Escherichia coli O157:H7 F9 Fimbriae Recognize Plant Xyloglucan and Elicit a Response in Arabidopsis thaliana
Abstract
1. Introduction
2. Results
2.1. F9 Description
2.2. F9 (Regulator and FimA-Like) GFP+ Transcriptional Fusion Expression In Vitro
2.3. Functional Analysis of EHEC F9 Fimbriae
2.3.1. Recognition of Plant Glycans
2.3.2. Interaction with Spinach Hemicellulose Extract and Tissues
2.3.3. Characterisation of Spinach Leaf Xyloglucan in Situ
2.4. Plants Can Elicit a Response to F9 Fimbriae
2.4.1. Global Transcriptomic Response in Arabidopsis thaliana
2.4.2. Comparisons with Other Published Datasets
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Molecular Methods
4.3. Analysis of Bacterial Fluorescence In Vitro
4.4. Protein Purification and Antibody Production
4.5. Glycan Array
4.6. Plant Growth Conditions and Extract Preparation
4.7. Enzyme Linked Immuno-Sorbent Assay (ELISA)
4.8. Bacterial Adhesion Assays
4.9. Immunofluorescence Microscopy
4.10. Treatment of Plants with Protein Preparations
4.11. RNA Purification and Microarray
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid |
BCA | Bicinchoninic acid |
BSA | Bovine serum albumin |
CAPS | N-cyclohexyl-3-aminopropanesulfonic acid |
CDS | Coding sequence |
CUP | Chaperone Usher Pilus |
ECP | E. coli Common Pilus |
EHEC | Enterohaemorrhagic E. coli |
GFP | Green fluorescent protein |
HRP | Horseradish peroxidase |
HTH | Helix turn helix |
MAMP | Microbe-associated molecular pattern |
MDPI | Multidisciplinary Digital Publishing Institute |
MOPS | 3-(N-morpholino)propane sulfonic acid |
MTI | MAMP triggered immunity |
ORF | Open Reading Frame |
PAMP | Pathogen-associated molecular pattern |
PBS | Phosphate buffered saline |
PTI | PAMP triggered immunity |
UPEC | Uropathogenic E. coli |
UTR | Untranslated region |
References
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported Foodborne Outbreaks Due to Fresh Produce in the United States and European Union: Trends and Causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Michino, H.; Araki, K.; Minami, S.; Takaya, S.; Sakai, N.; Miyazaki, M.; Ono, A.; Yanagawa, H. Massive Outbreak of Escherichia coli O157:H7 Infection in Schoolchildren in Sakai City, Japan, Associated with Consumption of White Radish Sprouts. Am. J. Epidemiol. 1999, 150, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Stones, D.H.; Krachler, A.M. Against the tide: The role of bacterial adhesion in host colonization. Biochem. Soc. Trans. 2016, 44, 1571–1580. [Google Scholar] [CrossRef]
- Remaut, H.; Tang, C.; Henderson, N.S.; Pinkner, J.S.; Wang, T.; Hultgren, S.J.; Thanassi, D.G.; Waksman, G.; Li, H. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 2008, 133, 640–652. [Google Scholar] [CrossRef]
- Jones, C.H.; Pinkner, J.S.; Roth, R.; Heuser, J.; Nicholes, A.V.; Abraham, S.N.; Hultgren, S.J. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 1995, 92, 2081–2085. [Google Scholar] [CrossRef]
- Marshall, J.; Rossez, Y.; Mainda, G.; Gally, D.L.; Daniell, T.J.; Holden, N.J. Alternate thermoregulation and functional binding of Escherichia coli type 1 fimbriae in environmental and animal isolates. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef]
- Rossez, Y.; Holmes, A.; Lodberg-Pedersen, H.; Birse, L.; Marshall, J.; Willats, W.G.; Toth, I.K.; Holden, N.J. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants. J. Biol. Chem. 2014, 289, 34349–34365. [Google Scholar] [CrossRef]
- Larsonneur, F.; Martin, F.A.; Mallet, A.; Martinez-Gil, M.; Semetey, V.; Ghigo, J.-M.; Beloin, C. Functional analysis of Escherichia coli Yad fimbriae reveals their potential role in environmental persistence. Environ. Microbiol. 2016, 18, 5228–5248. [Google Scholar] [CrossRef]
- Wurpel, D.J.; Beatson, S.A.; Totsika, M.; Petty, N.K.; Schembri, M.A. Chaperone-Usher Fimbriae of Escherichia coli. PLoS ONE 2013, 8, e52835. [Google Scholar] [CrossRef]
- Wurpel, D.J.; Totsika, M.; Allsopp, L.P.; Hartley-Tassell, L.E.; Day, C.J.; Peters, K.M.; Sarkar, S.; Ulett, G.C.; Yang, J.; Tiralongo, J.; et al. F9 Fimbriae of Uropathogenic Escherichia coli Are Expressed at Low Temperature and Recognise Gal beta 1-3GlcNAc-Containing Glycans. PLoS ONE 2014, 9, e93177. [Google Scholar] [CrossRef] [PubMed]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing Group; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef] [PubMed]
- Low, A.S.; Dziva, F.; Torres, A.G.; Martinez, J.L.; Rosser, T.; Naylor, S.; Spears, K.; Holden, N.; Mahajan, A.; Findlay, J.; et al. Cloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 2006, 74, 2233–2244. [Google Scholar] [CrossRef][Green Version]
- Ulett, G.C.; Mabbett, A.N.; Fung, K.C.; Webb, R.I.; Schembri, M.A. The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology 2007, 153, 2321–2331. [Google Scholar] [CrossRef] [PubMed]
- Low, A.S.; Holden, N.; Rosser, T.; Roe, A.J.; Constantinidou, C.; Hobman, J.L.; Smith, D.G.; Low, J.C.; Gally, D.L. Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ. Microbiol. 2006, 8, 1033–1047. [Google Scholar] [CrossRef] [PubMed]
- Conover, M.S.; Ruer, S.; Taganna, J.; Kalas, V.; De Greve, H.; Pinkner, J.S.; Dodson, K.W.; Remaut, H.; Hultgren, S.J. Inflammation-Induced Adhesin-Receptor Interaction Provides a Fitness Advantage to Uropathogenic E. coli during Chronic Infection. Cell Host Microbe 2016, 20, 482–492. [Google Scholar] [CrossRef]
- Burton, R.A.; Gidley, M.J.; Fincher, G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010, 6, 724–732. [Google Scholar] [CrossRef]
- Ebringerová, A.; Hromádková, Z.; Heinze, T. Hemicellulose. In Polysaccharides I; Heinze, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Marcus, S.E.; Verhertbruggen, Y.; Hervé, C.; Ordaz-Ortiz, J.J.; Farkas, V.; Pedersen, H.L.; Willats, W.G.T.; Knox, J.P. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol. 2008, 8, 60. [Google Scholar] [CrossRef]
- Fry, S.C.; York, W.S.; Albersheim, P.; Darvill, A.; Hayashi, T.; Joseleau, J.-P.; Kato, Y.; Lorences, E.P.; Maclachlan, G.A.; McNeil, M.; et al. An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol. Plant. 1993, 89, 1–3. [Google Scholar] [CrossRef]
- Wu, C.H.; Derevnina, L.; Kamoun, S. Receptor networks underpin plant immunity. Science 2018, 360, 1300–1301. [Google Scholar] [CrossRef]
- Felix, G.; Duran, J.D.; Volko, S.; Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 1999, 18, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gomez, L.; Felix, G.; Boller, T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 1999, 18, 277–284. [Google Scholar] [CrossRef]
- Zipfel, C.; Kunze, G.; Chinchilla, D.; Caniard, A.; Jones, J.D.; Boller, T.; Felix, G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 2006, 125, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Gust, A.A.; Biswas, R.; Lenz, H.D.; Rauhut, T.; Ranf, S.; Kemmerling, B.; Gotz, F.; Glawischnig, E.; Lee, J.; Felix, G.; et al. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 2007, 282, 32338–32348. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Albert, M.; Einig, E.; Fürst, U.; Krust, D.; Felix, G. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nat. Plants 2016, 2, 16185. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, D.; Zahringer, U.; Gerber, I.; Dubery, I.; Hartung, T.; Bors, W.; Hutzler, P.; Durner, J. Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. USA 2004, 101, 15811–15816. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.-A.; Sundelin, T.; Nielsen, J.T.; Erbs, G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 2013, 4, 139. [Google Scholar] [CrossRef]
- Huang, Y.H.; Liang, W.Q.; Pan, A.H.; Zhou, Z.; Huang, C.; Chen, J.X.; Zhang, D.B. Production of FaeG, the major subunit of K88 fimbriae, in transgenic tobacco plants and its immunogenicity in mice. Infect. Immun. 2003, 71, 5436–5439. [Google Scholar] [CrossRef][Green Version]
- Garg, R.; Tolbert, M.; Oakes, J.L.; Clemente, T.E.; Bost, K.L.; Piller, K.J. Chloroplast targeting of FanC, the major antigenic subunit of Escherichia coli K99 fimbriae, in transgenic soybean. Plant Cell Rep. 2007, 26, 1011–1023. [Google Scholar] [CrossRef]
- Black, D.S.; Kelly, A.J.; Mardis, M.J.; Moyed, H.S. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J. Bacteriol. 1991, 173, 5732–5739. [Google Scholar] [CrossRef]
- Schumacher, M.A.; Piro, K.M.; Xu, W.; Hansen, S.; Lewis, K.; Brennan, R.G. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 2009, 323, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Zhou, Y.; Neelamegham, S. DrawGlycan-SNFG: A robust tool to render glycans and glycopeptides with fragmentation information. Glycobiology 2016, 27, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Schikora, A.; Virlogeux-Payant, I.; Bueso, E.; Garcia, A.V.; Nilau, T.; Charrier, A.; Pelletier, S.; Menanteau, P.; Baccarini, M.; Velge, P.; et al. Conservation of Salmonella infection mechanisms in plants and animals. PLoS ONE 2011, 6, e24112. [Google Scholar] [CrossRef] [PubMed]
- Thilmony, R.; Underwood, W.; He, S.Y. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J. 2006, 46, 34–53. [Google Scholar] [CrossRef] [PubMed]
- Thimm, O.; Blasing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Kruger, P.; Selbig, J.; Muller, L.A.; Rhee, S.Y.; Stitt, M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37, 914–939. [Google Scholar] [CrossRef]
- Asai, T.; Tena, G.; Plotnikova, J.; Willmann, M.R.; Chiu, W.L.; Gomez-Gomez, L.; Boller, T.; Ausubel, F.M.; Sheen, J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002, 415, 977–983. [Google Scholar] [CrossRef]
- Zipfel, C.; Robatzek, S.; Navarro, L.; Oakeley, E.J.; Jones, J.D.; Felix, G.; Boller, T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 2004, 428, 764–767. [Google Scholar] [CrossRef]
- Schenk, P.M.; Kazan, K.; Wilson, I.; Anderson, J.P.; Richmond, T.; Somerville, S.C.; Manners, J.M. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 2000, 97, 11655–11660. [Google Scholar] [CrossRef]
- Dziva, F.; van Diemen, P.M.; Stevens, M.P.; Smith, A.J.; Wallis, T.S. Identification of Escherichia coli O157:H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 2004, 150, 3631–3645. [Google Scholar] [CrossRef]
- Pedersen, H.L.; Fangel, J.U.; McCleary, B.; Ruzanski, C.; Rydahl, M.G.; Ralet, M.C.; Farkas, V.; von Schantz, L.; Marcus, S.E.; Andersen, M.C.; et al. Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. J. Biol. Chem. 2012, 287, 39429–39438. [Google Scholar] [CrossRef]
- Kuki, H.; Yokoyama, R.; Kuroha, T.; Nishitani, K. Xyloglucan Is Not Essential for the Formation and Integrity of the Cellulose Network in the Primary Cell Wall Regenerated from Arabidopsis Protoplasts. Plants 2020, 9, 629. [Google Scholar] [CrossRef] [PubMed]
- Vuttipongchaikij, S.; Brocklehurst, D.; Steele-King, C.; Ashford, D.A.; Gomez, L.D.; McQueen-Mason, S.J. Arabidopsis GT34 family contains five xyloglucan α-1,6-xylosyltransferases. N. Phytol. 2012, 195, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Chen, W.Q.; Sechet, J.; Martin, M.; Bovio, S.; Lionnet, C.; Long, Y.; Battu, V.; Mouille, G.; Moneger, F.; et al. Xyloglucans and Microtubules Synergistically Maintain Meristem Geometry and Phyllotaxis. Plant Physiol. 2019, 181, 1191–1206. [Google Scholar]
- Lionetti, V.; Fabri, E.; De Caroli, M.; Hansen, A.R.; Willats, W.G.T.; Piro, G.; Bellincampi, D. Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to Botrytis. Plant Physiol. 2017, 173, 1844–1863. [Google Scholar] [CrossRef] [PubMed]
- Bethke, G.; Grundman, R.E.; Sreekanta, S.; Truman, W.; Katagiri, F.; Glazebrook, J. Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae. Plant Physiol. 2014, 164, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Locci, F.; Benedetti, M.; Pontiggia, D.; Citterico, M.; Caprari, C.; Mattei, B.; Cervone, F.; De Lorenzo, G. An Arabidopsis berberine bridge enzyme-like protein specifically oxidizes cellulose oligomers and plays a role in immunity. Plant J. 2019, 98, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Oblessuc, P.; Vaz Bisneta, M.; Melotto, M. Common and unique Arabidopsis proteins involved in stomatal susceptibility to Salmonella enterica and Pseudomonas syringae. FEMS Microbiol. Lett. 2019, 366. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J.; Cammue, B.P.A.; Thevissen, K. Plant defensins. Planta 2002, 216, 193–202. [Google Scholar]
- Zimmerli, L.; Stein, M.; Lipka, V.; Schulze-Lefert, P.; Somerville, S. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J. 2004, 40, 633–646. [Google Scholar] [CrossRef]
- Simpson, C.; Thomas, C.; Findlay, K.; Bayer, E.; Maule, A.J. An Arabidopsis GPI-Anchor Plasmodesmal Neck Protein with Callose Binding Activity and Potential to Regulate Cell-to-Cell Trafficking. Plant Cell 2009, 21, 581–594. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.J.; Kang, X.J.; Zhao, X.Y.; Zhang, X.S.; Ni, M. SHORT HYPOCOTYL UNDER BLUE1 Associates with MINISEED3 and HAIKU2 Promoters In Vivo to Regulate Arabidopsis Seed Development. Plant Cell 2009, 21, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Bacete, L.; Mélida, H.; Miedes, E.; Molina, A. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J. 2018, 93, 614–636. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.L.; Hollingsworth, J.; Morris, J.G., Jr. Emerging Foodborne Pathogens: Escherichia coli O157:H7 as a Model of Entry of a New Pathogen into the Food Supply of the Developed World. Epidemiol. Rev. 1996, 18, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Xicohtencatl-Cortes, J.; Sanchez Chacon, E.; Saldana, Z.; Freer, E.; Giron, J.A. Interaction of Escherichia coli O157:H7 with leafy green produce. J. Food Prot. 2009, 72, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Dahan, S.; Knutton, S.; Shaw, R.K.; Crepin, V.F.; Dougan, G.; Frankel, G. Transcriptome of enterohemorrhagic Escherichia coli O157 adhering to eukaryotic plasma membranes. Infect. Immun. 2004, 72, 5452–5459. [Google Scholar] [CrossRef] [PubMed]
- Westerlund-Wikstrom, B.; Tanskanen, J.; Virkola, R.; Hacker, J.; Lindberg, M.; Skurnik, M.; Korhonen, T.K. Functional expression of adhesive peptides as fusions to Escherichia coli flagellin. Protein Eng. 1997, 10, 1319–1326. [Google Scholar] [CrossRef]
- Neidhardt, F.C.; Bloch, P.L.; Smith, D.F. Culture medium for enterobacteria. J. Bacteriol. 1974, 119, 736–747. [Google Scholar] [CrossRef]
- Holden, N.; Totsika, M.; Dixon, L.; Catherwood, K.; Gally, D.L. Regulation of P-fimbrial phase variation frequencies in Escherichia coli CFT073. Infect. Immun. 2007, 75, 3325–3334. [Google Scholar] [CrossRef]
- Merlin, C.; McAteer, S.; Masters, M. Tools for characterization of Escherichia coli genes of unknown function. J. Bacteriol. 2002, 184, 4573–4581. [Google Scholar] [CrossRef]
- Tree, J.J.; Granneman, S.; McAteer, S.P.; Tollervey, D.; Gally, D.L. Identification of Bacteriophage-Encoded Anti-sRNAs in Pathogenic Escherichia coli. Mol. Cell 2014, 55, 199–213. [Google Scholar]
- Wang, R.F.; Kushner, S.R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 1991, 100, 195–199. [Google Scholar] [CrossRef]
- Pouttu, R.; Westerlund-Wikstrom, B.; Lang, H.; Alsti, K.; Virkola, R.; Saarela, U.; Siitonen, A.; Kalkkinen, N.; Korhonen, T.K. matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J. Bacteriol. 2001, 183, 4727–4736. [Google Scholar] [CrossRef] [PubMed]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Rossez, Y.; Holmes, A.; Wolfson, E.B.; Gally, D.L.; Mahajan, A.; Pedersen, H.L.; Willats, W.G.T.; Toth, I.K.; Holden, N.J. Flagella interact with ionic plant lipids to mediate adherence of pathogenic Escherichia coli to fresh produce plants. Environ. Microbiol. 2014, 16, 2181–2195. [Google Scholar] [CrossRef]
- Blake, A.W.; McCartney, L.; Flint, J.E.; Bolam, D.N.; Boraston, A.B.; Gilbert, H.J.; Knox, J.P. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 2006, 281, 29321–29329. [Google Scholar] [CrossRef]
- Pasternak, T.; Tietz, O.; Rapp, K.; Begheldo, M.; Nitschke, R.; Ruperti, B.; Palme, K. Protocol: An improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods 2015, 11, 50. [Google Scholar] [CrossRef]
- Crozier, L.; Hedley, P.E.; Morris, J.; Wagstaff, C.; Andrews, S.C.; Toth, I.; Jackson, R.W.; Holden, N.J. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Front. Microbiol. 2016, 7, 1088. [Google Scholar] [CrossRef]
- Oliveros, J.C. (2007–2015) Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. 2020. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 19 December 2020).
Plasmid | Description | Reference |
pASL04 | pBAD_loc8 | [13] |
pACloc8 | translational reporter of fmlA | [13] |
pKC026 | pAJR145 with P rpsM replaced by P gyrA. camR | [59] |
pAH010 | pKC026 with ECs2113 UTR | this study |
pAH011 | pKC026 with ECs2114 UTR | this study |
pTOF24 | Temperature-sensitive allelic exchange vector | [60] |
pTOF61 | A plasmid derived from pTOF1 with TcR cloned into SmaI site | [61] |
pAH013 | pTOF24: PstI-SalI insertion of ECs2113. NotI linker + NotI insertion of TcR from pTOF61 CamR TetR Ts SucS | this study |
pWSK29 | lac operon, low copy number (< 10) ampR | [62] |
pAH012 | pWSK with ECs2113 and 500bp flanking sequence | this study |
pMAT3 | pSE380; ampR; ecpA–E (IHE3034) | [63] |
pEBW3 | pWSK29; ampR; SalI-BamHI insertion of fliC (H7, TUV93-0) | [64] |
Primer Name | Sequence | Construct/qPCR |
2113utr_for | GCTCTAGACTGTCGGTCAGCTTTAAT | pAH010 |
2113utr_rev | GCTCTAGAAATTTATATTTAAGTAGC | pAH010 |
2114utr_for | GCTCTAGAGTATTAAGTAAGAGTAAGATATGGG | pAH011 |
2114utr_rev | GCTCTAGATTTGCCAGCTTGAGTCTT | pAH011 |
2113.SalI.5F | TTATCGTCGACCCGACGGGAATATTTGCGGATG | pAH013 |
2113.NotI.5R | CCGTTCCAAGCGGCCGCAAGAGCGAATTCTCCAAAATTTATATTTAAG | pAH013 |
2113.NotI.3F | CGCTCTTGCGGCCGCTTGGAACGGTTCAATATTAAGGTGGCTATACG | pAH013 |
2113.PstI.3R | GGATCCTGCAGCGTGACAGGCAATAAAACCTG | pAH013 |
2113.5.F | CTGTCGGTTACGAAAGCTTATC | pAH012 |
2113.3.R | GGCAGGATCATTATTCGTGACAGG | pAH012 |
Actin1.F | TCAGGTAGAAGAAAATGGCTGA | qPCR |
Actin1.R | TAGGTGCATCATCCCCAGC | qPCR |
MAPKKK15.F | CAGACTGGGAAACGAACGGT | qPCR |
MAPKKK15.R | TCCTCCTCCAATGACGTTGC | qPCR |
AT4G12500.F | ATCAGCTCAACCATGCTGCT | qPCR |
AT4G12500.R | CCTAAGGGCAGTGCAGAGAC | qPCR |
AT1G22900.F | CGCATCGACGGACATGAAAA | qPCR |
AT1G22900.R | GGTGCTGCCGTTAAACTCTC | qPCR |
AT5G44910.F | CAATAGTAGAGCGGACCGGC | qPCR |
AT5G44910.R | CTTAACCGCCGTGACGATTG | qPCR |
AT1G10360.F | TCTGTGATGATCCCGCTGTG | qPCR |
AT1G10360.R | CCAGTTTATGCTTGCCGCTT | qPCR |
AT2G17740.F | AGCTGCAATGTTAAAGGCACA | qPCR |
AT2G17740.R | AGCTCTTTGCATCTCCAAGTGA | qPCR |
WRKY29.F | GAAACGAGTACGCACCAAGC | qPCR |
WRKY29.R | CTCCCGGACATCAAATCCGA | qPCR |
AT1G33760.F | TCCATTAGACTCGCCGAGGA | qPCR |
AT1G33760.R | CATCCCTATCGTGCTGACCA | qPCR |
AT1G24020.F | ATGGAGAAGGATCTCCACTGGT | qPCR |
AT1G24020.R | CGCCAATGATGCTGTACGAC | qPCR |
AT3G61930.F | AATCGGACGACGGTGGTAAG | qPCR |
AT3G61930.R | TGAGATCGAACATCGCCACC | qPCR |
Sample List | |||
---|---|---|---|
A1 | α-(1→4)-D-heptagalacturonate (DE 0%) | F5 | Arabinoxylan (wheat) |
B1 | α-(1→4)-D-pentagalacturonate (DE 0%) | G5 | 4-Methoxy-glucoronoarabinoxylan (birch) |
C1 | β-D-galactose | H5 | Xyloglucan #1 (tamarind) |
D1 | β-(1→4)-D-galactotetraose | I5 | Xyloglucan #2 (pea) |
E1 | Pectin (lime, DE 11%) | A6 | Xyloglucan XXX(G)- |
F1 | Pectin (lime, DE 43%) | B6 | Xyloglucan XXL(G)- |
G1 | Pectin (lime, DE 0%) | C6 | Xyloglucan XLL(G)- |
H1 | Pectin (lime, DE 16%) | D6 | 6-α-D-galactosyl-β-(1→4)-D-mannobiose |
I1 | Pectin (sugar beet) | E6 | Carboxymethyl-cellulose |
A2 | α-L-arabinose | F6 | Hydroxymethyl-cellulose |
B2 | α-(1→5)-L-arabinobiose | G6 | Hydroxyethyl-cellulose |
C2 | α-(1→5)-L-arabinotriose | H6 | (1→6):(1→3)-β-D-glucan (Laminaria digitata) |
D2 | α-(1→5)-L-arabinotetraose | I6 | (1→3)-β-D-glucan (Poria cocos) |
E2 | Pectic galactan #1 (lupin) | A7 | (1→3),(1→4)-β-D-glucotriose [G4G3G(G)-] |
F2 | Pectic galactan #2 (potato) | B7 | (1→3),(1→4)-β-D-glucotetraose [G3G4G4G(G)-] |
G2 | Pectic galactan #3 (lupin) | C7 | (1→3),(1→4)-β-D-glucopentaose [G3G4G3G4G(G)-] |
H2 | Pectic galactan #4 (tomato) | D7 | 63,64-digalactosyl-β-(1→4)-D-mannotetraose |
I2 | Pectin (RGII enriched, red wine) | E7 | β-glucan #1 (lichenan, icelandic moss) |
A3 | α-(1→5)-L-arabinopentaose | F7 | β-glucan #2 (barley) |
B3 | α-(1→5)-L-arabinohexaose | G7 | β-glucan #3 (oat) |
C3 | α-(1→5)-L-arabinoheptaose | H7 | β-glucan #4 (yeast) |
D3 | β-(1→4)-D-glucopentaose | I7 | (1-6);(1-4)-α-D-glucan (Aureobasidium pullulans) |
E3 | RGI #1 (soy bean) | A8 | α-(1→4)-D-glucobiose |
F3 | RGI #2 (carrot) | B8 | α-(1→4)-D-glucopentaose |
G3 | RGI #3 (sugar beet) | C8 | α -(1→6)-D-glycosyl-α-(1→4)-D-maltotriose |
H3 | RGI #4 (arabidopsis) | D8 | α-(1→6)-D-glycosyl-α-(1→4)-D-maltosyl-maltose |
I3 | Seed mucilage (arabidopsis) | E8 | Glucomannan (konjac) |
A4 | β-D-mannose | F8 | Galactomannan (carob) |
B4 | β-(1→4)-D-mannotriose | G8 | Gum (guar) |
C4 | β-(1→4)-D-mannotetraose | H8 | Gum (arabic) |
D4 | β-(1→4)-D-mannopentaose | I8 | Gum (locust bean) |
E4 | Arabinan #1 (sugar beet) | A9 | β-D-glucose |
F4 | Arabinan #2 (sugar beet) | B9 | β-(1→3)-D-glucotriose |
G4 | Arabinan #3 (sugar beet) | C9 | β-(1→3)-D-glucotetraose |
H4 | RGI #5 (potato) | D9 | β-(1→3)-D-glucopentaose |
I4 | Xylogalacturonan (apple) | E9 | Gum (xanthan) |
A5 | β-D-xylose | F9 | Carrageenan #1 (red seaweed) |
B5 | β-(1→4)-D-xylotriose | G9 | Carrageenan #2 (red seaweed) |
C5 | β-(1→4)-D-xylotetraose | H9 | Alginate (brown seaweed) |
D5 | β-(1→4)-D-xylopentaose | I9 | RGI #6 (arabinan enriched, sugar beet) |
E5 | Xylan (birch) | DE; degree of methyl esterification |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holmes, A.; Rossez, Y.; Wright, K.M.; Hedley, P.E.; Morris, J.; Willats, W.G.T.; Holden, N.J. Escherichia coli O157:H7 F9 Fimbriae Recognize Plant Xyloglucan and Elicit a Response in Arabidopsis thaliana. Int. J. Mol. Sci. 2020, 21, 9720. https://doi.org/10.3390/ijms21249720
Holmes A, Rossez Y, Wright KM, Hedley PE, Morris J, Willats WGT, Holden NJ. Escherichia coli O157:H7 F9 Fimbriae Recognize Plant Xyloglucan and Elicit a Response in Arabidopsis thaliana. International Journal of Molecular Sciences. 2020; 21(24):9720. https://doi.org/10.3390/ijms21249720
Chicago/Turabian StyleHolmes, Ashleigh, Yannick Rossez, Kathryn Mary Wright, Pete Edward Hedley, Jenny Morris, William George Tycho Willats, and Nicola Jean Holden. 2020. "Escherichia coli O157:H7 F9 Fimbriae Recognize Plant Xyloglucan and Elicit a Response in Arabidopsis thaliana" International Journal of Molecular Sciences 21, no. 24: 9720. https://doi.org/10.3390/ijms21249720
APA StyleHolmes, A., Rossez, Y., Wright, K. M., Hedley, P. E., Morris, J., Willats, W. G. T., & Holden, N. J. (2020). Escherichia coli O157:H7 F9 Fimbriae Recognize Plant Xyloglucan and Elicit a Response in Arabidopsis thaliana. International Journal of Molecular Sciences, 21(24), 9720. https://doi.org/10.3390/ijms21249720