Abstract
Neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) share key molecular features, including neuroinflammation, oxidative stress, mitochondrial dysfunction, and progressive neuronal loss. Increasing evidence indicates that gut dysbiosis and alterations in microbiota-derived metabolites are involved in these processes through multiple pathways along the gut–brain axis. However, while broad compositional changes are well-documented, a critical knowledge gap remains regarding the specific biochemical signal transduction pathways translating dysbiosis into pathology. This narrative review addresses this gap by synthesizing current human and experimental studies addressing gut microbiota alterations in AD, PD, and ALS, with particular emphasis on the biochemical and molecular mechanisms mediated by gut-derived metabolites. Dysbiosis in neurodegenerative diseases is frequently associated with reduced abundance of short-chain fatty acid (SCFA)-producing bacteria and altered metabolism of SCFAs, bile acids, tryptophan-derived indoles, trimethylamine-N-oxide (TMAO), and lipopolysaccharides (LPS). These microbial metabolites have been shown to modulate intestinal and blood–brain barrier integrity, influence Toll-like receptor- and G protein-coupled receptor-dependent signaling, regulate microglial activation, and affect molecular pathways related to protein aggregation in experimental models. In addition, emerging evidence highlights the involvement of oxidative and nitrosative stress, immune–metabolic crosstalk, and altered xenobiotic metabolism in microbiota–host interactions during neurodegeneration. By integrating microbiological, metabolic, and molecular perspectives, this review underscores the important and emerging role of microbiota-derived molecules in neurodegenerative disorders and outlines key chemical and metabolic pathways that may represent targets for future mechanistic studies and therapeutic strategies.