Next Article in Journal
Glycyrrhizin Attenuates Portal Hypertension and Collateral Shunting via Inhibition of Extrahepatic Angiogenesis in Cirrhotic Rats
Next Article in Special Issue
Loss of ZNF677 Expression Is an Independent Predictor for Distant Metastasis in Middle Eastern Papillary Thyroid Carcinoma Patients
Previous Article in Journal
X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis
Previous Article in Special Issue
V600EBRAF Inhibition Induces Cytoprotective Autophagy through AMPK in Thyroid Cancer Cells
Article

FOXE1-Dependent Regulation of Macrophage Chemotaxis by Thyroid Cells In Vitro and In Vivo

1
Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
2
Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
3
DBMR-Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
*
Author to whom correspondence should be addressed.
Academic Editor: Daniela Grimm
Int. J. Mol. Sci. 2021, 22(14), 7666; https://doi.org/10.3390/ijms22147666
Received: 10 June 2021 / Revised: 9 July 2021 / Accepted: 12 July 2021 / Published: 17 July 2021
(This article belongs to the Special Issue Recent Advances in Thyroid Cancer Research)
Forkhead box E1 (FOXE1) is a lineage-restricted transcription factor involved in thyroid cancer susceptibility. Cancer-associated polymorphisms map in regulatory regions, thus affecting the extent of gene expression. We have recently shown that genetic reduction of FOXE1 dosage modifies multiple thyroid cancer phenotypes. To identify relevant effectors playing roles in thyroid cancer development, here we analyse FOXE1-induced transcriptional alterations in thyroid cells that do not express endogenous FOXE1. Expression of FOXE1 elicits cell migration, while transcriptome analysis reveals that several immune cells-related categories are highly enriched in differentially expressed genes, including several upregulated chemokines involved in macrophage recruitment. Accordingly, FOXE1-expressing cells induce chemotaxis of co-cultured monocytes. We then asked if FOXE1 was able to regulate macrophage infiltration in thyroid cancers in vivo by using a mouse model of cancer, either wild type or with only one functional FOXE1 allele. Expression of the same set of chemokines directly correlates with FOXE1 dosage, and pro-tumourigenic M2 macrophage infiltration is decreased in tumours with reduced FOXE1. These data establish a novel link between FOXE1 and macrophages recruitment in the thyroid cancer microenvironment, highlighting an unsuspected function of this gene in the crosstalk between neoplastic and immune cells that shape tumour development and progression. View Full-Text
Keywords: FOXE1; chemokines; TAMs; tumour microenvironment FOXE1; chemokines; TAMs; tumour microenvironment
Show Figures

Figure 1

MDPI and ACS Style

Credendino, S.C.; De Menna, M.; Cantone, I.; Moccia, C.; Esposito, M.; Di Guida, L.; De Felice, M.; De Vita, G. FOXE1-Dependent Regulation of Macrophage Chemotaxis by Thyroid Cells In Vitro and In Vivo. Int. J. Mol. Sci. 2021, 22, 7666. https://doi.org/10.3390/ijms22147666

AMA Style

Credendino SC, De Menna M, Cantone I, Moccia C, Esposito M, Di Guida L, De Felice M, De Vita G. FOXE1-Dependent Regulation of Macrophage Chemotaxis by Thyroid Cells In Vitro and In Vivo. International Journal of Molecular Sciences. 2021; 22(14):7666. https://doi.org/10.3390/ijms22147666

Chicago/Turabian Style

Credendino, Sara C., Marta De Menna, Irene Cantone, Carmen Moccia, Matteo Esposito, Luigi Di Guida, Mario De Felice, and Gabriella De Vita. 2021. "FOXE1-Dependent Regulation of Macrophage Chemotaxis by Thyroid Cells In Vitro and In Vivo" International Journal of Molecular Sciences 22, no. 14: 7666. https://doi.org/10.3390/ijms22147666

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop