Prussian Blue: A Safe Pigment with Zeolitic-Like Activity
Abstract
1. Introduction
2. Synthesis of Insoluble Prussian Blue
3. Characteristics of Prussian Blue
3.1. Structural Characteristics
3.2. Physicochemical Characteristics
4. Adsorption Properties of PB
4.1. Adsorption of Cesium
Adsorbent | Synthesis | Adsorption Capacity/mg g−1 | Removal Efficiency/% | Equilibrium Time | Kinetic Model | Ref. |
---|---|---|---|---|---|---|
Nanoclusters | Single-precursor | 45.87 | >99.7 | 6 h | Langmuir | [49] |
Nanoparticles | Single precursor | 96.00 | 24 h | Langmuir | [45] | |
Nanocomposites with graphene oxide | Anchoring the magnetic PB onto the graphene surface | 55.56 | >90.0 | 12 h | Langmuir | [46] |
Nanoparticles with PDDA as interlayer | Single precursor | 16.20 | 91.0 | 1 h | Freundlich | [43] |
Co-precipitation | 94.0 | 3 h | [48] | |||
Co-precipitation | 84.7–86.7 | [44] | ||||
Nanocomposites | Co-precipitation | 280.82 | 24 h | Temkin | [47] | |
Nanoparticles with PEG | Hydrothermal | 274.70 | 64.8 | 1 h | [50] | |
Microparticles | Hydrothermal | 16.30 | 97.0 | 10 min | Freundlich | [51] |
Microgels | Ligand substitution reaction | 149.70 | 83.7 | 24 h | Langmuir | [56] |
4.2. Adsorption of Thallium
4.3. Adsorption of Cations
4.4. Adsorption of Gases
4.5. Adsorption of Molecules
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Mumpton, F.A. La roca magica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. USA 1996, 96, 3463–3470. [Google Scholar] [CrossRef]
- Calderón, A.; Quiroz, H.P. Zeolites derived from natural minerals: Solid rock and volcanic ash. Mater. Today 2020, 34, 148–149. [Google Scholar] [CrossRef]
- Mamontova, E.; Daurat, M.; Long, J.; Godefroy, A.; Salles, F.; Guari, Y.; Gary-Bobo, M.; Larionova, J. Fashioning Prussian blue nanoparticles by adsorption of luminophores: Synthesis, properties, and in vitro imaging. Inorg. Chem. 2020, 59, 4567–4575. [Google Scholar] [CrossRef] [PubMed]
- Catala, L.; Mallah, T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical Applications. Coord. Chem. Rev. 2017, 346, 32–61. [Google Scholar] [CrossRef]
- Ware, M. Prussian blue: Artists’ pigment and chemists’ sponge. J. Chem. Educ. 2008, 85, 612–620. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Yang, K.; Cao, B.; Li, Z.; Yang, L.; Pan, F. Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Mater. Today Energy 2019, 14, 100332. [Google Scholar] [CrossRef]
- Gotoh, A.; Uchida, H.; Ishizaki, M.; Satoh, T.; Kaga, S.; Okamoto, S.; Ohta, M.; Sakamoto, M.; Kawamoto, T.; Tanaka, H.; et al. Simple synthesis of the three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology 2007, 18, 345609. [Google Scholar] [CrossRef]
- Guari, Y.; Larionova, J. Prussian Blue-Type Nanoparticles and Nanocomposites. Synthesis, Devices and Applications; Guari, Y., Larionova, J., Eds.; Pan Stanford: Singapore, 2019; pp. XI–XII. [Google Scholar]
- Busquets, M.A.; Estelrich, J. Prussian blue nanoparticles: Synthesis, surface modification and biomedical applications. Drug Discov. Today 2020, 25, 1413–1443. [Google Scholar] [CrossRef]
- WHO Model List of Essential Medicines, 3rd ed.; World Health Organization: Geneva, Switzerland, 2013; p. 4. Available online: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists (accessed on 4 September 2020).
- Grandjean, F.; Samain, L.; Long, G.J. Characterization and utilization of Prussian blue and its pigments. Dalton Trans. 2016, 45, 18018–18044. [Google Scholar] [CrossRef]
- Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules 2018, 23, 1414. [Google Scholar] [CrossRef]
- Ishizaki, M.; Kanaizuka, K.; Abe, M.; Sakamoto, M.; Kawamoto, T.; Tanaka, H.; Kurihara, M. Preparation of electrochromic Prussian blue nanoparticles dispersible into various solvents for realisation of printed electronics. Green Chem. 2012, 14, 1537–1544. [Google Scholar] [CrossRef]
- Buser, H.J.; Ludi, A. Single-crystal study of Prussian blue-Fe4[Fe(CN)6]2 14H2O. J. Chem. Soc. Chem. Commun. 1972, 1299. [Google Scholar] [CrossRef]
- Buser, H.J.; Schwarzenbach, D.; Petter, W.; Ludi, A. Crystal structure of Prussian blue-Fe4[Fe(CN)6]3xH2O. Inorg. Chem. 1977, 16, 2704–2710. [Google Scholar] [CrossRef]
- Herren, F.; Fischer, P.; Ludi, A.; Halg, W. Neutron-diffraction study of Prussian blue, Fe4[Fe(CN)6]3xH2O-Location of water molecules and long-range magnetic order. Inorg. Chem. 1980, 19, 956–959. [Google Scholar] [CrossRef]
- Ito, A.; Suenaga, M.; Ono, K. Mössbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J. Chem. Phys. 1968, 48, 3597–3599. [Google Scholar] [CrossRef]
- Ming, H.; Torad, N.L.K.; Chiang, Y.-D.; Wu, K.C.-W.; Yamauchi, Y. Size- and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. Cryst. Eng. Comm. 2012, 14, 3387–3396. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Pau, P.C.F.; Berg, J.O.; McMillan, W.G. Application of Stokes’s law to ions in aqueous solution. J. Phys. Chem. 1990, 94, 2671–2679. [Google Scholar] [CrossRef]
- Bok-Badura, J.; Jakóbik-Kolon, A.; Kazek-Kęsik, A.; Karoń, K. Hybrid-pectin-based sorbents for cesium ion removal. Molecules 2020, 13, 2160. [Google Scholar] [CrossRef]
- Available online: https://www.rxlist.com/radiogardase-drug.htm#description (accessed on 4 September 2020).
- Hornok, V.; Dékány, I. Synthesis and stabilization of Prussian blue nanoparticles and application for sensors. J. Coll. Interface Sci. 2007, 309, 176–182. [Google Scholar] [CrossRef]
- Ishizaki, M.; Akiba, S.; Ohtani, A.; Hoshi, Y.; Ono, K.; Matsuba, M.; Togashi, T.; Kananizuka, K.; Sakamoto, M.; Takahashi, A.; et al. Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans. 2013, 42, 16049–16055. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Aoki, S.; Takaishi, M.; Sato, Y.; Abe, H. An XAFS study of Cs adsorption by the precipitation bands of Mn-Fe-based Prussian blue analogues spontaneously formed in agarose gel. Phys. Che. Chem. Phys. 2019, 21, 22553–22562. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Tanaka, H.; Minami, K.; Noda, K.; Ishizaki, M.; Kurihara, M.; Ogawa, H.; Kawamoto, T. Unveiling Cs-adsorption mechanism of Prussian blue analogs: Cs+-percolation via vacancies to complete dehydrated state. RSC Adv. 2018, 8, 34808–34816. [Google Scholar] [CrossRef]
- Harjula, R.; Lehto, J.; Paajanen, A.; Brodkin, L.; Tusa, E. Removal of radioactive cesium from nuclear waste solutions with the transition metal hexacyanoferrate ion exchanger Cs treat. Nucl. Sci. Eng. 2001, 137, 206–214. [Google Scholar] [CrossRef]
- Fujita, H.; Sasano, H.; Miyajima, R.; Sazoka, A. Adsorption equilibrium and kinetics of cesium onto insoluble Prussian blue synthesized by an immediate precipitation reaction between Fe3+ and [Fe(CN)6]-4. Adsorption 2014, 20, 905–915. [Google Scholar] [CrossRef]
- Delchet, C.; Tokarev, A.; Dumail, X.; Toquer, C.; Barré, Y.; Guari, Y.; Guerin, Y.; Larionova, J.; Grandjean, A. Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv. 2012, 2, 5707–5716. [Google Scholar] [CrossRef]
- Cho, E.; Lee, J.J.; Lee, B.-S.; Lee, K.-W.; Yeom, B.; Lee, T.S. Cesium ion-exchange resin using dodecylbenzenesulfonate for binding to Prussian blue. Chemosphere 2020, 244, 125589. [Google Scholar] [CrossRef]
- Gwon, Y.J.; Lee, J.J.; Lee, K.-W.; Ogden, M.D.; Harwood, L.M.; Lee, T.S. Prussian blue decoration on polyacrylonitrile nanofibers using polydopamine for effective Cs ion removal. Ind. Eng. Chem. Res. 2020, 59, 4872–4880. [Google Scholar] [CrossRef]
- Wi, H.; Kang, S.-W.; Hwang, Y. Immobilization of Prussian blue nanoparticles in acrylic acid-surface functionalized poly(vinyl alcohol) sponges for cesium adsorption. Environ. Eng. Res. 2019, 24, 173–179. [Google Scholar] [CrossRef]
- Wi, H.; Kim, H.; Oh, D.; Bae, S.; Hwang, Y. Surface modification of poly(vinyl alcohol) sponge by acrylic acid to immobilize Prussian blue for selective adsorption of aqueous cesium. Chemosphere 2019, 226, 173–182. [Google Scholar] [CrossRef]
- Vipin, A.K.; Hu, B.; Fugetsu, B. Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J. Hazard. Mater. 2013, 258–259, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Sandal, N.; Mittal, G.; Bhatnagar, A.; Pathak, D.P.; Singh, A.K. Preparation, characterization, and in vivo pharmaco scintigraphy evaluation of an intestinal release delivery system of Prussian blue for decorporation of cesium and thallium. J. Drug Delivery 2017, 2017, 4875784. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Fugetsu, B.; Yu, H.; Abe, Y. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium. J. Hazard. Mater. 2012, 217–218, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Darder, M.; González-Alfaro, Y.; Aranda, P.; Ruiz-Hitzky, E. Silicate-based multi-functional nanostructured materials with magnetite and Prussian blue: Application to cesium uptake. RSC Adv. 2014, 4, 35415–35421. [Google Scholar] [CrossRef]
- Chen, G.-R.; Chang, Y.-R.; Liu, X.; Kawamoto, T.; Tanaka, H.; Kitajima, A.; Parajuli, D.; Takasaki, M.; Yoshino, K.; Chen, M.-L.; et al. Prussian blue (PB) granules for cesium (Cs) removal from drinking water. Sep. Purif. Technol. 2015, 143, 146–151. [Google Scholar] [CrossRef]
- Lee, I.; Kim, S.-H.; Rethinasabapathy, M.; Haldorai, Y.; Lee, G.-W.; Choe, S.R.; Jang, S.-C.; Kang, S.-M.; Han, Y.-K.; Roh, C.; et al. Porous·3D Prussian blue/cellulose aerogel as a decorporation agent for removal of ingested cesium from the gastrointestinal tract. Sci. Rep. 2018, 8, 4540. [Google Scholar] [CrossRef]
- Eun, S.; Hong, H.-J.; Kim, H.; Jeong, H.S.; Kim, S.; Jung, J.; Ryu, J. Prussian blue-embedded carboxymethyl cellulose nanofibril membranes for removing radioactive cesium from aqueous solution. Carbohyd. Pol. 2020, 235, 115984. [Google Scholar] [CrossRef]
- Hayashi, H.; Sato, Y.; Aoki, S.; Takaishi, M. In situ XRF analysis of Cs adsorption by the precipitation bands of Prussian blue analogues formed in agarose gels. J. Anal. At. Spectrom. 2019, 34, 979–985. [Google Scholar] [CrossRef]
- Zhang, H.; Hodges, C.S.; Kumar Misha, P.; Young Yoon, J.; Hunter, T.N.; Lee, J.; Harbottle, D. Bio-inspired preparation of clay-hexacyanoferrate composite hydrogels as super adsorbents for Cs+. ACS Appl. Mater. Interfaces 2020, 12, 33173–33185. [Google Scholar] [CrossRef]
- Sasaki, T.; Tanaka, S. Magnetic separation of cesium ion using Prussian blue modified magnetite. Chem. Lett. 2012, 41, 32–34. [Google Scholar] [CrossRef]
- Namiki, Y.; Namiki, T.; Ishii, Y.; Koido, S.; Nagase, Y.; Tsubota, A.; Tada, N.; Kitamoto, Y. Inorganic-organic magnetic nanocomposites for use in preventive medicine: A rapid and reliable elimination system for cesium. Pharm. Res. 2012, 29, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Thammawong, C.; Opaprakasit, P.; Tangboriboonrat, P.; Sreearunothai, P. Prussian blue coated magnetic nanoparticles for removal of cesium from contaminated environment. J. Nanopart. Res. 2013, 15, 1689–1699. [Google Scholar] [CrossRef]
- Yang, H.; Sun, L.; Zhai, J.; Li, H.; Zhao, Y.; Yu, H. In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J. Mater. Chem. A 2014, 2, 332–362. [Google Scholar] [CrossRef]
- Jang, J.; Lee, D.S. Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind. Eng. Chem Res. 2016, 55, 3852–3860. [Google Scholar] [CrossRef]
- Jang, S.-C.; Hong, S.-B.; Yang, H.-M.; Lee, K.-W.; Moon, J.-K.; Seo, B.-K.; Huh, Y.S.; Roh, C. Removal of radioactive cesium using Prussian blue magnetic nanoparticles. Nanomaterials 2014, 4, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-M.; Jang, S.-C.; Hong, S.B.; Le, K.-W.; Roh, C.; Huh, Y.S.; Seo, B.-K. Prussian blue functionalized magnetic nanoclusters for the removal of radioactive cesium from water. J. Alloys Comp. 2016, 657, 387–393. [Google Scholar] [CrossRef]
- Qian, J.; Xu, J.; Kung, L.; Hua, D. Cesium removal from human blood by poly(ethylene glycol)-decorated Prussian blue magnetic nanoparticles. Chem. Plus Chem. 2017, 82, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zheng, J.; Ma, X.; Du, X.; Gao, F.; Hao, X.; Tang, B.; Abudula, A.; Guan, G. Electroactive magnetic microparticles for the selective elimination of cesium ions in the wastewater. Environ. Res. 2020, 185, 109474. [Google Scholar] [CrossRef]
- Sun, B.; Hao, X.G.; Wang, Z.D.; Guan, G.Q.; Zhang, Z.I.; Li, Y.B.; Liu, S.B. Separation of low concentrations of cesium ion from wastewater by electrochemically switched ion Exchange method: Experimental adsorption kinetic analysis. J. Hazard. Mater. 2012, 233–234, 177–183. [Google Scholar] [CrossRef]
- Koshiyama, T.; Tanaka, M.; Honjo, M.; Fukunaga, Y.; Okamura, T.; Ohba, M. Direct synthesis of Prussian blue nanoparticles in liposomes incorporating natural ion channels for Cs+ adsorption and particle size control. Langmuir 2018, 34, 1666–1672. [Google Scholar] [CrossRef]
- Bu, F.-X.; Hu, M.; Zhang, W.; Meng, Q.; Xu, L.; Jiang, D.-M.; Jiang, J.-S. Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: Enhanced hetero-catalytic and adsorption properties. Chem. Commun. 2015, 51, 17568–17571. [Google Scholar] [CrossRef] [PubMed]
- Evrard, O.; Laceby, J.P.; Lepage, H.; Onda, Y.; Cerdan, O.; Ayrault, S. Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima nuclear power plant accident: A review. J. Environ. Radioact. 2015, 148, 92–110. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhou, L.; Yang, X.; Hua, D.; Wu, N. Prussian blue analogue functionalized magnetic microgels with ionized chitosan for the cleaning of cesium-contaminated clay. J. Hazard. Mater. 2020, 386, 121965. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 2018, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Temkin, M.I.; Pyzhev, V. Kinetics of ammonia synthesis on promote iron catalysts. Acta Phys. Chim. USSR 1940, 12, 327–356. [Google Scholar]
- Wang, Z.; Wu, Z.; Wang, M.; An, X.; Li, H. Continuous separation and recovery of caesium by electromagnetic coupling regeneration process with an electroactive magnetic Fe3O4@cupric hexacyanoferrate. J. App. Electrochem. 2018, 48, 49–60. [Google Scholar] [CrossRef]
- Faustino, P.J.; Yongsheng, Y.; Progar, J.J.; Brownell, C.R.; Sadrieh, N.; May, J.C.; Leutzinger, E.; Place, D.A.; Duffy, E.P.; Houn, F.; et al. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J. Pharm. Biomed. Anal. 2008, 47, 114–125. [Google Scholar] [CrossRef]
- Manabe, S.; Vipin, A.K.; Kumashiro, T.; Takiguchi, S.; Fugetsu, B.; Sakata, I. Stabilization of Prussian blue using copper sulfate for eliminating radioactive cesium from a high pH solution and seawater. J. Hazard. Mater. 2020, 386, 121979. [Google Scholar] [CrossRef]
- Galván-Arzate, S.; Santamaría, A. Tallium toxicity. Toxicol. Lett. 1998, 99, 1–13. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, Y.; Cheng, X.; Hou, X.; Yang, Y.; Tian, Y.M.; You, J.; Xu, L. Adsorptive removal of trace thallium (I) from wastewater: A review and new perspectives. J. Hazard. Mater. 2020, 393, 122378. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Zengin, A.; Akbulut, Y.; Sahan, T. Magnetic nanoparticles coated with aminated polymer brush as a novel material for effective removal of Pb (II) ions from aqueous environments. Environ. Sci. Pollut. R. 2019, 26, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Faustino, P.J.; Progar, J.J.; Brownell, C.R.; Sadrieh, N.; May, J.C.; Leutzinger, E.; Place, D.A.; Duffy, E.P.; Xu, L.X.; et al. Quantitative determination of thallium binding to ferric hexacyanoferrate: Prussian blue. Int. J. Pharm. 2008, 353, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Faustino, P.J.; Brown, A.; Lowry, B.; Yang, Y.; Wang, Y.; Khan, M.A.; Dumbar, K.R.; Mohammad, A. Quantitative evaluation of the thallium binding of soluble and insoluble Prussian blue hexacyanoferrate analogs: A scientific comparison based on their critical quality attributes. Int. J. Pharm. 2019, 569, 118600. [Google Scholar] [CrossRef] [PubMed]
- Sangvanich, T.; Sukwarotwat, V.; Wiacek, R.J.; Grudzien, R.M.; Fryxell, G.E.; Addleman, R.S.; Timchalk, C.; Yantsee, W. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J. Hazard. Mater. 2010, 182, 225–231. [Google Scholar] [CrossRef]
- Vincent, T.; Taulemesse, J.M.; Dauvergne, A.; Chaunut, T.; Testa, F.; Guibal, E. Thallium (I) sorption using Prussian blue immobilized in alginate capsules. Carbohyd. Polym. 2014, 99, 517–526. [Google Scholar] [CrossRef]
- Vafakhah, S.; Guo, L.; Sriramulu, D.; Huang, S.; Saeedikhani, M.; Yang, H.Y. Efficient sodium-ion intercalation into the freestanding Prussian blue/graphene aerogel anode in a hybrid capacitive deionization system. ACS Appl. Mater. Interfaces 2019, 11, 5989–5998. [Google Scholar] [CrossRef]
- Uogintė, I.; Lujanienė, G.; Mažeika, K. Study of Cu(II), Co(II), Ni(II) and Pb(II) removal from aqueous solutions using magnetic Prussian blue nano-sorbents. J. Hazard. Mater. 2019, 369, 226–235. [Google Scholar] [CrossRef]
- Atwood, C.C.; Scarpa, R.C.; Huang, X.; Moir, R.D.; Jones, W.D.; Fairli, D.P.; Tanzi, R.E.; Bush, A.I. Characterization of copper interactions with Alzheimer amyloid β peptides. J. Neurochem. 2000, 75, 1219–1233. [Google Scholar] [CrossRef]
- Kaye, S.S.; Long, J.R. Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M ) Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 2005, 127, 6506–6507. [Google Scholar] [CrossRef]
- Thallapally, P.K.; Motkuri, R.K.; Fernández, C.A.; McGrail, B.P.; Behrooz, G.S. Prussian blue analogues for CO2 and SO2 capture and separation applications. Inorg. Chem. 2010, 49, 4909–4915. [Google Scholar] [CrossRef]
- Karadas, F.; El-Faki, H.; Deniz, E.; Yavuz, C.T.; Aparicio, S.; Atilhan, M. CO2 adsorption studies on Prussian blue analogues. Microporous Macroporous Mater. 2012, 162, 91–97. [Google Scholar] [CrossRef]
- Takahashi, A.; Tanaka, H.; Parajuli, D.; Nakamura, T.; Minami, K.; Sugiyama, Y.; Hakuta, Y.; Ohkoshi, S.; Kawamoto, T. Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds. J. Am. Chem. Soc. 2016, 138, 6376–6379. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, D.; Noguchi, H.; Takahashi, A.; Tanaka, H.; Kawamoto, T. Prospective application of copper hexacyanoferrate for capturing dissolved ammonia. Ind. Eng. Chem. Res. 2016, 55, 6708–6715. [Google Scholar] [CrossRef]
- Zhang, N.; Kawamoto, T.; Jiang, Y.; Takahashi, A.; Ishizaki, M.; Asai, M.; Kurihara, M.; Zhang, Z.; Lei, Z.; Parajuli, D. Interpretation of the role of composition on the inclusion efficiency of monovalent cations into cobalt hexacyanoferrate. Chem. Eur. J. 2019, 25, 5950–5958. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Minami, K.; Noda, K.; Sakurai, K.; Kawamoto, T. Trace ammonia removal from air selective adsorbents reusable with water. ACS Appl. Mater. Interfaces 2020, 12, 15115–15119. [Google Scholar] [CrossRef] [PubMed]
- Kaye, S.S.; Long, J.R. The role of vacancies in the hydrogen storage properties of Prussian blue analogues. Catal. Today 2007, 120, 311–316. [Google Scholar] [CrossRef]
- Autie-Castro, G.; Autie, M.; Reguera, E.; Moreno-Tost, R.; Rodríguez-Castellón, E.; Jiménez-López, A.; Santamaría-González, J. Adsorption and separation of propane and propylene by porous hexacyanometallates. App. Surf. Sci. 2011, 257, 2461–2466. [Google Scholar] [CrossRef]
- Boudjema, L.; Mamontova, E.; Long, J.; Larionova, J.; Guari, Y.; Trens, P. Prussian blue analogues for the separation of hydrocarbons in humid conditions. Inorg. Chem. 2017, 56, 7598–7601. [Google Scholar] [CrossRef]
- Mamontova, E.; Long, J.; Ferreira, R.; Botas, A.M.P.; Salles, F.; Guari, Y.; Carlos, L.A.; Larionova, J. Making Prussian blue analogues nanoparticles luminescent: Effect of the luminophore confinement over the properties. Nanoscale 2019, 11, 7097–7101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estelrich, J.; Busquets, M.A. Prussian Blue: A Safe Pigment with Zeolitic-Like Activity. Int. J. Mol. Sci. 2021, 22, 780. https://doi.org/10.3390/ijms22020780
Estelrich J, Busquets MA. Prussian Blue: A Safe Pigment with Zeolitic-Like Activity. International Journal of Molecular Sciences. 2021; 22(2):780. https://doi.org/10.3390/ijms22020780
Chicago/Turabian StyleEstelrich, Joan, and Maria Antònia Busquets. 2021. "Prussian Blue: A Safe Pigment with Zeolitic-Like Activity" International Journal of Molecular Sciences 22, no. 2: 780. https://doi.org/10.3390/ijms22020780
APA StyleEstelrich, J., & Busquets, M. A. (2021). Prussian Blue: A Safe Pigment with Zeolitic-Like Activity. International Journal of Molecular Sciences, 22(2), 780. https://doi.org/10.3390/ijms22020780