CrossRef]
- Saito, S.; Yokoyama, K.; Tamagawa, T.; Ishiwata, I. Derivation and induction of the differentiation of animal ES cells as well as human pluripotent stem cells derived from fetal membrane. Hum. Cell 2005, 18, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Prado, S.; Muinos-Lopez, E.; Hermida-Gomez, T.; Rendal-Vazquez, M.E.; Fuentes-Boquete, I.; de Toro, F.J.; Blanco, F.J. Multilineage Differentiation Potential of Cells Isolated From the Human Amniotic Membrane. J. Cell. Biochem. 2010, 111, 846–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottipamula, S.; Sridhar, K.N. Large-scale Isolation, Expansion and Characterization of Human Amniotic Epithelial Cells. Int. J. Stem. Cells 2018, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007, 8, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Kir, J.; Liu, D.; Bryant, D.; Guo, Y.; Stephens, R.; Baseler, M.W.; Lane, H.C.; et al. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007, 35, W169–W175. [Google Scholar] [CrossRef]
- Takeuchi, T.; Noguchi, M.; Kawakami, Y.; Ohkohchi, N. Use of Human Biospecimen Resources for Drug Discovery—Approach of Tsukuba Human Tissue Biobank Center. Regul. Sci. Med. Prod. 2016, 6, 57–63. [Google Scholar]
- Aonuma, K.; Ferdousi, F.; Xu, D.; Tominaga, K.; Isoda, H. Effects of isorhamnetin in human amniotic epithelial stem cells in vitro and its cardioprotective effects in vivo. Front. Cell Dev. Biol. 2020, 8, 578197. [Google Scholar] [CrossRef]
Gene Symbol | Description | Fold Change | p-Value |
---|---|---|---|
FN3KRP | fructosamine 3 kinase-related protein | 1.57 | 0.048 |
METRNL | meteorin-like protein | 1.51 | 0.0152 |
RAB6A | RAB6A, member RAS oncogene family | 1.47 | 0.0319 |
PSMB8 | proteasome subunit beta 8 | 1.46 | 0.0039 |
DCTN4 | dynactin 4 (p62) | 1.45 | 0.0302 |
DCAF5 | DDB1 and CUL4 associated factor 5 | 1.43 | 0.0171 |
NR1H2 | nuclear receptor subfamily 1, group H, member 2 | 1.43 | 0.0409 |
RAPGEF6 | Rap guanine nucleotide exchange factor 6 | 1.43 | 0.0423 |
SRD5A1 | steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1) | 1.43 | 0.0298 |
ANKFY1 | ankyrin repeat and FYVE domain containing 1 | 1.42 | 0.0343 |
NPTN | neuroplastin | 1.4 | 0.032 |
CDIPT | CDP-diacylglycerol—inositol 3-phosphatidyltransferase | 1.39 | 0.017 |
RTCA | RNA 3′-terminal phosphate cyclase | 1.38 | 0.0477 |
STMN1 | stathmin 1 | 1.38 | 0.0461 |
TAF11 | TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa | 1.38 | 0.0335 |
WDR1 | WD repeat domain 1 | 1.38 | 0.0183 |
PPM1B | protein phosphatase, Mg2+/Mn2+ dependent, 1B | 1.37 | 0.0217 |
CAPN2 | calpain 2, (m/II) large subunit | 1.36 | 0.0454 |
LEPROTL1 | leptin receptor overlapping transcript-like 1 | 1.36 | 0.0302 |
UQCRC1 | ubiquinol-cytochrome c reductase core protein I | 1.36 | 0.0463 |
GYG1 | glycogenin 1 | 1.35 | 0.0397 |
GTF2H2 | general transcription factor IIH subunit 2 | 1.33 | 0.0127 |
MRRF | mitochondrial ribosome recycling factor | 1.33 | 0.043 |
USP6NL | USP6 N-terminal like | 1.33 | 0.0103 |
SIPA1 | signal-induced proliferation-associated 1 | 1.32 | 0.0265 |
ACLY | ATP citrate lyase | 1.31 | 0.0145 |
DNAJC7 | DnaJ (Hsp40) homolog, subfamily C, member 7 | 1.31 | 0.0215 |
ID1 | inhibitor of DNA binding 1, dominant negative helix-loop-helix protein | 1.31 | 0.0288 |
WDR77 | WD repeat domain 77 | 1.31 | 0.0464 |
March2 | membrane associated ring finger 2 | 1.3 | 0.043 |
CTNNB1 | catenin (cadherin-associated protein), beta 1 | 1.3 | 0.0136 |
GPR150 | G protein-coupled receptor 150 | 1.3 | 0.019 |
MYH4 | myosin, heavy chain 4, skeletal muscle | 1.3 | 0.0378 |
NARF | nuclear prelamin A recognition factor | 1.3 | 0.0329 |
NCOA5 | nuclear receptor coactivator 5 | 1.3 | 0.0283 |
STRADA | STE20-related kinase adaptor alpha | 1.3 | 0.0316 |
ZNF576 | zinc finger protein 576 | 1.3 | 0.0243 |
Gene Symbol | Description | Fold Change | p-Value |
---|---|---|---|
DDX6 | DEAD (Asp-Glu-Ala-Asp) box helicase 6 | −3.13 | 0.0017 |
ZC3H11A | zinc finger CCCH-type containing 11A | −2.82 | 0.0272 |
CCDC186 | coiled-coil domain containing 186 | −2.73 | 0.0399 |
PRDM2 | PR domain containing 2, with ZNF domain | −2.61 | 0.0239 |
SPAG9 | Sperm-associated antigen 9 | −2.43 | 0.0137 |
RBAK | RB-associated KRAB zinc finger | −2.41 | 0.0466 |
PRRC2C | proline-rich coiled-coil 2C | −2.4 | 0.0454 |
BOD1L1 | biorientation of chromosomes in cell division 1-like 1 | −2.29 | 0.0345 |
BAZ1B | bromodomain adjacent to zinc finger domain 1B | −2.26 | 0.0306 |
ALG11 | ALG11, alpha-1,2-mannosyltransferase | −2.25 | 0.0111 |
ZNF480 | zinc finger protein 480 | −2.22 | 0.0477 |
RNPC3 | RNA binding region (RNP1, RRM) containing 3 | −2.18 | 0.0064 |
MIER1 | mesoderm induction early response 1, transcriptional regulator | −2.13 | 0.011 |
PDE4DIP | phosphodiesterase 4D interacting protein | −2.08 | 0.0478 |
USP1 | ubiquitin specific peptidase 1 | −2.08 | 0.0315 |
GCC2 | GRIP and coiled-coil domain containing 2 | −2.06 | 0.0378 |
TCERG1 | transcription elongation regulator 1 | −2.06 | 0.0152 |
YWHAE | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon | −2.05 | 0.0491 |
LMAN1 | lectin, mannose-binding, 1 | −2.02 | 0.0137 |
CEP57 | centrosomal protein 57 kDa | −2.01 | 0.0241 |
NBPF10 | neuroblastoma breakpoint family, member 10 | −1.99 | 0.0261 |
WASL | Wiskott–Aldrich syndrome-like | −1.99 | 0.0414 |
WHSC1L1 | Wolf–Hirschhorn syndrome candidate 1-like 1 | −1.99 | 0.0163 |
SWAP70 | SWAP switching B-cell complex 70 kDa subunit | −1.95 | 0.0452 |
EFCAB14 | EF-hand calcium binding domain 14 | −1.9 | 0.0187 |
EIF4G1 | eukaryotic translation initiation factor 4 gamma, 1 | −1.88 | 0.0381 |
KMT2C | lysine (K)-specific methyltransferase 2C | −1.87 | 0.0496 |
TNKS2 | tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase 2 | −1.86 | 0.0056 |
IL6ST | interleukin 6 signal transducer | −1.84 | 0.0118 |
SON | SON DNA binding protein | −1.8 | 0.0463 |
FAM107B | family with sequence similarity 107, member B | −1.78 | 0.0437 |
SF3B1 | splicing factor 3b, subunit 1, 155 kDa | −1.76 | 0.0248 |
OTUD4 | OTU deubiquitinase 4 | −1.75 | 0.0445 |
PPIG | peptidylprolyl isomerase G (cyclophilin G) | −1.75 | 0.0348 |
PEG10 | paternally expressed 10 | −1.71 | 0.0298 |
CBX5 | chromobox homolog 5 | −1.69 | 0.0143 |
KMT2A | lysine (K)-specific methyltransferase 2A | −1.68 | 0.0378 |
ANKRD12 | ankyrin repeat domain 12 | −1.63 | 0.0372 |
AP3M2 | adaptor-related protein complex 3, mu 2 subunit | −1.62 | 0.0284 |
REST | RE1-silencing transcription factor | −1.62 | 0.0308 |
WAC | WW domain containing adaptor with coiled-coil | −1.62 | 0.0225 |
CTDSPL2 | CTD small phosphatase like 2 | −1.61 | 0.0333 |
DNAJB14 | DnaJ (Hsp40) homolog, subfamily B, member 14 | −1.6 | 0.0244 |
ZNF208 | zinc finger protein 208 | −1.59 | 0.0076 |
CRCP | CGRP receptor component | −1.58 | 0.0169 |
MLLT4 | myeloid/lymphoid or mixed-lineage leukemia; translocated to, 4 | −1.58 | 0.0077 |
PCM1 | pericentriolar material 1 | −1.57 | 0.0419 |
MBNL2 | muscleblind-like splicing regulator 2 | −1.55 | 0.0136 |
AKAP9 | A kinase (PRKA) anchor protein 9 | −1.53 | 0.0383 |
HSP90B1 | heat shock protein 90kDa beta (Grp94), member 1 | −1.53 | 0.044 |
MCFD2 | multiple coagulation factor deficiency 2 | −1.53 | 0.0194 |
SMC1A | structural maintenance of chromosomes 1A | −1.52 | 0.0205 |
SMC5 | structural maintenance of chromosomes 5 | −1.52 | 0.0407 |
GOLGA2 | golgin A2 | −1.51 | 0.0456 |
LRP10 | LDL receptor-related protein 10 | −1.51 | 0.0223 |
PTP4A2 | protein tyrosine phosphatase type IVA, member 2 | −1.51 | 0.0303 |
SKI | SKI proto-oncogene | −1.5 | 0.0161 |
SPIN1 | spindlin 1 | −1.5 | 0.0389 |
LGALSL | lectin, galactoside-binding-like | −1.49 | 0.0259 |
MYH11 | myosin, heavy chain 11, smooth muscle | −1.49 | 0.0071 |
TBC1D23 | TBC1 domain family, member 23 | −1.49 | 0.0272 |
DYM | dymeclin | −1.48 | 0.027 |
GAPVD1 | GTPase-activating protein and VPS9 domains 1 | −1.48 | 0.0319 |
PGAM5 | PGAM family member 5, serine/threonine protein phosphatase, mitochondrial | −1.47 | 0.0211 |
SUPT20H | SPT20 homolog, SAGA complex component | −1.47 | 0.039 |
MGA | MGA, MAX dimerization protein | −1.46 | 0.0043 |
SGMS2 | sphingomyelin synthase 2 | −1.46 | 0.0256 |
ZNF91 | zinc finger protein 91 | −1.46 | 0.0258 |
PAPOLA | poly(A) polymerase alpha | −1.45 | 0.0277 |
PHF24 | PHD finger protein 24 | −1.45 | 0.039 |
CNOT4 | CCR4-NOT transcription complex subunit 4 | −1.44 | 0.0162 |
KTN1 | kinectin 1 (kinesin receptor) | −1.43 | 0.0406 |
MAP4K5 | mitogen-activated protein kinase 5 | −1.43 | 0.0129 |
ZNF766 | zinc finger protein 766 | −1.43 | 0.0093 |
CDK12 | cyclin-dependent kinase 12 | −1.42 | 0.0343 |
ITGAD | integrin alpha D | −1.41 | 0.0217 |
MGEA5 | meningioma expressed antigen 5 (hyaluronidase) | −1.41 | 0.0036 |
ATF6 | activating transcription factor 6 | −1.4 | 0.0175 |
DNASE1 | deoxyribonuclease I | −1.4 | 0.024 |
PRPF40A | PRP40 pre-mRNA processing factor 40 homolog A | −1.39 | 0.0491 |
RAB11FIP1 | RAB11 family interacting protein 1 (class I) | −1.39 | 0.0298 |
DDR2 | discoidin domain receptor tyrosine kinase 2 | −1.38 | 0.0287 |
EPRS | glutamyl-prolyl-tRNA synthetase | −1.38 | 0.0102 |
HN1L | hematological and neurological expressed 1-like | −1.38 | 0.0201 |
MEI1 | meiotic double-stranded break formation protein 1 | −1.38 | 0.043 |
PAPD5 | PAP-associated domain containing 5 | −1.38 | 0.0489 |
PIK3C2A | phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha | −1.38 | 0.0064 |
UBE2J1 | ubiquitin-conjugating enzyme E2, J1 | −1.38 | 0.0219 |
UBXN4 | UBX domain protein 4 | −1.38 | 0.0492 |
CCDC50 | coiled-coil domain containing 50 | −1.37 | 0.0247 |
GCK | glucokinase (hexokinase 4) | −1.37 | 0.0178 |
PLA2G5 | phospholipase A2, group V | −1.37 | 0.01 |
PTPRE | protein tyrosine phosphatase, receptor type, E | −1.37 | 0.0491 |
ARHGAP35 | Rho GTPase activating protein 35 | −1.36 | 0.0299 |
PRKAR2A | protein kinase, cAMP-dependent, regulatory, type II, alpha | −1.35 | 0.0455 |
TLK1 | tousled-like kinase 1 | −1.35 | 0.0076 |
AFF1 | AF4/FMR2 family, member 1 | −1.34 | 0.0214 |
LINC00303 | long intergenic non-protein coding RNA 303 | −1.34 | 0.0341 |
OR5AK2 | olfactory receptor, family 5, subfamily AK, member 2 | −1.34 | 0.0287 |
PCLO | piccolo presynaptic cytomatrix protein | −1.34 | 0.0089 |
CCDC30 | coiled-coil domain containing 30 | −1.33 | 0.0115 |
CDC40 | cell division cycle 40 | −1.33 | 0.0303 |
DNAJB5 | DnaJ (Hsp40) homolog, subfamily B, member 5 | −1.33 | 0.0228 |
RMI1 | RecQ mediated genome instability 1 | −1.33 | 0.0495 |
SLC25A36 | solute carrier family 25 (pyrimidine nucleotide carrier), member 36 | −1.33 | 0.0231 |
ZNF215 | zinc finger protein 215 | −1.33 | 0.0353 |
MAGEC3 | MAGE family member C3 | −1.32 | 0.0298 |
SLC35E4 | solute carrier family 35, member E4 | −1.32 | 0.0151 |
ATP2A2 | ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 | −1.31 | 0.0405 |
FAM120A | family with sequence similarity 120A | −1.31 | 0.0195 |
FAM208B | family with sequence similarity 208, member B | −1.31 | 0.0302 |
KATNBL1 | katanin p80 subunit B-like 1 | −1.31 | 0.049 |
MFSD12 | major facilitator superfamily domain containing 12 | −1.31 | 0.0399 |
MT1A | metallothionein 1A | −1.31 | 0.0471 |
ZNF609 | zinc finger protein 609 | −1.31 | 0.0383 |
ZNF750 | zinc finger protein 750 | −1.31 | 0.0259 |
HLA-DOA | major histocompatibility complex, class II, DO alpha | −1.3 | 0.0497 |
KCNE4 | potassium channel, voltage gated subfamily E regulatory beta subunit 4 | −1.3 | 0.0429 |
LINC00656 | long intergenic non-protein coding RNA 656 | −1.3 | 0.0252 |
LINC01118 | long intergenic non-protein coding RNA 1118 | −1.3 | 0.0228 |
OR1M1 | olfactory receptor, family 1, subfamily M, member 1 | −1.3 | 0.0127 |
OSBPL8 | oxysterol binding protein-like 8 | −1.3 | 0.0323 |
RPAP2 | RNA polymerase II-associated protein 2 | −1.3 | 0.0153 |
ZNF257 | zinc finger protein 257 | −1.3 | 0.0266 |
Biological Process | |
---|---|
Term | Genes |
GO:0045743~positive regulation of fibroblast growth factor receptor signaling pathway | CTNNB1, NPTN |
GO:0014850~response to muscle activity | METRNL, SRD5A1 |
GO:0030539~male genitalia development | CTNNB1, SRD5A1 |
GO:0051493~regulation of cytoskeleton organization | CAPN2, STMN1 |
GO:0006367~transcription initiation from RNA polymerase II promoter | TAF11, GTF2H2, NR1H2 |
Cellular Component | |
Term | Genes |
GO:0005829~cytosol | ACLY, DNAJC7, RAPGEF6, STRADA, USP6NL, WRD77, ANKFY1, CAPN2, CTNNB1, DCTN4, FN3KRP, GYG1, PSMB8, PPM1B, SIPA1, STMN1 |
GO:0043209~myelin sheath | WRD1, SRD5A1, UQCRC1 |
GO:0005654~nucleoplasm | ACLY, DNAJC7, RTCA, STRADA, TAF11, WRD77, CTNNB1, GTF2H2, ID1, NR1H2, PSMB8 |
Molecular Function | |
Term | Genes |
GO:0047485~protein N-terminus binding | TAF11, DCTN4, GTF2H2, ID1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, S.; Ferdousi, F.; Zheng, Y.-W.; Oda, T.; Isoda, H. Human Amniotic Epithelial Cells as a Tool to Investigate the Effects of Cyanidin 3-O-Glucoside on Cell Differentiation. Int. J. Mol. Sci. 2021, 22, 3768. https://doi.org/10.3390/ijms22073768
Takahashi S, Ferdousi F, Zheng Y-W, Oda T, Isoda H. Human Amniotic Epithelial Cells as a Tool to Investigate the Effects of Cyanidin 3-O-Glucoside on Cell Differentiation. International Journal of Molecular Sciences. 2021; 22(7):3768. https://doi.org/10.3390/ijms22073768
Chicago/Turabian StyleTakahashi, Shinya, Farhana Ferdousi, Yun-Wen Zheng, Tatsuya Oda, and Hiroko Isoda. 2021. "Human Amniotic Epithelial Cells as a Tool to Investigate the Effects of Cyanidin 3-O-Glucoside on Cell Differentiation" International Journal of Molecular Sciences 22, no. 7: 3768. https://doi.org/10.3390/ijms22073768