Next Article in Journal
C57BL/KsJ-db/db-ApcMin/+ Mice Exhibit an Increased Incidence of Intestinal Neoplasms
Previous Article in Journal
Comparative Study of Quality Characteristics of Korean Soy Sauce Made with Soybeans Germinated Under Dark and Light Conditions
Open AccessArticle

Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae

1
School of Biomedical and Health Sciences, College of Health and Science, University of Western Sydney, Locked Bag 1797, Penrith South DC, New South Wales 1797, Australia
2
Carlton and United Breweries, Fosters Group, 4-6 Southampton Crescent, Abbotsford, Melbourne 3067, Australia
3
School of Science, Griffith University, Nathan, Queensland 4111, Australia
4
Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2011, 12(11), 8119-8132; https://doi.org/10.3390/ijms12118119
Received: 10 October 2011 / Revised: 4 November 2011 / Accepted: 15 November 2011 / Published: 18 November 2011
(This article belongs to the Section Biochemistry)
Elemental uptake and export of the cell are tightly regulated thereby maintaining the ionomic homeostasis. This equilibrium can be disrupted upon exposure to exogenous reactive oxygen species (ROS), leading to reduction or elevation of the intracellular metal ions. In this study, the ionomic composition in the eukaryotic model organism Saccharomyces cerevisiae was profiled using the inductively-coupled plasma optical emission spectrometer (ICP-OES) following the treatment with individual ROS, including hydrogen peroxide, cumen hydroperoxide, linoleic acid hydroperoxide (LAH), the superoxide-generating agent menadione, the thiol-oxidising agent diamide [diazine-dicarboxylic acid-bis(dimethylamide)], dimedone and peroxynitrite. The findings demonstrated that different ROS resulted in distinct changes in cellular metal ions. Aluminium (Al3+) level rose up to 50-fold after the diamide treatment. Cellular potassium (K+) in LAH-treated cells was 26-fold less compared to the non-treated controls. The diamide-induced Al3+ accumulation was further validated by the enhanced Al3+ uptake along the time course and diamide doses. Pre-incubation of yeast with individual elements including iron, copper, manganese and magnesium failed to block diamide-induced Al3+ uptake, suggesting Al3+-specific transporters could be involved in Al3+ uptake. Furthermore, LAH-induced potassium depletion was validated by a rescue experiment in which addition of potassium increased yeast growth in LAH-containing media by 26% compared to LAH alone. Taken together, the data, for the first time, demonstrated the linkage between ionomic profiles and individual oxidative conditions. View Full-Text
Keywords: reactive oxygen species; metal ions; ionomic profiling; yeast; Saccharomyces cerevisiae reactive oxygen species; metal ions; ionomic profiling; yeast; Saccharomyces cerevisiae
MDPI and ACS Style

Wu, M.J.; O’Doherty, P.J.; Murphy, P.A.; Lyons, V.; Christophersen, M.; Rogers, P.J.; Bailey, T.D.; Higgins, V.J. Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae. Int. J. Mol. Sci. 2011, 12, 8119-8132.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop