Does the Epstein–Barr Virus Play a Role in the Pathogenesis of Graves’ Disease?
Abstract
1. Introduction
1.1. Graves’ Disease
1.2. EBV
2. Aim of the Study
3. Results
4. Discussion
5. Material and Methods
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
anti-TPO | thyroperoxidase antibodies |
EBER | Epstein–Barr virus-encoded RNA |
EBV | Epstein–Barr virus |
EBNA | Epstein–Barr nuclear antigen |
ELISA | enzyme-linked immunosorbent assay |
FT3 | free triiodothyronine |
FT4 | free thyroxine |
GD | Graves’ disease |
HLA | human leukocyte antigen |
IL | interleukin |
MHC | major histocompatibility complex |
PBMCs | peripheral blood mononuclear cells |
PCR | polymerase chain reaction |
PD-1 | programmed cell death protein-1Tg thyroglobulin |
TPO | thyroid peroxidase |
Treg | regulatory T cells |
TSH | thyroid-stimulating hormone |
TSHR | thyroid-stimulating hormone receptor |
TSI | thyroid-stimulating immunoglobulin |
References
- Larry, J.; Weetman, A.P. Disorders of the Thyroid gland. In Harrison’s Principles of Internal Medicine, 15th ed.; Brunwald, E., Fauci, A., Eds.; Mc Graw-Hill Publication: New York, NY, USA, 2001; Volume 2, pp. 2060–2084. [Google Scholar]
- Sowiński, J.; Gurgul, E. Nadczynność tarczycy. In Endokrynologia Kliniczna; Milewicz, A., Ed.; PTE: Wroclaw, Poland, 2012; Volume 2, pp. 252–273. [Google Scholar]
- Smith, T.J.; Hegedüs, L. Graves’ Disease. N. Engl. J. Med. 2016, 375, 1552–1565. [Google Scholar] [CrossRef] [PubMed]
- Novaes, P.; Diniz Grisolia, A.B.; Smith, T.J. Update on thyroid-associated Ophthalmopathy with a special emphasis on the ocular surface. Clin. Diabetes. Endocrinol. 2016, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Shuklaa, S.K.; Singh, G.; Ahmad, S.; Pant, P. Infections, genetic and environmental factors in pathogenesis of autoimmune thyroid diseases. Microbial. Pathogenesis 2018, 116, 279–288. [Google Scholar] [CrossRef]
- Menconi, F.; Hasham, A.; Tomer, Y. Environmental triggers of thyroiditis: Hepatitis C and interferon-α. J. Endocrinol. Investig. 2011, 34, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Rotondi, M.; Molteni, M.; Leporati, P.; Capelli, V.; Marinò, M.; Chiovato, L. Autoimmune Thyroid Diseases in Patients Treated with Alemtuzumab for Multiple Sclerosis: An Example of Selective Anti-TSH-Receptor Immune Response. Front. Endocrinol. 2017, 8, 254. [Google Scholar] [CrossRef]
- Kraszewska, A.; Abramowicz, M.; Chłopocka-Woźniak, M.; Sowiński, J.; Rybakowski, J. The effect of lithium on thyroid function in patients with bipolar disorder. Psychiatr. Pol. 2014, 48, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Kryczyk, J.; Zagrodzki, P. Selen w chorobie Gravesa-Basedowa. Post. Hig. Med. Dosw. 2013, 67, 491–498, e-ISSN 1732-2693. [Google Scholar] [CrossRef]
- Kim, D. The Role of Vitamin D in Thyroid Diseases. Int. J. Mol. Sci. 2017, 18, 1949. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, A.; Quadbeck, B.; Mueller, G.; Rettenmeier, A.W.; Hoermann, R.; Mann, K.; Steuhl, P.; Esser, J. Impact of smoking on the response to treatment of thyroid associated ophthalmopathy. Brit. J. Ophthalmol. 2004, 87, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Corapcioglu, D.; Tonyukuk, V.; Kiyan, M.; Yilmaz, A.E.; Emral, R.; Kamel, N.; Erdogan, G. Relationship between thyroid autoimmunity and Yersinia enterocolitica antibodies. Thyroid 2002, 12, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Leite, J.L.; Bufalo, N.E.; Santos, R.B.; Romaldini, J.H.; Ward, L.S. Herpesvirus type 7 infection may play an important role in individuals with a genetic profile of susceptibility to Graves’ disease. Eur. J. Endocrinol. 2010, 162, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Aghili, R.; Jafarzadeh, F.; Ghorbani, R.; Khamseh, M.E.; Salami, M.A.; Malek, M. The association of Helicobacter pylori infection with Hashimoto’s thyroiditis. Acta. Med. Iran. 2013, 51, 293–296. [Google Scholar] [PubMed]
- Żuk-Wasek, A. Characterization of Epstein-Barr virus proteins – their participation in latency and relation to oncogenesis. Post. Mikrobiol. 2012, 51, 191–201. [Google Scholar]
- Chapel, H.; Haeney, M.; Misbah, S.; Snowden, N.; Senatorski, G. Immunologia Kliniczna, 1st. ed.; Czelej: Lublin, Poland, 2009; pp. 38–55. Available online: https://medbook.com.pl/ksiazka/pokaz/id/8130/tytul/immunologia-kliniczna-chapel-haeney-misbah-snowden-senatorski-czelej (accessed on 25 March 2018).
- Bocian, J.; Januszkiewicz-Lewandowska, D. Zakażenia EBV – cykl życiowy, metody diagnostyki, chorobotwórczość. Postepy Hig. Med. Dosw (online). 2011, 65, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Styczyński, J.; Gil, L.; Kyrcz-Krzemień, S.; Piątkowska-Jakubas, B.; Kałwak, K.; Wachowiak, J.; Wierzbowska, A.; Tomaszewska, A.; Drabko, K.; Czerw, T.; et al. Strategy of management in Epstein-Barr virus infections in hematology, oncology and transplantology. Guidelines of Polish Federation of Bone Marrow Transplant Centers. Acta Haematol. Pol. 2011, 43, 48–53. [Google Scholar] [CrossRef]
- Leś, B.K.; Przybylski, M.; Łazińska, B. Diagnostyka laboratoryjna mononukleozy zakaźnej u chorych leczonych ambulatoryjnie. Post. Nauk Med. 2015, 28, 42–47. [Google Scholar]
- Orgiazzi, J. Thyroid autoimmunity. Presse. Med. 2012, 41, e611–e625. [Google Scholar] [CrossRef]
- Toussirot, E.; Roudier, J. Epstein–Barr virus in autoimmune diseases. Best Pract. Res. Clin. Rheumatol. 2008, 22, 883–896. [Google Scholar] [CrossRef]
- Tarlinton, R.E.; Khaibullin, T.; Granatov, E.; Martynova, E.; Rizvanov, A.; Khaiboullin, A.S. The Interaction between Viral and Environmental Risk Factors in the Pathogenesis of Multiple Sclerosis. Int. J. Mol. Sci. 2019, 20, 303. [Google Scholar] [CrossRef]
- Thomas, D.; Karachaliou, F.; Kallergi, K.; Vlachopapadopoulou, E.; Antonaki, G.; Chatzimarkou, F.; Fotinou, A.; Kaldrymides, P.; Michalacos, S. Herpes virus antibodies seroprevalence in children with autoimmune thyroid disease. Endocrine 2008, 33, 171–175. [Google Scholar] [CrossRef]
- Volpe, R. B-lymphocytes in autoimmune thyroid disease (AITD). Rev. Endocr. Metab. Disord. 2000, 1, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Bashal, F. Hematological Disorders in Patients with Systemic Lupus Erythematosus. Open Rheumatol. J. 2013, 7, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Akahori, H.; Takeshita, Y.; Saito, R.; Takamura, T.; Kaneko, S. Graves’ Disease Associated with Infectious Mononucleosis due to Primary Epstein–Barr Virus Infection: Report of 3 Cases. Intern. Med. 2010, 49, 2599–2603. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Fukata, S.; Kanai, K.; Satoh, Y.; Segawa, T.; Kuwamoto, S.; Sugihara, H.; Kato, M.; Murakami, I.; Hayashi, K.; et al. The influence of Epstein–Barr virus reactivation in patients with Graves’ disease. Viral Immunol. 2011, 24, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Janegova, A.; Janega, P.; Rychly, B.; Kuracinova, K.; Babal, P. The role of Epstein–Barr virus infection in the development of autoimmune thyroid diseases. Endokrynol. Pol. 2015, 66, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Nakayama, Y.; Higaki, K.; Ochi, M.; Kanai, K.; Matsushita, M.; Kuwamoto, S.; Kato, M.; Murakami, I.; Iwasaki, T.; et al. Reactivation of persistent Epstein–Barr virus (EBV) causes secretion of thyrotropin receptor antibodies (TRAbs) in EBV-infected B lymphocytes with TRAbs on their surface. Autoimmunity 2015, 48, 328–335. [Google Scholar] [CrossRef]
- Moon, U.Y.; Park, S.J.; Oh, S.T.; Kim, W.-U.; Park, S.-H.; Lee, S.-H.; Cho, C.-S.; Kim, H.Y.; Lee, W.-K.; Lee, S.K. Patients with systemic lupus erythematosus have abnormally elevated Epstein–Barr virus load in blood. Arthritis Res. Ther. 2004, 6, 295–302. [Google Scholar] [CrossRef]
- Alvarez-Lafuente, R.; Fernández-Gutiérrez, B.; de Miguel, S.; Jover, J.A.; Rollin, R.; Loza, E.; Clemente, D.; Lamas, J.R. Potential relationship between herpes viruses and rheumatoid arthritis: Analysis with quantitative real time polymerase chain reaction. Ann. Rheum. Dis. 2005, 64, 1357–1359. [Google Scholar] [CrossRef]
- Morshed, S.A.; Nishioka, M.; Saito, I.; Komiyama, K.; Moro, I. Increased expression of Epstein–Barr virus in primary biliary cirrhosis patients. Gastroenterol. Jpn. 1992, 27, 751–758. [Google Scholar] [CrossRef]
- Alvarez-Lafuente, R.; García-Montojo, M.; De Las Heras, V.; Domínguez-Mozo, M.I.; Bartolome, M.; Benito-Martin, M.S.; Arroyo, R. Herpesviruses and human endogenous retroviral sequences in the cerebrospinal fluid of multiple sclerosis patients. Mult. Scler. 2008, 14, 595–601. [Google Scholar] [CrossRef]
- Pyzik, A.; Grywalska, E.; Matyjaszek-Matuszek, B.; Smoleń, A.; Pyzik, D.; Roliński, J. Frequencies of PD-1- positive T CD3+CD4+, T CD3+CD8+ and B CD19+ lymphocytes in female patients with Graves’ disease and healthy controls - preliminary study. Mol. Cell. Endocrinol. 2017, 448, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Grywalska, E.; Roliński, J.; Pasiarski, M.; Korona-Glowniak, I.; Maj, M.; Surdacka, A.; Grafka, A.; Stelmach-Gołdyś, A.; Zgurski, M.; Góźdź, S.; et al. High Viral Loads of Epstein–Barr Virus DNA in Peripheral Blood of Patients with Chronic Lymphocytic Leukemia Associated with Unfavorable Prognosis. PLoS ONE 2015, 10, e0140178. [Google Scholar] [CrossRef] [PubMed]
Parameter | Study Group (39) | Control Group (20) | p | χ² | |||
---|---|---|---|---|---|---|---|
EBV DNA Present Number (%) | Men | 2 | 12 (30.77%) | 0 (0%) | 0.01 | 5.94 | |
women | 10 | ||||||
Number of EBV DNA copies /mL | men | Median (min.–max.) | 4874.5 (600.8–9148.21) | ||||
(Q1–Q3) | 2737.65–7011.36 | ||||||
women | Median (min.–max.) | 1681 (620.44–27,339.30) | |||||
(Q1–Q3) | 676.43–4202.35 | ||||||
Number of EBV DNA copies (copies of EBV DNA/μgDNA) | men | Median (min.–max.) | 41.62 (22.35–60.89) | ||||
(Q1–Q3) | 31.97–51.26 | ||||||
women | Median (min.–max.) | 29.6 (9.27–659.1) | |||||
(Q1–Q3) | 11.99–136.23 | ||||||
Number of EBV DNA copies (copies of EBV DNA/100,000 cells) | men | Median (min.–max.) | 27.47 (14.75–40.19) | ||||
(Q1–Q3) | 21.11–33.83 | ||||||
women | Median (min.–max.) | 19.53 (6.12–435) | |||||
(Q1–Q3) | 7.91–89.92 |
Symptoms and Signs | EBV DNA (+) | EBV DNA (−) | p | χ² |
---|---|---|---|---|
Neuropsychiatric | ||||
Irritability | 8 (20.51%) | 16 (41.03%) | 0.66 | 0.19* |
Emotional lability | 4 (10.26%) | 12 (30.77%) | 0.77 | 0.09 ** |
Sleep disorders | 9 (23.08%) | 17 (43.59%) | 0.46 | 0.54 * |
Fatigue | 11 (28.21%) | 22 (56.41%) | 0.42 | 0.66 * |
Somatic | ||||
Weight loss | 9 (23.08%) | 20 (51.28%) | 0.95 | 0.004 * |
Heart palpitation | 9 (23.08%) | 19 (48.72%) | 0.77 | 0.88 * |
Heat intolerance | 7 (17.95%) | 14 (35.90%) | 0.71 | 0.14 * |
Excessive sweating | 7 (17.95%) | 15 (38.46%) | 0.87 | 0.03 * |
Menstrual disorder | 0 (0) | 3 (9.38%) | 0.22 | 1.50** |
Muscle weakness | 7 (17.95%) | 13 (33.33%) | 0.56 | 0.34 * |
Orbitopathy | 2 (5.13%) | 3 (7.69%) | 0.63 | 0.23 ** |
Goiter | 12 (30.77%) | 27 (69.23%) | 0.77 | 1.13 * |
Tachycardia | 6 (15.38%) | 19 (48.72%) | 0.22 | 1.50 * |
Velvet skin | 9 (23.08%) | 23 (58.97%) | 0.44 | 0.59 * |
Muscle trembling | 8 (20.51%) | 16 (41.03%) | 0.66 | 0.19 * |
Superficial tendon reflexes | 1 (2.56%) | 3 (7.69%) | 0.79 | 0.07 ** |
High amplitude of blood pressure | 2 (5.13%) | 4 (10.26%) | 0.88 | 0.02 ** |
Pretibial myxedema | 1 (2.56%) | 0 | - | - |
Thyroid acropachy | 1 (2.56%) | 0 | - | - |
Parameter | Present EBV DNA | p | z | ||
---|---|---|---|---|---|
TSI (U/L) | value | Median (min–max) | 11.95 (2.20–38.50) | 0.68 | –0.41 |
Q1–Q3 | 5.15–20.75 | ||||
Anti-TPO (U/mL) | Median (min–max) | 774 (29.00–3000.00) | 0.84 | 0.20 | |
Q1–Q3 | 120.36–2464.15 | ||||
Anti-TG (IU/mL) | Median (min–max) | 109.42 (10.00–407.00) | 0.41 | 0.83 | |
Q1–Q3 | 15.00–231.50 | ||||
TSH (mIU/L) | Median (min–max) | 0.008 (0.005–0.008) | 0.82 | 0.36 | |
Q1–Q3 | 0.008–0.008 | ||||
FT4 (ng/dL) | Median (min–max) | 3.94 (2.23–5.08) | 0.16 | 1.39 | |
Q1–Q3 | 3.00–4.59 | ||||
FT3 (pg/mL) | Median (min–max) | 14.10 (5.60–20.00) | 0.28 | 1.10 | |
Q1–Q3 | 9.30–17.60 |
Parameter | Study Group (39) | Control Group (20) | p Value | |
---|---|---|---|---|
Lymphocytes (1 × 109/L) | Mean ± SD | 2.01 ± 0.66 | 2.35 ± 0.59 | 0.02 |
Median (min–max) | 1.79 (1.25–4.18) | 2.36 (1.39–3.38) | ||
CD4+ (%) | Mean ± SD | 49.64 ± 7.5 | 44.46 ± 2.50 | <0.001 |
Median (min–max) | 48.67 (22.85–62.63) | 44.16 (40.71–48.84) | ||
CD4+ (103/mm3) | Mean ± SD | 0.89 ± 0.35 | 1.04 ± 0.27 | 0.04 |
Median (min–max) | 0.87 (0.59–2.44) | 1.04 (0.62–1.54) | ||
CD8+ (%) | Mean ± SD | 26.95 ± 4.28 | 34.36 ± 3.29 | <0.001 |
Median (min–max) | 27.09 (20.08–38.69) | 34.7 (29.3–39.6) | ||
CD8+ (103/mm3) | Mean ± SD | 0.56 ± 0.24 | 0.80 ± 0.20 | <0.001 |
Median (min–max) | 0.48 (0.28–1.49) | 0.82 (0.44–1.10) |
Parameter | Study Group (39) | Control Group (20) | ||
---|---|---|---|---|
Gender (Number and %) | Women | 32 (82.05%) | 15 (75%) | |
Men | 7 (17.95%) | 5 (25%) | ||
Age (years) | Mean ± SD | 41.49 ± 15.74 | 42.15 ± 10.38 | |
Median (min.–max.) | 39 (22–95) | 40 (29–60) | ||
Duration of hyperthyroidism symptoms (months) | Mean ± SD | 2.57 ± 1.91 | ||
Median (min.–max.) | 2 (0–8) | |||
TSI (U/L) | presence | present | absent | |
value | Mean ± SD | 12.63 ± 9.41 | ||
Median (min.–max.) | 11.2 (1.5–39.4) | |||
Anti-TPO U/mL | Median (min.–max.) | 1009 (13.7–22810) | 11 (5–201) | |
Q1–Q3 | 107.7–2456 | 8–17.5 | ||
Anti-Tg (IU/mL) | Median (min.–max.) | 121.5 (10–1360) | 12 (10–364) | |
Q1–Q3 | 15–304 | 10–45 | ||
TSH (mIU/L) | Median (min.–max.) | 0.008 (0.005–0.03) | 1.42 (0.72–2.6) | |
Q1–Q3 | 0.008–0.008 | 1.22–1.77 | ||
FT4 (ng/dL) | Median (min.–max.) | 4.78 (2.14–8.02) | ||
Q1–Q3 | 3.94–5.81 | |||
FT3 (pg/mL) | Median (min.–max.) | 17.35 (5.6–133) | ||
Q1–Q3 | 11.6–20 | |||
Leukocytes (1 × 109/L) | Mean ± SD | 5.98 ± 1.72 | 6.23 ± 1.34 | |
Median (min.–max.) | 5.66 (3.42–9.99) | 5.84 (4.12–9.68) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyzik, A.; Grywalska, E.; Matyjaszek-Matuszek, B.; Ludian, J.; Kiszczak-Bochyńska, E.; Smoleń, A.; Roliński, J.; Pyzik, D. Does the Epstein–Barr Virus Play a Role in the Pathogenesis of Graves’ Disease? Int. J. Mol. Sci. 2019, 20, 3145. https://doi.org/10.3390/ijms20133145
Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Ludian J, Kiszczak-Bochyńska E, Smoleń A, Roliński J, Pyzik D. Does the Epstein–Barr Virus Play a Role in the Pathogenesis of Graves’ Disease? International Journal of Molecular Sciences. 2019; 20(13):3145. https://doi.org/10.3390/ijms20133145
Chicago/Turabian StylePyzik, Aleksandra, Ewelina Grywalska, Beata Matyjaszek-Matuszek, Jarosław Ludian, Ewa Kiszczak-Bochyńska, Agata Smoleń, Jacek Roliński, and Dawid Pyzik. 2019. "Does the Epstein–Barr Virus Play a Role in the Pathogenesis of Graves’ Disease?" International Journal of Molecular Sciences 20, no. 13: 3145. https://doi.org/10.3390/ijms20133145
APA StylePyzik, A., Grywalska, E., Matyjaszek-Matuszek, B., Ludian, J., Kiszczak-Bochyńska, E., Smoleń, A., Roliński, J., & Pyzik, D. (2019). Does the Epstein–Barr Virus Play a Role in the Pathogenesis of Graves’ Disease? International Journal of Molecular Sciences, 20(13), 3145. https://doi.org/10.3390/ijms20133145