Prediction of Self-Interacting Proteins from Protein Sequence Information Based on Random Projection Model and Fast Fourier Transform
Abstract
1. Introduction
2. Results and Discussion
2.1. Performance Evaluation
2.2. Performance of the Proposed Method
2.3. Comparison with Other Feature Extraction Methods
2.4. Comparison with the SVM-Based Method
2.5. Comparison with Other Existing Methods
3. Materials and Methodology
3.1. Datasets
3.2. Position-Specific Scoring Matrix
3.3. Fast Fourier Transform
3.4. Support Vector Machine
- (1)
- Linear: K(xi, xj) = xj.
- (2)
- Polynomial: K(xi, xj) = (γxj + r)d, γ > 0.
- (3)
- Radial basis function (RBF): K(xi, xj) = exp(−γ||xi − xj||2), γ > 0.
- (4)
- Sigmoid: K(xi, xj) = tan h(γxj + r).
3.5. Random Projection Classifier
- (1)
- The vectors are normally distributed over the q dimensional unit sphere.
- (2)
- The components of the vectors are selected Bernoulli +1/−1 distribution and the vectors are standardized so that ||ri||l2 = 1 for i = 1, …, n.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Z.-H.; You, Z.-H.; Li, L.-P.; Wang, Y.-B.; Li, X. RP-FIRF: Prediction of Self-interacting Proteins Using Random Projection Classifier Combining with Finite Impulse Response Filter. In Proceedings of the International Conference on Intelligent Computing, Wuhan, China, 15–18 August 2018; pp. 232–234. [Google Scholar]
- Liu, Z.; Guo, F.; Zhang, J.; Wang, J.; Lu, L.; Li, D.; He, F. Proteome-wide prediction of self-interacting proteins based on multiple properties. Mol. Cell. Proteom. 2013. [Google Scholar] [CrossRef] [PubMed]
- Marianayagam, N.J.; Sunde, M.; Matthews, J.M. The power of two: Protein dimerization in biology. Trends Biochem. Sci. 2004, 29, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Ispolatov, I.; Yuryev, A.; Mazo, I.; Maslov, S. Binding properties and evolution of homodimers in protein–protein interaction networks. Nucleic Acids Res. 2005, 33, 3629–3635. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-B.; You, Z.-H.; Li, L.-P.; Huang, Y.-A.; Yi, H.-C. Detection of interactions between proteins by using legendre moments descriptor to extract discriminatory information embedded in pssm. Molecules 2017, 22, 1366. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, J.M.; Murphy, J.; Stomski, F.C.; Berndt, M.C.; Lopez, A.F. The dimeric versus monomeric status of 14-3-3ζ is controlled by phosphorylation of Ser58 at the dimer interface. J. Biol. Chem. 2003, 278, 36323–36327. [Google Scholar] [CrossRef]
- Baisamy, L.; Jurisch, N.; Diviani, D. Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J. Biol. Chem. 2005, 280, 15405–15412. [Google Scholar] [CrossRef] [PubMed]
- Katsamba, P.; Carroll, K.; Ahlsen, G.; Bahna, F.; Vendome, J.; Posy, S.; Rajebhosale, M.; Price, S.; Jessell, T.; Ben-Shaul, A. Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc. Natl. Acad. Sci. USA 2009, 106, 11594–11599. [Google Scholar] [CrossRef] [PubMed]
- Koike, R.; Kidera, A.; Ota, M. Alteration of oligomeric state and domain architecture is essential for functional transformation between transferase and hydrolase with the same scaffold. Protein Sci. 2009, 18, 2060–2066. [Google Scholar] [CrossRef]
- Miller, S.; Lesk, A.M.; Janin, J.; Chothia, C. The accessible surface area and stability of oligomeric proteins. Nature 1987, 328, 834. [Google Scholar] [CrossRef]
- Zeng, X.; Liao, Y.; Liu, Y.; Zou, Q. Prediction and validation of disease genes using HeteSim Scores. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 2017, 14, 687–695. [Google Scholar] [CrossRef]
- Zou, Q.; Wan, S.; Ju, Y.; Tang, J.; Zeng, X. Pretata: Predicting TATA binding proteins with novel features and dimensionality reduction strategy. BMC Syst. Biol. 2016, 10, 114. [Google Scholar] [CrossRef]
- Nanni, L.; Lumini, A.; Brahnam, S. A set of descriptors for identifying the protein–drug interaction in cellular networking. J. Theor. Biol. 2014, 359, 120–128. [Google Scholar] [CrossRef]
- Nanni, L.; Brahnam, S. Set of approaches based on 3D structure and Position Specific Scoring Matrix for predicting DNA-binding proteins. Bioinformatics 2018. [Google Scholar] [CrossRef]
- You, Z.-H.; Huang, Z.-A.; Zhu, Z.; Yan, G.-Y.; Li, Z.-W.; Wen, Z.; Chen, X. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 2017, 13, e1005455. [Google Scholar] [CrossRef]
- You, Z.-H.; Lei, Y.-K.; Gui, J.; Huang, D.-S.; Zhou, X. Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 2010, 26, 2744–2751. [Google Scholar] [CrossRef]
- Zou, Q.; Li, J.; Song, L.; Zeng, X.; Wang, G. Similarity computation strategies in the microRNA-disease network: A survey. Brief. Funct. Genom. 2015, 15, 55–64. [Google Scholar] [CrossRef]
- Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. PIP-EL: A new ensemble learning method for improved proinflammatory peptide predictions. Front. Immunol. 2018, 9, 1783. [Google Scholar] [CrossRef]
- Wang, Y.-B.; You, Z.-H.; Li, X.; Jiang, T.-H.; Cheng, L.; Chen, Z.-H. Prediction of protein self-interactions using stacked long short-term memory from protein sequences information. BMC Syst. Biol. 2018, 12, 129. [Google Scholar] [CrossRef]
- Yi, H.-C.; You, Z.-H.; Huang, D.-S.; Li, X.; Jiang, T.-H.; Li, L.-P. A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information. Mol. Ther. Nucleic Acids 2018, 11, 337–344. [Google Scholar] [CrossRef]
- You, Z.-H.; Zhou, M.; Luo, X.; Li, S. Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 2017, 47, 731–743. [Google Scholar] [CrossRef]
- Wang, L.; You, Z.-H.; Xia, S.-X.; Liu, F.; Chen, X.; Yan, X.; Zhou, Y. Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol. 2017, 418, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Pitre, S.; Dehne, F.; Chan, A.; Cheetham, J.; Duong, A.; Emili, A.; Gebbia, M.; Greenblatt, J.; Jessulat, M.; Krogan, N. PIPE: A protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs. BMC Bioinform. 2006, 7, 365. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.-F.; Han, K.; Huang, D.-S. Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor. Protein Pept. Lett. 2010, 17, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-B.; You, Z.-H.; Li, X.; Jiang, T.-H.; Chen, X.; Zhou, X.; Wang, L. Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 2017, 13, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput. Struct. Biotechnol. J. 2018, 16, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, B.; Subramaniyam, S.; Shin, T.H.; Kim, M.O.; Lee, G. Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. J. Proteome Res. 2018, 17, 2715–2726. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Hu, J.; Li, F.; Song, J.; Su, R.; Zou, Q. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms. Brief. Bioinform. 2018. [Google Scholar] [CrossRef]
- Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest. Front. Pharmacol. 2018, 9, 276. [Google Scholar] [CrossRef]
- Wei, L.; Luan, S.; Nagai, L.A.E.; Su, R.; Zou, Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics 2018. [Google Scholar] [CrossRef]
- Manavalan, B.; Govindaraj, R.G.; Shin, T.H.; Kim, M.O.; Lee, G. iBCE-EL: A new ensemble learning framework for improved linear B-cell epitope prediction. Front. Immunol. 2018, 9, 1695. [Google Scholar] [CrossRef]
- Wei, L.; Chen, H.; Su, R. M6APred-EL: A sequence-based predictor for identifying N6-methyladenosine sites using ensemble learning. Mol. Ther. Nucleic Acids 2018, 12, 635–644. [Google Scholar] [CrossRef]
- Gabere, M.N.; Noble, W.S. Empirical comparison of web-based antimicrobial peptide prediction tools. Bioinformatics 2017, 33, 1921–1929. [Google Scholar] [CrossRef]
- Manavalan, B.; Shin, T.H.; Lee, G. PVP-SVM: Sequence-based prediction of phage virion proteins using a support vector machine. Front. Microbiol. 2018, 9, 476. [Google Scholar] [CrossRef]
- Wei, L.; Zhou, C.; Chen, H.; Song, J.; Su, R. ACPred-FL: A sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 2018, 34, 4007–4016. [Google Scholar] [CrossRef]
- Manavalan, B.; Shin, T.H.; Lee, G. DHSpred: Support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest. Oncotarget 2018, 9, 1944. [Google Scholar] [CrossRef]
- Wei, L.; Tang, J.; Zou, Q. SkipCPP-Pred: An improved and promising sequence-based predictor for predicting cell-penetrating peptides. BMC Genom. 2017, 18, 1. [Google Scholar] [CrossRef]
- Manavalan, B.; Basith, S.; Shin, T.H.; Choi, S.; Kim, M.O.; Lee, G. MLACP: Machine-learning-based prediction of anticancer peptides. Oncotarget 2017, 8, 77121. [Google Scholar] [CrossRef]
- Chou, K.-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 2011, 273, 236–247. [Google Scholar] [CrossRef]
- Dao, F.-Y.; Lv, H.; Wang, F.; Feng, C.-Q.; Ding, H.; Chen, W.; Lin, H. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2018. [Google Scholar] [CrossRef]
- Manavalan, B.; Lee, J. SVMQA: Support–vector-machine-based protein single-model quality assessment. Bioinformatics 2017, 33, 2496–2503. [Google Scholar] [CrossRef]
- Nanni, L.; Lumini, A.; Brahnam, S. An empirical study of different approaches for protein classification. Sci. World J. 2014, 2014, 236717. [Google Scholar] [CrossRef] [PubMed]
- Nanni, L.; Brahnam, S.; Lumini, A. Wavelet images and Chou’s pseudo amino acid composition for protein classification. Amino Acids 2012, 43, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 27. [Google Scholar] [CrossRef]
- Du, X.; Cheng, J.; Zheng, T.; Duan, Z.; Qian, F. A novel feature extraction scheme with ensemble coding for protein–protein interaction prediction. Int. J. Mol. Sci. 2014, 15, 12731–12749. [Google Scholar] [CrossRef] [PubMed]
- Zahiri, J.; Yaghoubi, O.; Mohammad-Noori, M.; Ebrahimpour, R.; Masoudi-Nejad, A. PPIevo: Protein–protein interaction prediction from PSSM based evolutionary information. Genomics 2013, 102, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Zahiri, J.; Mohammad-Noori, M.; Ebrahimpour, R.; Saadat, S.; Bozorgmehr, J.H.; Goldberg, T.; Masoudi-Nejad, A. LocFuse: Human protein–protein interaction prediction via classifier fusion using protein localization information. Genomics 2014, 104, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, S.; Li, C.; Zhang, Z.; Song, J. SPAR: A random forest-based predictor for self-interacting proteins with fine-grained domain information. Amino Acids 2016, 48, 1655–1665. [Google Scholar] [CrossRef]
- Consortium, U. UniProt: A hub for protein information. Nucleic Acids Res. 2014, 43, D204–D212. [Google Scholar] [CrossRef]
- Salwinski, L.; Miller, C.S.; Smith, A.J.; Pettit, F.K.; Bowie, J.U.; Eisenberg, D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004, 32, D449–D451. [Google Scholar] [CrossRef]
- Chatr-Aryamontri, A.; Oughtred, R.; Boucher, L.; Rust, J.; Chang, C.; Kolas, N.K.; O’Donnell, L.; Oster, S.; Theesfeld, C.; Sellam, A. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 2017, 45, D369–D379. [Google Scholar] [CrossRef]
- Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.; Del-Toro, N. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2013, 42, D358–D363. [Google Scholar] [CrossRef] [PubMed]
- Breuer, K.; Foroushani, A.K.; Laird, M.R.; Chen, C.; Sribnaia, A.; Lo, R.; Winsor, G.L.; Hancock, R.E.; Brinkman, F.S.; Lynn, D.J. InnateDB: Systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 2012, 41, D1228–D1233. [Google Scholar] [CrossRef] [PubMed]
- Chautard, E.; Fatoux-Ardore, M.; Ballut, L.; Thierry-Mieg, N.; Ricard-Blum, S. MatrixDB, the extracellular matrix interaction database. Nucleic Acids Res. 2010, 39, D235–D240. [Google Scholar] [CrossRef] [PubMed]
- Gribskov, M.; McLachlan, A.D.; Eisenberg, D. Profile analysis: Detection of distantly related proteins. Proc. Natl. Acad. Sci. USA 1987, 84, 4355–4358. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; You, Z.; Li, X.; Chen, X.; Jiang, T.; Zhang, J. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein–Protein Interactions from Protein Sequences. Int. J. Mol. Sci. 2017, 18, 1029. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-B.; You, Z.-H.; Li, L.-P.; Huang, D.-S.; Zhou, F.-F.; Yang, S. Improving Prediction of Self-interacting Proteins Using Stacked Sparse Auto-Encoder with PSSM profiles. Int. J. Biol. Sci. 2018, 14, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Koonin, E.V. Iterated profile searches with PSI-BLAST—A tool for discovery in protein databases. Trends Biochem. Sci. 1998, 23, 444–447. [Google Scholar] [CrossRef]
- Ahmed, N.; Rao, K.R. Orthogonal Transforms for Digital Signal Processing; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Classification; National Taiwan University: Taipei, Taiwan, 2003. [Google Scholar]
- Schclar, A.; Rokach, L. Random projection ensemble classifiers. In Proceedings of the International Conference on Enterprise Information Systems, Milan, Italy, 6–10 May 2009; pp. 309–316. [Google Scholar]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Goel, N.; Bebis, G.; Nefian, A. Face recognition experiments with random projection. Proc. SPIE 2005, 5779, 426–438. [Google Scholar]
- Lumini, A.; Nanni, L.; Brahnam, S. Ensemble of texture descriptors and classifiers for face recognition. Appl. Comput. Inf. 2017, 13, 79–91. [Google Scholar] [CrossRef]
- Nanni, L.; Lumini, A.; Brahnam, S. Ensemble of texture descriptors for face recognition obtained by varying feature transforms and preprocessing approaches. Appl. Soft Comput. 2017, 61, 8–16. [Google Scholar] [CrossRef]
- Linial, M.; Linial, N.; Tishby, N.; Yona, G. Global self-organization of all known protein sequences reveals inherent biological signatures1. J. Mol. Biol. 1997, 268, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Bingham, E.; Mannila, H. Random projection in dimensionality reduction: Applications to image and text data. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001; pp. 245–250. [Google Scholar]
Testing Set | Acc. (%) | Sen. (%) | Spe. (%) | MCC (%) |
---|---|---|---|---|
1 | 94.44 | 88.28 | 100.00 | 89.36 |
2 | 92.53 | 85.37 | 100.00 | 86.07 |
3 | 92.19 | 85.48 | 100.00 | 85.51 |
4 | 93.75 | 86.76 | 100.00 | 88.08 |
5 | 94.81 | 89.73 | 100.00 | 90.12 |
Average | 93.54 ± 1.15 | 87.12 ± 1.87 | 100.00 ± 0.00 | 87.83 ± 2.01 |
Testing Set | Acc. (%) | Sen. (%) | Spe. (%) | MCC (%) |
---|---|---|---|---|
1 | 80.99 | 97.12 | 65.52 | 65.71 |
2 | 83.45 | 92.14 | 75.00 | 68.03 |
3 | 82.04 | 97.89 | 66.20 | 67.57 |
4 | 84.86 | 95.14 | 74.29 | 71.13 |
5 | 83.45 | 92.41 | 74.10 | 67.83 |
Average | 82.96 ± 1.48 | 94.94 ± 2.63 | 71.02 ± 4.73 | 68.05 ± 1.95 |
Testing Set | Acc. (%) | Sen. (%) | Spe. (%) | MCC (%) | B_Acc. (%) |
---|---|---|---|---|---|
1 | 96.23 | 79.51 | 97.74 | 75.72 | 88.63 |
2 | 96.20 | 80.34 | 97.65 | 75.89 | 89.00 |
3 | 96.58 | 82.49 | 97.89 | 78.61 | 90.19 |
4 | 96.40 | 79.78 | 97.79 | 75.40 | 88.79 |
5 | 96.00 | 85.28 | 97.01 | 76.68 | 91.15 |
Average | 96.28 ± 0.22 | 81.48 ± 2.43 | 97.62 ± 0.35 | 76.46 ± 1.29 | 89.55 ± 1.08 |
Testing Set | Acc. (%) | Sen. (%) | Spe. (%) | MCC (%) | B_Acc. (%) |
---|---|---|---|---|---|
1 | 91.32 | 50.00 | 96.73 | 53.09 | 73.37 |
2 | 91.72 | 47.33 | 97.81 | 55.35 | 72.57 |
3 | 92.20 | 49.63 | 97.39 | 54.80 | 73.51 |
4 | 91.00 | 42.36 | 97.36 | 49.06 | 69.86 |
5 | 93.09 | 54.74 | 97.83 | 60.82 | 76.29 |
Average | 91.87 ± 0.82 | 48.81 ± 4.50 | 97.42 ± 0.45 | 54.62 ± 4.25 | 73.12 ± 2.30 |
Feature Extraction Methods | Acc. (%) | Sen. (%) | Spe. (%) | MCC (%) | B_Acc. (%) |
---|---|---|---|---|---|
SVD | 88.73 ± 0.75 | 10.25 ± 2.93 | 98.86 ± 0.43 | 19.76 ± 2.96 | 54.55 ± 1.31 |
DCT | 90.35 ± 0.84 | 20.38 ± 2.62 | 99.36 ± 0.32 | 37.57 ± 1.74 | 59.87 ± 1.18 |
COV | 91.93 ± 0.81 | 42.43 ± 4.82 | 98.31 ± 0.25 | 53.10 ± 4.91 | 70.37 ± 2.49 |
FFT | 91.87 ± 0.82 | 48.81 ± 4.50 | 97.42 ± 0.45 | 54.62 ± 4.25 | 73.12 ± 2.30 |
Model | Testing Set | Acc. (%) | Sen. (%) | Spe. (%) | MCC (%) | B_Acc. (%) |
---|---|---|---|---|---|---|
RP + FFT | 1 | 96.23 | 79.51 | 97.74 | 75.72 | 88.63 |
2 | 96.20 | 80.34 | 97.65 | 75.89 | 89.00 | |
3 | 96.58 | 82.49 | 97.89 | 78.61 | 90.19 | |
4 | 96.40 | 79.78 | 97.79 | 75.40 | 88.79 | |
5 | 96.00 | 85.28 | 97.01 | 76.68 | 91.15 | |
Average | 96.28 ± 0.22 | 81.48 ± 2.43 | 97.62 ± 0.35 | 76.46 ± 1.29 | 89.55 ± 1.08 | |
SVM + FFT | 1 | 93.55 | 22.22 | 100.00 | 45.57 | 61.11 |
2 | 93.64 | 23.79 | 100.00 | 47.17 | 61.90 | |
3 | 93.21 | 20.54 | 100.00 | 43.73 | 60.27 | |
4 | 94.19 | 24.34 | 100.00 | 47.86 | 62.17 | |
5 | 93.82 | 28.09 | 100.00 | 51.30 | 64.05 | |
Average | 93.68 ± 0.36 | 23.80 ± 2.82 | 100.00 ± 0.00 | 47.13 ± 2.82 | 61.90 ± 1.41 |
Model | Testing Set | Acc. (%) | Sen. (%) | Spe. (%) | MCC (%) | B_Acc. (%) |
---|---|---|---|---|---|---|
RP+FFT | 1 | 91.32 | 50.00 | 96.73 | 53.09 | 73.37 |
2 | 91.72 | 47.33 | 97.81 | 55.35 | 72.57 | |
3 | 92.20 | 49.63 | 97.39 | 54.80 | 73.51 | |
4 | 91.00 | 42.36 | 97.36 | 49.06 | 69.86 | |
5 | 93.09 | 54.74 | 97.83 | 60.82 | 76.29 | |
Average | 91.87 ± 0.82 | 48.81 ± 4.50 | 97.42 ± 0.45 | 54.62 ± 4.25 | 73.12 ± 2.30 | |
SVM+FFT | 1 | 90.11 | 14.58 | 100.00 | 36.22 | 57.29 |
2 | 90.84 | 24.00 | 100.00 | 46.62 | 62.00 | |
3 | 90.76 | 14.81 | 100.00 | 36.64 | 57.41 | |
4 | 90.51 | 18.06 | 100.00 | 40.38 | 59.03 | |
5 | 90.92 | 17.52 | 100.00 | 39.87 | 58.76 | |
Average | 90.63 ± 0.33 | 17.79 ± 3.80 | 100.00 ± 0.00 | 39.95 ± 4.17 | 58.90 ± 1.90 |
Model | Acc. (%) | Spe. (%) | Sen. (%) | MCC (%) | B_Acc. (%) |
---|---|---|---|---|---|
SLIPPER [2] | 71.90 | 72.18 | 69.72 | 28.42 | 70.95 |
DXECPPI [45] | 87.46 | 94.93 | 29.44 | 28.25 | 62.19 |
PPIevo [46] | 66.28 | 87.46 | 60.14 | 18.01 | 73.80 |
LocFuse [47] | 66.66 | 68.10 | 55.49 | 15.77 | 61.80 |
CRS [48] | 72.69 | 74.37 | 59.58 | 23.68 | 66.98 |
SPAR [48] | 76.96 | 80.02 | 53.24 | 24.84 | 66.63 |
Proposed method | 91.87 | 97.42 | 48.81 | 54.62 | 73.12 |
Model | Acc. (%) | Spe. (%) | Sen. (%) | MCC (%) | B_Acc. (%) |
---|---|---|---|---|---|
SLIPPER [2] | 91.10 | 95.06 | 47.26 | 41.97 | 71.16 |
DXECPPI [45] | 30.90 | 25.83 | 87.08 | 8.25 | 56.46 |
PPIevo [46] | 78.04 | 25.82 | 87.83 | 20.82 | 56.83 |
LocFuse [47] | 80.66 | 80.50 | 50.83 | 20.26 | 65.67 |
CRS [48] | 91.54 | 96.72 | 34.17 | 36.33 | 65.45 |
SPAR [48] | 92.09 | 97.40 | 33.33 | 38.36 | 65.37 |
Proposed method | 96.28 | 97.62 | 81.48 | 76.46 | 89.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.-H.; You, Z.-H.; Li, L.-P.; Wang, Y.-B.; Wong, L.; Yi, H.-C. Prediction of Self-Interacting Proteins from Protein Sequence Information Based on Random Projection Model and Fast Fourier Transform. Int. J. Mol. Sci. 2019, 20, 930. https://doi.org/10.3390/ijms20040930
Chen Z-H, You Z-H, Li L-P, Wang Y-B, Wong L, Yi H-C. Prediction of Self-Interacting Proteins from Protein Sequence Information Based on Random Projection Model and Fast Fourier Transform. International Journal of Molecular Sciences. 2019; 20(4):930. https://doi.org/10.3390/ijms20040930
Chicago/Turabian StyleChen, Zhan-Heng, Zhu-Hong You, Li-Ping Li, Yan-Bin Wang, Leon Wong, and Hai-Cheng Yi. 2019. "Prediction of Self-Interacting Proteins from Protein Sequence Information Based on Random Projection Model and Fast Fourier Transform" International Journal of Molecular Sciences 20, no. 4: 930. https://doi.org/10.3390/ijms20040930
APA StyleChen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Wong, L., & Yi, H.-C. (2019). Prediction of Self-Interacting Proteins from Protein Sequence Information Based on Random Projection Model and Fast Fourier Transform. International Journal of Molecular Sciences, 20(4), 930. https://doi.org/10.3390/ijms20040930