Performance of Li4SiO4 Material for CO2 Capture: A Review
Abstract
:1. Introduction
2. Thermodynamics and Kinetics of CO2 Absorption by Li4SiO4
2.1. Reaction Model for Synthesis of Li4SiO4
2.2. Kinetic Study for CO2 Absorption by Li4SiO4
2.3. Thermodynamic Study for CO2 Capture by Li4SiO4
2.4. Reaction Mechanism and Reaction Model of CO2 Capture by Li4SiO4
3. Synthesis of Li4SiO4 Materials with Superior Cyclic Absorption/Regeneration Performance
3.1. Modification for Li4SiO4 Prepared by Solid-State Reaction
3.2. Doping of Solid Solutions or Molten Salts
3.2.1. Solid Solutions
3.2.2. Molten Salts
3.2.3. Other Dopants
3.3. Selection of Alternative Precursors for Preparation of Li4SiO4
3.3.1. Lithium Precursors
3.3.2. Silicon Precursors
3.3.3. Synthesis Methods
4. Effects of Particle Properties on CO2 Absorption Performance of Li4SiO4 Material
5. Effects of Reaction Conditions on CO2 Absorption Performance of Li4SiO4 Material
5.1. Reaction Atmosphere
5.1.1. CO2 Concentration
5.1.2. Presence of Steam
5.1.3. Gas Contaminants
5.2. Reaction Temperature
6. Application of Li4SiO4 Material in Sorption-Enhanced Hydrogen Production
7. Density Functional Theory Studies on Li4SiO4 Material
8. Conclusions
Funding
Conflicts of Interest
References
- Fiore, A.D.; Alterio, V.; Monti, S.M.; Simone, G.D.; Ambrosio, K.D. Thermostable carbonic anhydrases in biotechnological applications. Int. J. Mol. Sci. 2015, 16, 15456–15480. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.H. Advances in Catalysts for CO2 Reforming of Methane. ACS Symp. Ser. 2010, 1056, 155–174. [Google Scholar]
- Ma, X.; Li, Y.; Shi, L.; He, Z.; Wang, Z. Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process. Appl. Energy 2016, 168, 85–95. [Google Scholar] [CrossRef]
- Kezhen, Y.; James, G.D.; Zimmerman, W.B. Periodic CO2 Dosing Strategy for Dunaliella salina Batch Culture. Int. J. Mol. Sci. 2015, 16, 11509–11521. [Google Scholar]
- Kierzkowska, A.M.; Pacciani, R.; Müller, C.R. CaO-Based CO2 Sorbents: From Fundamentals to the Development of New, Highly Effective Materials. Chemsuschem 2013, 6, 1130–1148. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Essaki, K.; Nakagawa, K.; Suyama, Y.; Terasaka, K. CO2 absorption properties of lithium ferrite for application as a high-temperature CO2 absorbent. J. Ceram. Soc. Jpn. 2005, 113, 684–686. [Google Scholar] [CrossRef]
- Lara-Garcia, H.A.; Ramírez-Moreno, M.J.; Ortiz-Landeros, J.; Pfeiffer, H. CO2 chemisorption in Li2CuO2 microstructurally modified by ball milling process: Study performed with different physicochemical CO2 capture conditions. RSC Adv. 2016, 6, 57880–57888. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Murayama, N.; Shibata, J. Absorption and release of carbon dioxide with various metal oxides and hydroxides. Mater. Trans. 2007, 48, 2739–2742. [Google Scholar] [CrossRef]
- Kato, M.; Yoshikawa, S.; Nakagawa, K. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. J. Mater. Sci. Lett. 2002, 21, 485–487. [Google Scholar] [CrossRef]
- Romero-Ibarra, I.C.; Durán-Muñoz, F.; Pfeiffer, H. Influence of the K-, Na- and K-Na-carbonate additions during the CO2 chemisorption on lithium oxosilicate (Li8SiO6). Greenh. Gases Sci. Technol. 2014, 4, 145–154. [Google Scholar] [CrossRef]
- Durán-Muñoz, F.; Romero-Ibarra, I.C.; Pfeiffer, H. Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): A new option for high-temperature CO2 capture. J. Mater. Chem. A 2013, 1, 3919–3925. [Google Scholar] [CrossRef]
- Spataru, C.I.; Ianchis, R.; Petcu, C.; Nistor, C.L.; Purcar, V.; Trica, B.; Nitu, S.G.; Somoghi, R.; Alexandrescu, E.; Oancea, F. Synthesis of non-toxic silica particles stabilized by molecular complex oleic-acid/sodium oleate. Int. J. Mol. Sci. 2016, 17, 1936. [Google Scholar] [CrossRef] [PubMed]
- Hua, R.; Chao, Z.; Zhao, L.; Wei, Y.; Song, E. Emodin-loaded magnesium silicate hollow nanocarriers for anti-angiogenesis treatment through inhibiting VEGF. Int. J. Mol. Sci. 2014, 15, 16936–16948. [Google Scholar]
- Bretado, M.E.; Guzmán Velderrain, V.; Lardizábal Gutiérrez, D.; Collins-Martínez, V.; Ortiz, A.L. A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent. Catal. Today 2005, 107–108, 863–867. [Google Scholar] [CrossRef]
- Arstad, B.; Prostak, J.; Blom, R. Continuous hydrogen production by sorption enhanced steam methane reforming (SE-SMR) in a circulating fluidized bed reactor: Sorbent to catalyst ratio dependencies. Chem. Eng. J. 2012, 189–190, 413–421. [Google Scholar] [CrossRef]
- Rout, K.R.; Jakobsen, H.A. A numerical study of pellets having both catalytic- and capture properties for SE-SMR process: Kinetic- and product layer diffusion controlled regimes. Fuel Process. Technol. 2013, 106, 231–246. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Jakobsen, H.A. The modeling of circulating fluidized bed reactors for SE-SMR process and sorbent regeneration. Chem. Eng. Sci. 2014, 108, 57–65. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J. The influencing factor for CO2 absorption of Li4SiO4 at high temperature. In Proceedings of the Third International Conference on Measuring Technology and Mechatronics Automation, Shangshai, China, 6–7 January 2011; pp. 839–841. [Google Scholar]
- Yang, X.; Liu, W.; Sun, J.; Hu, Y.; Wang, W.; Chen, H.; Zhang, Y.; Li, X.; Xu, M. Preparation of novel Li4SiO4 sorbents with superior performance at low CO2 concentration. ChemSusChem 2016, 9, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Guo, X.; Zhao, P.; Wang, F.; Zheng, C. High temperature capture of CO2 on lithium-based sorbents from rice husk ash. J. Hazard. Mater. 2011, 189, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Zhang, Y.; Hong, M.; Liu, S.; Zhang, Y.; Liu, H.; Gu, C. CO2 absorption properties of Ti- and Na-doped porous Li4SiO4 prepared by a sol–gel process. J. Mater. Sci. 2015, 50, 4698–4706. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, Z.; Meng, J.B.; Luo, D.L. Synthesis and characterization of lithium silicate powders. Fusion Eng. Des. 2009, 84, 2124–2130. [Google Scholar] [CrossRef]
- Carella, E.; Hernandez, M. High lithium content silicates: A comparative study between four routes of synthesis. Ceram. Int. 2014, 40, 9499–9508. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, W.; Jin, X.; Wang, G.; Lu, H.; Wang, H.; Chen, D.; Fan, B.; Hou, T.; Zhang, R. Effect of the particle size of quartz powder on the synthesis and CO2 Absorption properties of Li4SiO4 at high temperature. Ind. Eng. Chem. Res. 2013, 52, 1886–1891. [Google Scholar] [CrossRef]
- Subha, P.V.; Nair, B.N.; Hareesh, P.; Mohamed, A.P.; Yamaguchi, T.; Warrier, K.G.K.; Hareesh, U.S. Enhanced CO2 absorption kinetics in lithium silicate platelets synthesized by a sol-gel approach. J. Mater. Chem. A 2014, 2, 12792–12798. [Google Scholar] [CrossRef]
- López Ortiz, A.; Escobedo Bretado, M.A.; Guzmán Velderrain, V.; Meléndez Zaragoza, M.; Salinas Gutiérrez, J.; Lardizábal Gutiérrez, D.; Collins-Martínez, V. Experimental and modeling kinetic study of the CO2 absorption by Li4SiO4. Int. J. Hydrogen Energy 2014, 39, 16656–16666. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, D.; Liu, Y.; Qian, Y.; Zhu, Z. Analysis of CO2 sorption/desorption kinetic behaviors and reaction mechanisms on Li4SiO4. AIChE J. 2013, 59, 901–911. [Google Scholar]
- Rodríguez-Mosqueda, R.; Pfeiffer, H. Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes. J. Phys. Chem. A 2010, 114, 4535–4541. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, H.D.; Choi, M. Facile synthesis of macroporous Li4SiO4 with remarkably enhanced CO2 adsorption kinetics. Chem. Eng. J. 2015, 280, 132–137. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, Z.; Zhao, P.; Yin, Z.; Su, Z.; Sun, J. Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture. Appl. Energy 2016, 183, 1418–1427. [Google Scholar] [CrossRef]
- Zagorowsky, G.; Prikhod’ko, G.; Ogenko, V.; Koval’chuk, G. Investigation of kinetics of solid-phase synthesis of lithium orthosilicate. J. Therm. Anal. Calorim. 1999, 55, 699–705. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, Y.; Zhang, Y.; Liu, W.; Wang, C.; Yu, Y. Reaction kinetics for the synthesis of li4sio4 by solid state reaction from Li2SiO3 and Li2CO3 for tritium breeder. J. Fusion Energy 2016, 35, 652–659. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, K.; Zhao, P.; Tang, X. Enhanced CO2 Chemisorption properties of Li4SO4, Using a water hydration-calcination technique. Ind. Eng. Chem. Res. 2016, 55, 1142–1146. [Google Scholar] [CrossRef]
- Romero-Ibarra, I.C.; Ortiz-Landeros, J.; Pfeiffer, H. Microstructural and CO2 chemisorption analyses of Li4SiO4: Effect of surface modification by the ball milling process. Thermochim. Acta 2013, 567, 118–124. [Google Scholar] [CrossRef]
- Kanki, K.; Maki, H.; Mizuhata, M. Carbon dioxide absorption behavior of surface-modified lithium orthosilicate/potassium carbonate prepared by ballmilling. Int. J. Hydrogen Energy 2016, 41, 18893–18899. [Google Scholar] [CrossRef]
- Zhao, L.; Long, X.; Chen, X.; Xiao, C.; Gong, Y.; Guan, Q.; Li, J.; Xie, L.; Chen, X.; Peng, S. Design, synthesis and characterization of the advanced tritium breeder: Li4+xSi1−xAlxO4 ceramics. J. Nucl. Mater. 2015, 467, 911–916. [Google Scholar] [CrossRef]
- Ortiz-Landeros, J.; Romero-Ibarra, I.C.; Gómez-Yáñez, C.; Lima, E.; Pfeiffer, H. Li4+x(Si1−xAlx)O4 solid solution mechanosynthesis and kinetic analysis of the CO2 chemisorption process. J. Phys. Chem. C 2013, 117, 6303–6311. [Google Scholar] [CrossRef]
- Ortiz-Landeros, J.; Gómez-Yáñez, C.; Palacios-Romero, L.M.; Lima, E.; Pfeiffer, H. Structural and thermochemical chemisorption of CO2 on Li4+x(Si1−xAlx)O4 and Li4−x(Si1−xVx)O4 solid solutions. J. Phys. Chem. A 2012, 116, 3163–3171. [Google Scholar] [CrossRef] [PubMed]
- Seggiani, M.; Puccini, M.; Vitolo, S. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects. Int. J. Greenh. Gas Control 2011, 5, 741–748. [Google Scholar] [CrossRef]
- Seggiani, M.; Puccini, M.; Vitolo, S. Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration. Int. J. Greenh. Gas Control 2013, 17, 25–31. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Wang, H.; Ni, Y.; Zhu, Z. Absorption behaviors study on doped Li4SiO4 under a humidified atmosphere with low CO2 concentration. Int. J. Hydrogen Energy 2014, 39, 17913–17920. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, C.; Zhang, S.; Wu, Y. Steam methane reforming reaction enhanced by a novel K2CO3-doped Li4SiO4 sorbent: Investigations on the sorbent and catalyst coupling behaviors and sorbent regeneration strategy. Int. J. Hydrogen Energy 2016, 41, 4831–4842. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Sun, J.; Hu, Y.; Wang, W.; Chen, H.; Zhang, Y.; Li, X.; Xu, M. Alkali-doped lithium orthosilicate sorbents for carbon dioxide capture. Chemsuschem 2016, 9, 2480–2487. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, L.; Dai, K. Effect of Na-doping on CO2 absorption of Li4SiO4. Acta Phys.-Chim. Sin. 2006, 22, 860–863. [Google Scholar]
- Wang, K.; Zhou, Z.; Zhao, P.; Yin, Z.; Su, Z.; Sun, J. Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations. Appl. Energy 2017, 204, 403–412. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.; Yin, Z.; Zhou, Z.; Zhao, P. High-capacity Li4SiO4-based CO2 sorbents via a facile hydration-nacl doping technique. Energy Fuels 2017, 31, 6257–6265. [Google Scholar] [CrossRef]
- Olivares-Marín, M.; Drage, T.C.; Maroto-Valer, M.M. Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures. Int. J. Greenh. Gas Control 2010, 4, 623–629. [Google Scholar] [CrossRef]
- Mejía-Trejo, V.L.; Fregoso-Israel, E.; Pfeiffer, H. Textural, Structural, and CO2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li4−xNaxSiO4). Chem. Mater. 2008, 20, 7171–7176. [Google Scholar] [CrossRef]
- Wang, K.; Yin, Z.; Zhao, P.; Zhou, Z.; Su, Z.; Sun, J. Development of metallic element-stabilized Li4SiO4 sorbents for cyclic CO2 capture. Int. J. Hydrogen Energy 2016, 42, 4224–4232. [Google Scholar] [CrossRef]
- Subha, P.V.; Nair, B.N.; Hareesh, P.; Mohamed, A.P.; Yamaguchi, T.; Warrier, K.G.K.; Hareesh, U.S. CO2 absorption studies on mixed alkali orthosilicates containing rare-earth second-phase additives. J. Phys. Chem. C 2015, 119, 5319–5326. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, Z.; Qin, Y.; Gong, B.; Tian, C.; Zhao, Y.; Zhang, J.; Zheng, C. High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents. Int. J. Hydrogen Energy 2016, 41, 13077–13085. [Google Scholar] [CrossRef]
- Wang, K.; Yin, Z.; Zhao, P. Synthesis of macroporous Li4SiO4 via a citric acid-based sol–gel route coupled with carbon coating and its CO2 chemisorption properties. Ceram. Int. 2016, 42, 2990–2999. [Google Scholar] [CrossRef]
- Jun, S.; Joo, S.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713. [Google Scholar] [CrossRef]
- Jeoung, S.; Lee, J.H.; Kim, H.Y.; Moon, H.R. Effects of porous carbon additives on the CO2 absorption performance of lithium orthosilicate. Thermochim. Acta 2016, 637, 31–37. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Zhao, P.; Guo, X. High temperature capture of CO2 on lithium-based sorbents prepared by a water-based sol-gel technique. Chem. Eng. Technol. 2014, 37, 1552–1558. [Google Scholar] [CrossRef]
- Weng, D.; Wan, J. Synthesis and adsorption process of lithium taking used as high-temperature CO2 sorbents. Sci. Technol. Rev. 2011, 29, 25–30. [Google Scholar]
- Lee, J.H.; Moon, B.; Kim, T.K.; Jeoung, S.; Moon, H.R. Thermal conversion of a tailored metal-organic framework into lithium silicate with an unusual morphology for efficient CO2 capture. Dalton Trans. 2015, 44, 15130–15134. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, G.; Zhao, P.; Wang, J. Effects of calcination temperature on the structure and CO2 sorption properties of Li4SiO4 sorbents from Rice Husk Ash. In Proceedings of the International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Shenyang, China, 15–17 November 2014; pp. 760–763. [Google Scholar]
- Wang, K.; Zhao, P.; Guo, X.; Li, Y.; Han, D.; Chao, Y. Enhancement of reactivity in Li4SiO4-based sorbents from the nano-sized rice husk ash for high-temperature CO2 capture. Energy Convers. Manag. 2014, 81, 447–454. [Google Scholar] [CrossRef]
- Qiao, X.; Lisbona, P.; Guo, X.; Lara, Y.; Romeo, L.M. Energy assessment of ethanol-enhanced steam reforming by means of Li4SiO4 carbon capture. Energy Fuels 2016, 30, 1879–1886. [Google Scholar] [CrossRef]
- Abdullah, M.; Jamaludin, L.; Hussin, K.; Bnhussain, M.; Ghazali, C.; Ahmad, M. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure. Int. J. Mol. Sci. 2012, 13, 4388–4395. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Hussin, K.; Bnhussain, M.; Ismail, K.; Yahya, Z.; Razak, R. Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent. Int. J. Mol. Sci. 2012, 13, 7186–7198. [Google Scholar] [CrossRef] [PubMed]
- Sanna, A.; Ramli, I.; Mercedes Maroto-Valer, M. Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO2 capture. Appl. Energy 2015, 156, 197–206. [Google Scholar] [CrossRef]
- Shan, S.; Jia, Q.; Jiang, L.; Wang, Y. Effect of different silicon sources on CO2 absorption properties of Li4SiO4 at high temperature. Adv. Mater. Res. 2011, 213, 515–518. [Google Scholar] [CrossRef]
- Shan, S.; Jia, Q.; Jiang, L.; Li, Q.; Wang, Y.; Peng, J. Novel Li4SiO4-based sorbents from diatomite for high temperature CO2 capture. Ceram. Int. 2013, 39, 5437–5441. [Google Scholar] [CrossRef]
- Shan, S.; Jia, Q.; Jiang, L.; Li, Q.; Wang, Y.; Peng, J. Preparation and kinetic analysis of Li4SiO4 sorbents with different silicon sources for high temperature CO2 capture. Chin. Sci. Bull. 2012, 57, 2475–2479. [Google Scholar] [CrossRef]
- Shan, S.; Li, S.; Jia, Q.; Jiang, L.; Wang, Y.; Peng, J. Impregnation Precipitation Preparation and Kinetic Analysis of Li4SiO4-Based Sorbents with Fast CO2 Adsorption Rate. Ind. Eng. Chem. Res. 2013, 52, 6941–6945. [Google Scholar] [CrossRef]
- Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals—A review. Clay Miner. 2005, 40, 383–426. [Google Scholar] [CrossRef]
- Niu, M.; Li, X.; Ouyang, J.; Yang, H. Lithium orthosilicate with halloysite as silicon source for high temperature CO2 capture. RSC Adv. 2016, 6, 44106–44112. [Google Scholar] [CrossRef]
- Venegas, M.J.; Fregoso-Israel, E.; Escamilla, R.; Pfeiffer, H. Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: Study of the particle size effect. Ind. Eng. Chem. Res. 2007, 46, 2407–2412. [Google Scholar] [CrossRef]
- Pacciani, R.; Torres, J.; Solsona, P.; Coe, C.; Quinn, R.; Hufton, J.; Golden, T.; Vega, L.F. Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent. Environ. Sci. Technol. 2011, 45, 7083–7088. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Nakagawa, K.; Essaki, K.; Maezawa, Y.; Takeda, S.; Kogo, R.; Hagiwara, Y. Novel CO2 absorbents using lithium-containing oxide. Int. J. Appl. Ceram. Technol. 2005, 2, 467–475. [Google Scholar] [CrossRef]
- Essaki, K.; Kato, M.; Nakagawa, K. CO2 removal at high temperature using packed bed of lithium silicate pellets. J. Ceram. Soc. Jpn. 2006, 114, 739–742. [Google Scholar] [CrossRef]
- Puccini, M.; Seggiani, M.; Vitolo, S. Lithium silicate pellets for CO2 capture at high temperature. Chem. Eng. Trans. 2003, 35, 373–378. [Google Scholar]
- Puccini, M.; Stefanelli, E.; Seggiani, M.; Vitolo, S. Removal of CO2 from flue gas at high temperature using novel porous solids. Chem. Eng. Trans. 2016, 47, 139–144. [Google Scholar]
- Aaron, D.; Tsouris, C. Separation of CO2 from Flue Gas: A Review. Sep. Sci. Technol. 2005, 40, 321–348. [Google Scholar] [CrossRef]
- Essaki, K.; Kato, M.; Uemoto, H. Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets. J. Mater. Sci. 2005, 40, 5017–5019. [Google Scholar] [CrossRef]
- Puccini, M.; Seggiani, M.; Vitolo, S. CO2 capture at high temperature and low concentration on Li4SiO4 based sorbents. Chem. Eng. Trans. 2013, 32, 1279–1284. [Google Scholar]
- Ochoa-Fernandez, E.; Rønning, M.; Yu, X.; Grande, T.; Chen, D. Compositional effects of nanocrystalline lithium zirconate on its CO2 capture properties. Ind. Eng. Chem. Res. 2008, 47, 434–442. [Google Scholar] [CrossRef]
- Ochoa-Fernández, E.; Zhao, T.; Rønning, M.; Chen, D. Effects of steam addition on the properties of high temperature ceramic CO2 acceptors. J. Environ. Eng. 2009, 135, 397–403. [Google Scholar] [CrossRef]
- Quinn, R.; Kitzhoffer, R.J.; Hufton, J.R.; Golden, T.C. A high temperature lithium orthosilicate-based solid absorbent for post combustion CO2 capture. Ind. Eng. Chem. Res. 2012, 51, 9320–9327. [Google Scholar] [CrossRef]
- Puccini, M.; Stefanelli, E.; Seggiani, M.; Vitolo, S. The effect of flue gas contaminants on CO2 capture at high temperature by Li4SiO4- based sorbents. Chem. Eng. Trans. 2015, 43, 1093–1098. [Google Scholar]
- Essaki, K.; Nakagawa, K.; Kato, M.; Uemoto, H. CO2 absorption by lithium silicate at room temperature. J. Ceram. Soc. Jpn. 2004, 37, 772–777. [Google Scholar] [CrossRef]
- Rusten, H.K.; Ochoa-Fernández, E.; Lindborg, H.; Chen, D.; Jakobsen, H.A. Hydrogen production by sorption-enhanced steam methane reforming using lithium oxides as CO2-acceptor. Ind. Eng. Chem. Res. 2017, 46, 8729–8737. [Google Scholar] [CrossRef]
- Essaki, K.; Muramatsu, T.; Kato, M. Effect of equilibrium shift by using lithium silicate pellets in methane steam reforming. Int. J. Hydrogen Energy 2008, 33, 4555–4559. [Google Scholar] [CrossRef]
- Essaki, K.; Muramatsu, T.; Kato, M. Effect of equilibrium-shift in the case of using lithium silicate pellets in ethanol steam reforming. Int. J. Hydrogen Energy 2008, 33, 6612–6618. [Google Scholar] [CrossRef]
- Duan, Y.; Parlinski, K. Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4SiO4 and its capability for CO2 capture. Phys. Rev. B 2011, 84, 3382–3391. [Google Scholar] [CrossRef]
- Kong, X.; Yu, Y.; Ma, S.; Gao, T.; Xiao, C.; Chen, X. Adsorption mechanism of H2O molecule on the Li4SiO4 (0 1 0) surface from first principles. Chem. Phys. Lett. 2018, 691, 1–7. [Google Scholar] [CrossRef]
T (°C) | k1(sec−1) | k2(sec−1) | A | B | C |
---|---|---|---|---|---|
460 | 8.0 × 10−4 | 1.4 × 10−4 | −3.248 | −5.560 | 108.8 |
480 | 1.72 × 10−3 | 1.3 × 10−4 | −3.467 | −7.821 | 111.2 |
500 | 2.96 × 10−3 | 1.7 × 10−4 | −3.716 | −8.668 | 112.3 |
520 | 4.26 × 10−3 | 2.1 × 10−4 | −4.231 | −8.711 | 112.8 |
540 | 4.17 × 10−3 | 2.1 × 10−4 | −4.983 | −9.003 | 113.8 |
560 | 4.27 × 10−3 | 2.5 × 10−4 | −9.017 | −8.911 | 116.6 |
Materials | Molar Ratio of Li/Alkali Metal | Preparation Method | Absorption Conditions | Regeneration Conditions | Cycle No. | Weight Increase (wt.%) | Refs. |
---|---|---|---|---|---|---|---|
SiO2, Li2CO3, K2CO3 | 10.5:1 | Solid-state reaction | 4% CO2/N2; 580 °C; 60 min | N2; 800 °C; 10 min | 4 | 24 | [39] |
SiO2, Li2CO3, K2CO3 | 10.83:1 | Solid-state reaction | 4% CO2/N2; 580 °C; 60 min | N2; 700 °C; 15 min | 25 | 16 | [40] |
SiO2, Li2CO3, K2CO3 | 17.6:1 | Solid-state reaction | CO2; 575 °C; 25 min | N2; 700 °C; 50 min | 10 | 28 | [41] |
SiO2, Li2CO3, K2CO3 | 17.6:1 | Solid-state reaction | CO2; 650 °C; 15 min | 90% H2O/N2; 650 °C; 15 min | 22 | 21 | [42] |
SiO2, CH3COOLi, K2CO3 | 43.7:1 | Impregnated suspension | 15% CO2/N2; 550 °C; 30 min | N2; 750 °C; 10 min | 40 | 315 | [43] |
SiO2, CH3COONa, Na2CO3 | 16:1 | Impregnated suspension | 15% CO2/N2; 550 °C; 30 min | N2; 750 °C; 10 min | 40 | 28 | [43] |
SiO2, Li2CO3, Na2CO3 | 49:1 | Solid state | CO2; 700 °C; 30 min | Air; 900 °C; 30 min | 5 | 32 | [44] |
SiO2, LiNO3, NaF | 41:1 | Template | 15% CO2/N2; 600 °C; 35 min | N2; 700 °C; 20 min | 10 | 31 | [45] |
SiO2, LiNO3, NaCl | 133:1 | Solid state with hydration | 15% CO2/N2; 575 °C; 40 min | N2; 700 °C; 10 min | 10 | 32 | [46] |
Molar Ratio | 2.0:1 | 2.1:1 | 2.2:1 | 2.3:1 | 2.4:1 | 2.6:1 | 2.8:1 |
---|---|---|---|---|---|---|---|
Weight gain (%) | 116 | 122 | 124 | 129 | 129 | 130 | 116 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Li, Y.; Ma, X.; Zhao, J.; Wang, Z. Performance of Li4SiO4 Material for CO2 Capture: A Review. Int. J. Mol. Sci. 2019, 20, 928. https://doi.org/10.3390/ijms20040928
Yan X, Li Y, Ma X, Zhao J, Wang Z. Performance of Li4SiO4 Material for CO2 Capture: A Review. International Journal of Molecular Sciences. 2019; 20(4):928. https://doi.org/10.3390/ijms20040928
Chicago/Turabian StyleYan, Xianyao, Yingjie Li, Xiaotong Ma, Jianli Zhao, and Zeyan Wang. 2019. "Performance of Li4SiO4 Material for CO2 Capture: A Review" International Journal of Molecular Sciences 20, no. 4: 928. https://doi.org/10.3390/ijms20040928
APA StyleYan, X., Li, Y., Ma, X., Zhao, J., & Wang, Z. (2019). Performance of Li4SiO4 Material for CO2 Capture: A Review. International Journal of Molecular Sciences, 20(4), 928. https://doi.org/10.3390/ijms20040928