Mechanochemically-Activated Solid-State Synthesis of Borate-Substituted Tricalcium Phosphate: Evaluation of Biocompatibility and Antimicrobial Performance
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the B-Substituted Tricalcium Phosphate and Ceramic Samples Formation
3.3. Physical and Chemical Characterization
3.4. Isolation of Mesenchymal Stromal Cells
3.5. Cytocompatibility Test
3.6. Osteogenic Differentiation Assessment
3.7. Antimicrobial Tests
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B-TCP | Boron-substituted tricalcium phosphate |
β-TCP | β-tricalcium phosphate |
XRD | X-ray diffraction |
NMR | Nuclear magnetic resonance |
CP | Calcium phosphate |
HAp | Hydroxyapatite |
PJI | Prosthetic joint infection |
FTIR | Fourier-transform infrared spectroscopy |
SEM | Scanning electron microscopy |
SD | Standard deviation |
MSC | Mesenchymal stromal cells |
References
- Todd, E.A.; Mirsky, N.A.; Silva, B.L.G.; Shinde, A.R.; Arakelians, A.R.L.; Nayak, V.V.; Marcantonio, R.A.C.; Gupta, N.; Witek, L.; Coelho, P.G. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J. Funct. Biomater. 2024, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A. State of art review on bioabsorbable polymeric scaffolds for bone tissue engineering. Mater. Today: Proc. 2021, 44, 1391–1400. [Google Scholar] [CrossRef]
- Jin, P.; Liu, L.; Cheng, L.; Chen, X.; Xi, S.; Jiang, T. Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering. Biomed. Eng. Online 2023, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Santhakumar, S.; Oyane, A.; Nakamura, M.; Yoshino, Y.; Alruwaili, M.K.; Miyaji, H. Bone Tissue Regeneration by Collagen Scaffolds with Different Calcium Phosphate Coatings: Amorphous Calcium Phosphate and Low-Crystalline Apatite. Materials 2021, 14, 5860. [Google Scholar] [CrossRef]
- Zuev, D.M.; Golubchikov, D.O.; Evdokimov, P.V.; Putlyaev, V.I. Synthesis of Amorphous Calcium Phosphate Powders for Production of Bioceramics and Composites by 3D Printing. Russ. J. Inorg. Chem. 2022, 67, 940–951. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, P.; Feng, C.; Cao, Q.; Xu, X.; Liu, Y.; Li, X.; Zhu, X.; Zhang, X. 3D printing calcium phosphate ceramics with high osteoinductivity through pore architecture optimization. Acta Biomater. 2024, 185, 111–125. [Google Scholar] [CrossRef]
- Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769–2781. [Google Scholar] [CrossRef]
- Raynaud, S.; Champion, E.; Lafon, J.; Bernache-Assollant, D. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials 2002, 23, 1081–1089. [Google Scholar] [CrossRef]
- Hayashi, K.; Kishida, R.; Tsuchiya, A.; Ishikawa, K. Honeycomb blocks composed of carbonate apatite, β-tricalcium phosphate, and hydroxyapatite for bone regeneration: Effects of composition on biological responses. Mater. Today Bio 2019, 4, 100031. [Google Scholar] [CrossRef]
- Lu, T.; Yuan, X.; Zhang, L.; He, F.; Wang, X.; Ye, J. Enhancing osteoinduction and bone regeneration of biphasic calcium phosphate scaffold thought modulating the balance between pro-osteogenesis and anti-osteoclastogenesis by zinc doping. Mater. Today Chem. 2023, 29, 101410. [Google Scholar] [CrossRef]
- Glenske, K.; Donkiewicz, P.; Köwitsch, A.; Milosevic-Oljaca, N.; Rider, P.; Rofall, S.; Franke, J.; Jung, O.; Smeets, R.; Schnettler, R.; et al. Applications of Metals for Bone Regeneration. Int. J. Mol. Sci. 2018, 19, 826. [Google Scholar] [CrossRef] [PubMed]
- Golubchikov, D.; Safronova, T.V.; Nemygina, E.; Shatalova, T.B.; Tikhomirova, I.N.; Roslyakov, I.V.; Khayrutdinova, D.; Platonov, V.; Boytsova, O.; Kaimonov, M.; et al. Powder Synthesized from Aqueous Solution of Calcium Nitrate and Mixed-Anionic Solution of Orthophosphate and Silicate Anions for Bioceramics Production. Coatings 2023, 13, 374. [Google Scholar] [CrossRef]
- Lu, J.; Wei, J.; Yan, Y.; Li, H.; Jia, J.; Wei, S.; Guo, H.; Xiao, T.; Liu, C. Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J. Mater. Sci. Mater. Med. 2011, 22, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, G.; Safronova, T.; Golubchikov, D.; Shevtsova, O.; Rau, J.V. Resorbable Mg2+-Containing Phosphates for Bone Tissue Repair. Materials 2021, 14, 4857. [Google Scholar] [CrossRef]
- Yang, F.; Yang, D.; Tu, J.; Zheng, Q.; Cai, L.; Wang, L. Strontium Enhances Osteogenic Differentiation of Mesenchymal Stem Cells and In Vivo Bone Formation by Activating Wnt/Catenin Signaling. Stem Cells 2011, 29, 981–991. [Google Scholar] [CrossRef]
- Birgani, Z.T.; Fennema, E.; Gijbels, M.J.; de Boer, J.; van Blitterswijk, C.A.; Habibovic, P. Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats. Acta Biomater. 2016, 36, 267–276. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Bakhshi, H.; Ecker, N.U.; Parvizi, J.; Gehrke, T.; Kendoff, D. Organism Profile in Periprosthetic Joint Infection: Pathogens Differ at Two Arthroplasty Infection Referral Centers in Europe and in the United States. J. Knee Surg. 2014, 27, 399–406. [Google Scholar] [CrossRef]
- Hsieh, P.; Lee, M.S.; Hsu, K.; Chang, Y.; Shih, H.; Ueng, S.W. Gram-Negative Prosthetic Joint Infections: Risk Factors and Outcome of Treatment. Clin. Infect. Dis. 2009, 49, 1036–1043. [Google Scholar] [CrossRef]
- Graziani, G.; Barbaro, K.; Fadeeva, I.V.; Ghezzi, D.; Fosca, M.; Sassoni, E.; Vadalà, G.; Cappelletti, M.; Valle, F.; Baldini, N.; et al. Ionized jet deposition of antimicrobial and stem cell friendly silver-substituted tricalcium phosphate nanocoatings on titanium alloy. Bioact. Mater. 2021, 6, 2629–2642. [Google Scholar] [CrossRef]
- Ghezzi, D.; Graziani, G.; Cappelletti, M.; Fadeeva, I.V.; Montesissa, M.; Sassoni, E.; Borciani, G.; Barbaro, K.; Boi, M.; Baldini, N.; et al. New strontium-based coatings show activity against pathogenic bacteria in spine infection. Front. Bioeng. Biotechnol. 2024, 12, 1347811. [Google Scholar] [CrossRef]
- Yang, N.; Wang, S.; Ding, P.; Sun, S.; Wei, Q.; Jafari, H.; Wang, L.; Han, Y.; Okoro, O.V.; Wang, T.; et al. Magnesium-doped biphasic calcium phosphate nanoparticles with incorporation of silver: Synthesis, cytotoxic and antibacterial properties. Mater. Lett. 2022, 322, 132478. [Google Scholar] [CrossRef]
- Anwar, A.; Kanwal, Q.; Sadiqa, A.; Razaq, T.; Khan, I.H.; Javaid, A.; Khan, S.; Tag-Eldin, E.; Ouladsmane, M. Synthesis and Antimicrobial Analysis of High Surface Area Strontium-Substituted Calcium Phosphate Nanostructures for Bone Regeneration. Int. J. Mol. Sci. 2023, 24, 14527. [Google Scholar] [CrossRef] [PubMed]
- Arkin, V.H.; Narendrakumar, U.; Madhyastha, H.; Manjubala, I. Characterization and In Vitro Evaluations of Injectable Calcium Phosphate Cement Doped with Magnesium and Strontium. ACS Omega 2021, 6, 2477–2486. [Google Scholar] [CrossRef] [PubMed]
- Jodati, H.; Evis, Z.; Tezcaner, A.; Alshemary, A.Z.; Motameni, A. 3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2023, 140, 105722. [Google Scholar] [CrossRef]
- Sopcak, T.; Medvecky, L.; Jevinova, P.; Giretova, M.; Mahun, A.; Kobera, L.; Stulajterova, R.; Kromka, F.; Girman, V.; Balaz, M. Physico-chemical, mechanical and antibacterial properties of the boron modified biphasic larnite/bredigite cements for potential use in dentistry. Ceram. Int. 2022, 49, 6531–6544. [Google Scholar] [CrossRef]
- Saracini, J.; de Assis, I.C.; Peiter, G.C.; Busso, C.; de Oliveira, R.J.; Felix, J.F.; Bini, R.A.; Schneider, R. Borophosphate glasses as active agents for antimicrobial hydrogels. Int. J. Pharm. 2023, 644, 123323. [Google Scholar] [CrossRef]
- Mutlu, N.; Kurtuldu, F.; Unalan, I.; Neščáková, Z.; Kaňková, H.; Galusková, D.; Michálek, M.; Liverani, L.; Galusek, D.; Boccaccini, A.R. Effect of Zn and Ga doping on bioactivity, degradation, and antibacterial properties of borate 1393-B3 bioactive glass. Ceram. Int. 2022, 48, 16404–16417. [Google Scholar] [CrossRef]
- Avinashi, S.K.; Mishra, R.K.; Shweta; Kumar, S.; Shamsad, A.; Parveen, S.; Sahu, S.; Kumari, S.; Fatima, Z.; Yadav, S.K.; et al. 3D nanocomposites of β-TCP-H3BO3-Cu with improved mechanical and biological performances for bone regeneration applications. Sci. Rep. 2025, 15, 3224. [Google Scholar] [CrossRef]
- Mohan, A.S.; Ravindran, D.R.; Marudhamuthu, M.; Rajan, M. Investigation of Osteomyelitis Inducing Methicillin-Resistant Staphylococcus aureus Inhibition Effect by Strontium-Substituted Borate Bioactive Glasses. ACS Appl. Bio Mater. 2024, 7, 3828–3840. [Google Scholar] [CrossRef]
- Kumar, B.K.S.; Jagannatham, M.; Venkateswarlu, B.; Dumpala, R.; Sunil, B.R. Synthesis, characterization, and antimicrobial properties of strontium-substituted hydroxyapatite. J. Aust. Ceram. Soc. 2020, 57, 195–204. [Google Scholar] [CrossRef]
- Lebedev, V.N.; Kharovskaya, M.I.; Lazoryak, B.I.; Solovieva, A.O.; Fadeeva, I.V.; Amirov, A.A.; Koliushenkov, M.A.; Orudzhev, F.F.; Baryshnikova, O.V.; Yankova, V.G.; et al. Strontium and Copper Co-Doped Multifunctional Calcium Phosphates: Biomimetic and Antibacterial Materials for Bone Implants. Biomimetics 2024, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Asgartooran, B.; Bahadori, A.; Khamverdi, Z.; Ayubi, E.; Farmany, A. Effect of different boron contents within boron-doped hydroxyapatite-chitosan nano-composite on the microhardness of demineralized enamel. BMC Oral Health 2024, 24, 1419. [Google Scholar] [CrossRef] [PubMed]
- Gokcekaya, O.; Ergun, C.; Webster, T.J.; Nakano, T. Influence of precursor deficiency sites for borate incorporation on the structural and biological properties of boronated hydroxyapatite. Ceram. Int. 2022, 49, 7506–7514. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Barbaro, K.; Altigeri, A.; Forysenkova, A.A.; Gafurov, M.R.; Mamin, G.V.; Knot’ko, A.V.; Yankova, V.G.; Zhukova, A.A.; Russo, F.; et al. Exploring Borate-Modified Calcium Phosphate Ceramics: Antimicrobial Potential and Cytocompatibility Assessment. Nanomaterials 2024, 14, 495. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Forysenkova, A.A.; Volchenkova, V.A.; Fomina, A.A.; Smirnova, V.B.; Barinov, S.M. Behavior of Dopant Ions in the Solution Synthesis of Substituted Calcium Phosphates. Inorg. Mater. Appl. Res. 2023, 14, 1292–1297. [Google Scholar] [CrossRef]
- Bulina, N.V.; Chaikina, M.V.; Prosanov, I.Y.; Dudina, D.V. Strontium and silicate co-substituted hydroxyapatite: Mechanochemical synthesis and structural characterization. Mater. Sci. Eng. B 2020, 262, 114719. [Google Scholar] [CrossRef]
- Golubchikov, D.O.; Safronova, T.V.; Podlyagin, V.A.; Shatalova, T.B.; Kolesnik, I.V.; Putlayev, V.I. Silicate-substituted hydroxyapatite bioceramics fabrication from the amorphous powder precursor obtained from the silicate-containing solutions. Mendeleev Commun. 2024, 34, 847–849. [Google Scholar] [CrossRef]
- Pazarçeviren, A.E.; Tezcaner, A.; Keskin, D.; Kolukısa, S.T.; Sürdem, S.; Evis, Z. Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering. Biol. Trace Element Res. 2020, 199, 968–980. [Google Scholar] [CrossRef]
- Kolmas, J.; Samoilov, P.; Jaguszewska, A.; Skwarek, E. Assessment of Selected Surface and Electrochemical Properties of Boron and Strontium-Substituted Hydroxyapatites. Molecules 2024, 29, 672. [Google Scholar] [CrossRef]
- Demirkiran, B.B.; Inan, Z.D.S.; Hamutoğlu, R.; Öksüz, K.E.; Hasbek, Z.; Altuntaş, E.E. Boron-Doped Nano Hydroxyapatite Grafts for Bone Regeneration in Rat Mandibular Defects. Biol. Trace Element Res. 2024, 1–14. [Google Scholar] [CrossRef]
- Acar, N.; Mutlu, B.; Akben, H.K.; Duman, Ş. Assessing the effects of boron-doped biphasic calcium phosphate on the characteristics of chitosan-based composite foams. J. Porous Mater. 2024, 32, 485–496. [Google Scholar] [CrossRef]
- Gorbovskiy, K.G.; Kazakov, A.I.; Norov, A.M.; Pagaleshkin, D.A.; Mikhaylichenko, A.I. Thermal decomposition study of chloride-containing complex ammonium nitrate-based fertilizers by thermogravimetry and differential scanning calorimetry. Russ. J. Appl. Chem. 2016, 89, 1383–1392. [Google Scholar] [CrossRef]
- He, Z.-C.; Wu, J.-J. Research on the oxidation process of micro-boron below the melting point temperature. Acta Astronaut. 2024, 225, 67–76. [Google Scholar] [CrossRef]
- Frost, R.L.; Palmer, S.J. Thermal stability of the ‘cave’ mineral brushite CaHPO4·2H2O – Mechanism of formation and decomposition. Thermochim. Acta 2011, 521, 14–17. [Google Scholar] [CrossRef]
- Rey, C.; Marsan, O.; Combes, C.; Drouet, C.; Grossin, D.; Sarda, S. Characterization of Calcium Phosphates Using Vi-brational Spectroscopies. In Advances in Calcium Phosphate Biomaterials; Springer: Berlin/Heidelberg, Germany, 2014; pp. 229–266. [Google Scholar]
- Ternane, R.; Cohen-Adad, M.; Panczer, G.; Goutaudier, C.; Kbir-Ariguib, N.; Trabelsi-Ayedi, M.; Florian, P.; Massiot, D. Introduction of boron in hydroxyapatite: Synthesis and structural characterization. J. Alloys Compd. 2002, 333, 62–71. [Google Scholar] [CrossRef]
- Grigg, A.T.; Mee, M.; Mallinson, P.M.; Fong, S.K.; Gan, Z.; Dupree, R.; Holland, D. Cation substitution in β-tricalcium phosphate investigated using multi-nuclear, solid-state NMR. J. Solid State Chem. 2014, 212, 227–236. [Google Scholar] [CrossRef]
- Gasquères, G.; Bonhomme, C.; Maquet, J.; Babonneau, F.; Hayakawa, S.; Kanaya, T.; Osaka, A. Revisiting silicate substituted hydroxyapatite by solid-state NMR. Magn. Reson. Chem. 2008, 46, 342–346. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, W.; Hou, D. Synthesis, microstructure and mechanical properties of tricalcium phosphate–hydroxyapatite (TCP/HA) composite ceramic. Ceram. Int. 2020, 46, 9810–9816. [Google Scholar] [CrossRef]
- Champion, E. Sintering of calcium phosphate bioceramics. Acta Biomater. 2013, 9, 5855–5875. [Google Scholar] [CrossRef]
- Brown, R.F.; Rahaman, M.N.; Dwilewicz, A.B.; Huang, W.; Day, D.E.; Li, Y.; Bal, B.S. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J. Biomed. Mater. Res. Part A 2008, 88A, 392–400. [Google Scholar] [CrossRef]
- Jodati, H.; Tezcaner, A.; Alshemary, A.Z.; Şahin, V.; Evis, Z. Effects of the doping concentration of boron on physicochemical, mechanical, and biological properties of hydroxyapatite. Ceram. Int. 2022, 48, 22743–22758. [Google Scholar] [CrossRef]
- Fu, Q.; Rahaman, M.N.; Bal, B.S.; Brown, R.F. In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures. Mater. Sci. Eng. C 2009, 29, 2147–2153. [Google Scholar] [CrossRef]
- Bootchanont, A.; Wechprasit, T.; Isran, N.; Theangsunthorn, J.; Chaosuan, N.; Chanlek, N.; Kidkhunthod, P.; Yimnirun, R.; Jiamprasertboon, A.; Eknapakul, T.; et al. Correlation of the antibacterial activity and local structure in Zn- and Mn-doped hydroxyapatites by Rietveld refinement and the first-principles method. Materialia 2022, 26. [Google Scholar] [CrossRef]
- Pang, Y.; Yuan, X.; Guo, J.; Wang, X.; Yang, M.; Zhu, J.; Wang, J. The effect of liraglutide on the proliferation, migration, and osteogenic differentiation of human periodontal ligament cells. J. Periodontal Res. 2018, 54, 106–114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubchikov, D.O.; Fadeeva, I.V.; Knot’ko, A.V.; Kostykov, I.A.; Slonskaya, T.K.; Barbaro, K.; Zepparoni, A.; Fosca, M.; Antoniac, I.V.; Rau, J.V. Mechanochemically-Activated Solid-State Synthesis of Borate-Substituted Tricalcium Phosphate: Evaluation of Biocompatibility and Antimicrobial Performance. Molecules 2025, 30, 1575. https://doi.org/10.3390/molecules30071575
Golubchikov DO, Fadeeva IV, Knot’ko AV, Kostykov IA, Slonskaya TK, Barbaro K, Zepparoni A, Fosca M, Antoniac IV, Rau JV. Mechanochemically-Activated Solid-State Synthesis of Borate-Substituted Tricalcium Phosphate: Evaluation of Biocompatibility and Antimicrobial Performance. Molecules. 2025; 30(7):1575. https://doi.org/10.3390/molecules30071575
Chicago/Turabian StyleGolubchikov, Daniil O., Inna V. Fadeeva, Alexander V. Knot’ko, Iliya A. Kostykov, Tatiana K. Slonskaya, Katia Barbaro, Alessia Zepparoni, Marco Fosca, Iulian V. Antoniac, and Julietta V. Rau. 2025. "Mechanochemically-Activated Solid-State Synthesis of Borate-Substituted Tricalcium Phosphate: Evaluation of Biocompatibility and Antimicrobial Performance" Molecules 30, no. 7: 1575. https://doi.org/10.3390/molecules30071575
APA StyleGolubchikov, D. O., Fadeeva, I. V., Knot’ko, A. V., Kostykov, I. A., Slonskaya, T. K., Barbaro, K., Zepparoni, A., Fosca, M., Antoniac, I. V., & Rau, J. V. (2025). Mechanochemically-Activated Solid-State Synthesis of Borate-Substituted Tricalcium Phosphate: Evaluation of Biocompatibility and Antimicrobial Performance. Molecules, 30(7), 1575. https://doi.org/10.3390/molecules30071575