Enhancing the Nutritional Composition and Phenolic Compound Content of Sprouted Chickpeas Using Sucrose and Chitosan as Elicitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protein Content
2.2. In Vitro Protein Digestibility (IVPD)
2.3. Total Phenolic Content (TPC)
2.4. Antioxidant Activity (AOX)
2.5. Optimization and Validation of the Sprouting and Elicitation Process
2.5.1. Proximate Chemical Analysis
2.5.2. Confocal Laser Scanning Microscopy (CLSM)
2.5.3. X-Ray Diffraction (XRD)
3. Materials and Methods
3.1. Biological Material and Reagents
3.2. Experimental Design
Sprouting and Elicitation of Chickpea
In Vitro Protein Digestibility (IVPD)
Extraction and Determination of Total Phenolic Content (TPC)
Antioxidant Activity (AOX)
3.3. Optimization and Validation
3.3.1. Proximate Composition
3.3.2. Confocal Laser Scanning Microscopy (CLSM)
3.3.3. X-Ray Diffraction (XRD)
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linares-Castañeda, A.; Jiménez-Martínez, C.; Cedillo-Olivos, A.E.; Cruz-Narváez, Y.; Corzo-Ríos, L.J. Effects of Hydrogen Peroxide (H2O2) Elicitation on Protein Content and Digestibility, Phenolic Compounds, and Antioxidant Activity in Sprouted Chickpeas (Cicer arietinum L.). Appl. Food Res. 2025, 5, 100785. [Google Scholar] [CrossRef]
- Linares-Castañeda, A.; Jiménez-Martínez, C.; Sánchez-Chino, X.M.; Pérez-Pérez, V.; Cid-Gallegos, M.S.; Corzo-Ríos, L.J. Modifying of Non-Nutritional Compounds in Legumes: Processing Strategies and New Technologies. Food Chem. 2025, 463, 141603. [Google Scholar] [CrossRef]
- Sarita; Mehrotra, S.; Dimkpa, C.O.; Goyal, V. Survival Mechanisms of Chickpea (Cicer arietinum) under Saline Conditions. Plant Physiol. Biochem. 2023, 205, 108168. [Google Scholar] [CrossRef] [PubMed]
- Sofi, S.A.; Rafiq, S.; Singh, J.; Mir, S.A.; Sharma, S.; Bakshi, P.; McClements, D.J.; Mousavi Khaneghah, A.; Dar, B.N. Impact of Germination on Structural, Physicochemical, Techno-Functional, and Digestion Properties of Desi Chickpea (Cicer arietinum L.) Flour. Food Chem. 2023, 405, 135011. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhu, C.; Singh, R.P.; Chen, W. Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species. Plants 2024, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, G.; Nzekoue, F.K.; Giusti, F.; Vittori, S.; Sagratini, G. Optimization of an Extraction Method for the Simultaneous Quantification of Sixteen Polyphenols in Thirty-One Pulse Samples by Using HPLC-MS/MS Dynamic-MRM Triple Quadrupole. Food Chem. 2018, 266, 490–497. [Google Scholar] [CrossRef]
- Sharma, K.R.; Giri, G. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. Int. J. Food Sci. 2022, 2022, 4629290. [Google Scholar] [CrossRef]
- Rizvi, N.B.; Aleem, S.; Khan, M.R.; Ashraf, S.; Busquets, R. Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods. Molecules 2022, 27, 814. [Google Scholar] [CrossRef]
- Singh, J.P.; Singh, B.; Kaur, A. Bioactive Compounds of Legume Seeds. In Bioactive Compounds in Underutilized Vegetables and Legumes; Murthy, H.N., Paek, K.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–21. [Google Scholar]
- Amoah, I.; Ascione, A.; Muthanna, F.M.S.; Feraco, A.; Camajani, E.; Gorini, S.; Armani, A.; Caprio, M.; Lombardo, M. Sustainable Strategies for Increasing Legume Consumption: Culinary and Educational Approaches. Foods 2023, 12, 2265. [Google Scholar] [CrossRef]
- Atudorei, D.; Stroe, S.-G.; Codină, G.G. Impact of Germination on the Microstructural and Physicochemical Properties of Different Legume Types. Plants 2021, 10, 592. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Lu, H.; Shu, Q.; Zhang, Y.; Chen, Q. New Perspectives on Physiological, Biochemical and Bioactive Components during Germination of Edible Seeds: A Review. Trends Food Sci. Technol. 2022, 123, 187–197. [Google Scholar] [CrossRef]
- Yu, J.; Lee, H.; Heo, H.; Jeong, H.S.; Sung, J.; Lee, J. Sucrose-Induced Abiotic Stress Improves the Phytochemical Profiles and Bioactivities of Mung Bean Sprouts. Food Chem. 2023, 400, 134069. [Google Scholar] [CrossRef] [PubMed]
- Aloo, S.O.; Ofosu, F.K.; Oh, D.-H. Elicitation: A New Perspective into Plant Chemo-Diversity and Functional Property. Crit. Rev. Food Sci. Nutr. 2021, 63, 4522–4540. [Google Scholar] [CrossRef] [PubMed]
- Ampofo, J.O.; Ngadi, M. Ultrasonic Assisted Phenolic Elicitation and Antioxidant Potential of Common Bean (Phaseolus vulgaris) Sprouts. Ultrason. Sonochem. 2020, 64, 104974. [Google Scholar] [CrossRef]
- Doss, A.; Esther, A.; Rajalakshmi, R. Influence of UV-B Treatment on the Accumulation of Free Phenols and Tannins in the Legumes of Abrus precatorius L. and Vigna mungo (L.) Hepper. Phytomed. Plus 2022, 2, 100189. [Google Scholar] [CrossRef]
- Liu, H.K.; Kang, Y.F.; Zhao, X.Y.; Liu, Y.P.; Zhang, X.W.; Zhang, S.J. Effects of Elicitation on Bioactive Compounds and Biological Activities of Sprouts. J. Funct. Foods 2019, 53, 136–145. [Google Scholar] [CrossRef]
- Peñas, E.; Limón, R.I.; Martínez-Villaluenga, C.; Restani, P.; Pihlanto, A.; Frias, J. Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts. Plant Foods Hum. Nutr. 2015, 70, 401–407. [Google Scholar] [CrossRef]
- Jeong, H.; Sung, J.; Yang, J.; Kim, Y.; Jeong, H.S.; Lee, J. Effect of Sucrose on the Functional Composition and Antioxidant Capacity of Buckwheat (Fagopyrum esculentum M.) Sprouts. J. Funct. Foods 2018, 43, 70–76. [Google Scholar] [CrossRef]
- Chinma, C.E.; Adedeji, O.E.; Etim, I.I.; Aniaka, G.I.; Mathew, E.O.; Ekeh, U.B.; Anumba, N.L. Physicochemical, Nutritional, and Sensory Properties of Chips Produced from Germinated African Yam Bean (Sphenostylis stenocarpa). LWT 2021, 136, 110330. [Google Scholar] [CrossRef]
- Khalil, A.W.; Zeb, A.; Mahmood, F.; Tariq, S.; Khattak, A.B.; Shah, H. Comparison of Sprout Quality Characteristics of Desi and Kabuli Type Chickpea Cultivars (Cicer arietinum L.). LWT-Food Sci. Technol. 2007, 40, 937–945. [Google Scholar] [CrossRef]
- Lyu, C.; Zhang, X.; Huang, L.; Yuan, X.; Xue, C.; Chen, X. Widely Targeted Metabolomics Analysis Characterizes the Phenolic Compounds Profiles in Mung Bean Sprouts under Sucrose Treatment. Food Chem. 2022, 395, 133601. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramírez, I.F.; Escobedo-Alvarez, D.E.; Mendoza-Sánchez, M.; Rocha-Guzmán, N.E.; Reynoso-Camacho, R.; Acosta-Gallegos, J.A.; Ramos-Gómez, M. Phytochemical Profile and Composition of Chickpea (Cicer arietinum L.): Varietal Differences and Effect of Germination under Elicited Conditions. Plants 2023, 12, 3093. [Google Scholar] [CrossRef] [PubMed]
- Khattak, A.B.; Zeb, A.; Bibi, N. Impact of Germination Time and Type of Illumination on Carotenoidcontent, Protein Solubility and in Vitro Protein Digestibility of Chickpea (Cicer arietinum L.) Sprouts. Food Chem. 2008, 109, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Li, X.; Chang, X.; Gu, R.; Duan, X.; Liu, F.; Liu, X.; Wang, Y. Impact of Germination on Structural, Functional Properties and in Vitro Protein Digestibility of Sesame (Sesamum indicum L.) Protein. LWT 2022, 154, 112651. [Google Scholar] [CrossRef]
- Sharma, N.; Sahu, J.K.; Joshi, S.; Khubber, S.; Bansal, V.; Bhardwaj, A.; Bangar, S.P.; Bal, L.M. Modulation of Lentil Antinutritional Properties Using Non-Thermal Mediated Processing Techniques—A Review. J. Food Compos. Anal. 2022, 109, 104498. [Google Scholar] [CrossRef]
- Mesfin, N.; Belay, A.; Amare, E. Effect of Germination, Roasting, and Variety on Physicochemical, Techno-Functional, and Antioxidant Properties of Chickpea (Cicer arietinum L.) Protein Isolate Powder. Heliyon 2021, 7, e08081. [Google Scholar] [CrossRef]
- Sim, U.; Sung, J.; Lee, H.; Heo, H.; Jeong, H.S.; Lee, J. Effect of Calcium Chloride and Sucrose on the Composition of Bioactive Compounds and Antioxidant Activities in Buckwheat Sprouts. Food Chem. 2020, 312, 126075. [Google Scholar] [CrossRef]
- Mao, H.; Yuan, S.; Li, Q.; Zhao, X.; Zhang, X.; Liu, H.; Yu, M.; Wang, M. Influence of Germination on the Bioactivity, Structural, Functional and Volatile Characteristics of Different Chickpea Flours. Food Chem. X 2024, 21, 101195. [Google Scholar] [CrossRef]
- He, L.; Yang, Y.; Ren, L.; Bian, X.; Liu, X.; Chen, F.; Tan, B.; Fu, Y.; Zhang, X.; Zhang, N. Effects of Germination Time on the Structural, Physicochemical and Functional Properties of Brown Rice. Int. J. Food Sci. Technol. 2022, 57, 1902–1910. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, M.; Guevara-González, R.G.; Castaño-Tostado, E.; Mercado-Silva, E.M.; Acosta-Gallegos, J.A.; Rocha-Guzmán, N.E.; Reynoso-Camacho, R. Effect of Chemical Stress on Germination of Cv Dalia Bean (Phaseolus vularis L.) as an Alternative to Increase Antioxidant and Nutraceutical Compounds in Sprouts. Food Chem. 2016, 212, 128–137. [Google Scholar] [CrossRef]
- Randhir, R.; Shetty, K. Elicitation of the Proline-Linked Pentose Phosphate Pathway Metabolites and Antioxidant Enzyme Response by Ascorbic Acid in Dark Germinated Fava Bean Sprouts. J. Food Biochem. 2007, 31, 485–508. [Google Scholar] [CrossRef]
- Lucas-Aguirre, J.C.; Quintero-Castaño, V.D.; Beltrán-Bueno, M.; Rodríguez-García, M.E. Study of the Changes on the Physicochemical Properties of Isolated Lentil Starch during Germination. Int. J. Biol. Macromol. 2024, 267, 131468. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Dziki, D.; Nowak, R.; Świeca, M.; Olech, M.; Pietrzak, W. Influence of Sprouting and Elicitation on Phenolic Acids Profile and Antioxidant Activity of Wheat Seedlings. J. Cereal Sci. 2016, 70, 221–228. [Google Scholar] [CrossRef]
- Francis, H.; Debs, E.; Koubaa, M.; Alrayess, Z.; Maroun, R.G.; Louka, N. Sprouts Use as Functional Foods. Optimization of Germination of Wheat (Triticum aestivum L.), Alfalfa (Medicago sativa L.), and Radish (Raphanus sativus L.) Seeds Based on Their Nutritional Content Evolution. Foods 2022, 11, 1460. [Google Scholar] [CrossRef]
- Anaemene, D.; Fadupin, G. Anti-Nutrient Reduction and Nutrient Retention Capacity of Fermentation, Germination and Combined Germination-Fermentation in Legume Processing. Appl. Food Res. 2022, 2, 100059. [Google Scholar] [CrossRef]
- Kavitha, S.; Parimalavalli, R. Effect of Processing Methods on Proximate Composition of Cereal and Legume Flours. J. Hum. Nutr. Food Sci. 2014, 2, 1051. [Google Scholar]
- Sharma, S.; Sahni, P. Germination Behaviour, Techno-Functional Characteristics, Antinutrients, Antioxidant Activity and Mineral Profile of Lucerne as Influenced by Germination Regimes. J. Food Meas. Charact. 2021, 15, 1796–1809. [Google Scholar] [CrossRef]
- de Souza, T.S.P.; Kawaguti, H.Y. Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioproc. Tech. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Zahir, M.; Fogliano, V.; Capuano, E. Soybean Germination Limits the Role of Cell Wall Integrity in Controlling Protein Physicochemical Changes during Cooking and Improves Protein Digestibility. Food Res. Int. 2021, 143, 110254. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, G.; Hamaker, B.R.; Miao, M. The Contribution of Intact Structure and Food Processing to Functionality of Plant Cell Wall-Derived Dietary Fiber. Food Hydrocoll. 2022, 127, 107511. [Google Scholar] [CrossRef]
- Berg, T.; Singh, J.; Hardacre, A.; Boland, M.J. The Role of Cotyledon Cell Structure during in Vitro Digestion of Starch in Navy Beans. Carbohydr. Polym. 2012, 87, 1678–1688. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Zhang, B. Plant Cellular Architecture and Chemical Composition as Important Regulator of Starch Functionality in Whole Foods. Food Hydrocoll. 2021, 117, 106744. [Google Scholar] [CrossRef]
- Ge, X.; Saleh, A.S.M.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Li, W. Germination and Drying Induced Changes in the Composition and Content of Phenolic Compounds in Naked Barley. J. Food Compos. Anal. 2021, 95, 103594. [Google Scholar] [CrossRef]
- Mitharwal, S.; Chauhan, K. Impact of Germination on the Proximate Composition, Functional Properties, and Structural Characteristics of Black Soybean (Glycine max L. Merr). J. Food Process Preserv. 2022, 46, e17202. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Zheng, X.; Hong, J.; Sun, B.; Liu, M. The Structural Integrity of Endosperm/Cotyledon Cells and Cell Modification Affect Starch Digestion Properties. Food Funct. 2023, 14, 6784–6801. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, E.; Tsopmo, A.; Oliviero, T.; Fogliano, V.; Udenigwe, C.C. Bioprocessing of Common Pulses Changed Seed Microstructures, and Improved Dipeptidyl Peptidase-IV and α-Glucosidase Inhibitory Activities. Sci. Rep. 2019, 9, 15308. [Google Scholar] [CrossRef]
- Kaur, R.; Prasad, K. Elucidation of Chickpea Hydration, Effect of Soaking Temperature, and Extent of Germination on Characteristics of Malted Flour. J. Food Sci. 2022, 87, 2197–2210. [Google Scholar] [CrossRef]
- Kaur, R.; Prasad, K. Elucidation of Temperature Dependent Hydration Behaviour of Chickpea Seeds: Prerequisite for Germination. Biocatal. Agric. Biotechnol. 2023, 50, 102669. [Google Scholar] [CrossRef]
- Lakshmipathy, K.; Buvaneswaran, M.; Rawson, A.; Chidanand, D.V. Effect of Dehulling and Germination on the Functional Properties of Grass Pea (Lathyrus sativus) Flour. Food Chem. 2024, 449, 139265. [Google Scholar] [CrossRef]
- Liu, Y.; Su, C.; Saleh, A.S.M.; Wu, H.; Zhao, K.; Zhang, G.; Jiang, H.; Yan, W.; Li, W. Effect of Germination Duration on Structural and Physicochemical Properties of Mung Bean Starch. Int. J. Biol. Macromol. 2020, 154, 706–713. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology, Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Methods of Analysis, 16th ed.; Asociation of Official Analytical Chemist International: Gaitherstourg, MD, USA, 2002. [Google Scholar]
ST–CC–SD | Protein 1 | IVPD 2 | TPC 3 | AOX 4 |
---|---|---|---|---|
3–0.3–5 | 23.36 a | 89.32 e | 160.58 b | 119.10 a |
1–0.3–1 | 19.73 g | 78.63 i | 44.33 g | 69.30 f |
2–0.1–1 | 18.97 h | 83.19 g | 39.55 g | 71.62 f |
3–0.1–3 | 21.01 d | 88.58 f | 123.87 d | 116.19 c |
2–0.5–1 | 20.87 e | 84.24 g | 39.18 g | 64.92 h |
1–0.3–5 | 22.15 b | 95.19 b | 175.10 a | 119.07 a |
3–0.3–1 | 22.07 c | 82.89 h | 40.57 g | 66.55 g |
2–0.1–5 | 22.24 b | 96.82 a | 134.06 c | 120.65 a |
3–0.5–3 | 20.06 g | 90.04 d | 63.20 f | 100.42 d |
2–0.5–5 | 22.53 b | 92.39 c | 170.62 a | 119.98 a |
1–0.1–3 | 20.56 f | 88.66 f | 78.72 e | 118.00 a |
1–0.5–3 | 20.89 e | 96.80 a | 67.55 f | 90.94 e |
2–0.3–3 * | 21.28 d | 90.69 d | 68.32 f | 117.15 b |
ST–SC–SD | Protein 1 | IVPD 2 | TPC 3 | AOX 4 |
---|---|---|---|---|
2–3–5 | 22.03 b | 97.29 b | 180.69 a | 120.05 a |
1–1–3 | 22.01 b | 82.36 f | 69.25 e | 118.41 b |
3–1–3 | 21.48 b | 99.51 a | 61.20 f | 108.31 e |
3–2–5 | 21.28 c | 93.22 c | 176.30 b | 119.92 a |
3–3–3 | 21.06 c | 94.15 c | 61.42 f | 112.77 d |
1–3–3 | 18.08 g | 97.76 b | 68.53 e | 116.41 c |
1–2–1 | 20.02 e | 88.06 d | 52.78 g | 96.50 g |
2–1–1 | 18.44 g | 85.87 e | 51.70 g | 100.21 f |
2–3–1 | 19.39 f | 88.36 d | 45.99 h | 94.73 h |
1–2–5 | 20.55 d | 97.94 a | 153.51 c | 120.05 a |
2–1–5 | 23.52 a | 98.16 a | 138.41 d | 120.13 a |
3–2–1 | 20.38 e | 85.79 e | 45.45 h | 91.08 i |
2–2–3 * | 20.33 e | 93.04 c | 68.10 e | 118.82 b |
Optimal Conditions | ||||
---|---|---|---|---|
Elicitor | CH | CCH | SU | CSU |
Soaking time (h) | 1 | 1 | 2.55 | 2.55 |
Elicitor concentration (% w/v) | 0.35 | - | 1 | - |
Sprouting time (days) | 5 | 5 | 5 | 5 |
Protein adjustment (%) | 22.78 | 23.03 | ||
IVPD adjustment (%) | 96.02 | 99.50 | ||
TPC adjustment (mg GAE/100 g sample) | 168.76 | 148.36 | ||
AOX adjustment (μmol TE/100 g sample) | 115.96 | 117.48 | ||
Desirability value (D) | 0.92 | 0.89 |
Response Variable | Raw | CH | CCH | SU | CSU |
---|---|---|---|---|---|
Protein 1 | 20.59 ± 0.86 c | 22.10 ± 0.52 b | 21.92 ± 0.24 b | 23.00 ± 0.27 a | 21.14 ± 0.24 b |
IVPD 2 | 51.81 ± 0.99 e | 92.30 ± 1.57 b | 81.07 ± 2.78 d | 96.58 ± 2.54 a | 89.40 ± 1.95 c |
TPC 3 | 34.06 ± 1.03 e | 163.15 ± 3.66 a | 117.77 ± 4.24 d | 145.44 ± 2.80 b | 133.01 ± 2.20 c |
AOX 4 | 56.03 ± 0.16 c | 120.32 ± 0.09 a | 119.15 ± 0.58 b | 120.63 ± 0.32 a | 119.44 ± 0.41 b |
Chemical Composition | Raw | CH | CCH | SU | CSU |
---|---|---|---|---|---|
Protein | 20.59 ± 0.86 c | 22.10 ± 0.52 b | 21.92 ± 0.24 b | 23.00 ± 0.27 a | 21.14 ± 1.76 b |
Lipids | 6.69 ± 0.38 c | 8.27 ± 0.45 a | 7.37 ± 0.23 b | 7.70 ± 0.55 a | 7.54 ± 0.58 b |
Crude fiber | 1.93 ± 0.25 a | 1.16 ± 0.13 c | 2.11 ± 0.20 a | 1.82 ± 0.42 b | 1.87 ± 0.12 a |
Ashes | 2.86 ± 0.09 b | 2.80 ± 0.07 b | 2.74 ± 0.16 b | 3.16 ± 0.07 a | 3.13 ± 0.03 a |
NFE | 67.93 ± 0.89 a | 65.67 ± 1.16 b | 65.86 ± 0.18 b | 64.32 ± 0.48 c | 66.32 ± 2.14 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linares-Castañeda, A.; Corzo-Ríos, L.J.; Cedillo-Olivos, A.E.; Sánchez-Chino, X.M.; Mora-Escobedo, R.; Jiménez-Martínez, C. Enhancing the Nutritional Composition and Phenolic Compound Content of Sprouted Chickpeas Using Sucrose and Chitosan as Elicitors. Molecules 2025, 30, 1775. https://doi.org/10.3390/molecules30081775
Linares-Castañeda A, Corzo-Ríos LJ, Cedillo-Olivos AE, Sánchez-Chino XM, Mora-Escobedo R, Jiménez-Martínez C. Enhancing the Nutritional Composition and Phenolic Compound Content of Sprouted Chickpeas Using Sucrose and Chitosan as Elicitors. Molecules. 2025; 30(8):1775. https://doi.org/10.3390/molecules30081775
Chicago/Turabian StyleLinares-Castañeda, Alejandra, Luis Jorge Corzo-Ríos, Ana Elena Cedillo-Olivos, Xariss M. Sánchez-Chino, Rosalva Mora-Escobedo, and Cristian Jiménez-Martínez. 2025. "Enhancing the Nutritional Composition and Phenolic Compound Content of Sprouted Chickpeas Using Sucrose and Chitosan as Elicitors" Molecules 30, no. 8: 1775. https://doi.org/10.3390/molecules30081775
APA StyleLinares-Castañeda, A., Corzo-Ríos, L. J., Cedillo-Olivos, A. E., Sánchez-Chino, X. M., Mora-Escobedo, R., & Jiménez-Martínez, C. (2025). Enhancing the Nutritional Composition and Phenolic Compound Content of Sprouted Chickpeas Using Sucrose and Chitosan as Elicitors. Molecules, 30(8), 1775. https://doi.org/10.3390/molecules30081775