Essential Oil of Lippia origanoides Kunth: Nanoformulation, Anticholinesterase Activity, and Molecular Docking
Abstract
:1. Introduction
2. Results
2.1. Volatile Constituents of Essential Oils
2.2. Preparation, Characterization, and Thermal Stress of the Lippia origanoides Formulation
2.3. Determination of the Acetylcholinesterase Inhibition
2.4. Molecular Docking
2.4.1. Analysis of the Binding Sites of Major Compounds with the AChE Enzyme
2.4.2. ADME Properties
3. Discussion
4. Materials and Methods
4.1. Plant Material and Obtaining the Samples
4.2. Analysis of the Volatile Constituents of the Samples
4.3. Preparation, Characterization, and Thermal Stress of the Lippia origanoides Formulation
4.4. Determination of the Cholinesterase Inhibition
Quantitative Assay
4.5. Molecular Modeling and ADME Properties
4.5.1. Preparation of the Ligands
4.5.2. Preparation of the Crystallographic Structure of hAChE (PDB: 4EY7)
4.5.3. Re-Docking
4.5.4. ADME Properties
4.5.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santos Filho, L.G.A.D.; Reis, R.B.D.; Souza, A.S.Q.; Canuto, K.M.; Brito, E.S.; Castro, K.N.C.; Pereira, A.M.L.; Diniz, F.M. Chemical composition and biological activities of the essential oils from Lippia alba and Lippia origanoides. An. Acad. Bras. Ciênc. 2023, 95, e20220359. [Google Scholar] [CrossRef] [PubMed]
- Sousa, F.S.d.S.; Veiga, D.A.S.d.; Santos, B.D.P.; Lira, R.C.d.; Ferreira, S.B. Antibacterial Action of Lippia origanoides Essential Oil. Proceedings 2024, 103, 77. [Google Scholar] [CrossRef]
- Caballero-Gallardo, K.; Fuentes-Lopez, K.; Stashenko, E.E.; Olivero-Verbel, J. Chemical Composition, Repellent Action, and Toxicity of Essential Oils from Lippia origanoide, Lippia alba Chemotypes, and Pogostemon cablin on Adults of Ulomoides dermestoides (Coleoptera: Tenebrionidae). Insects 2023, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Medicinal Plants and Phytotherapeutics in the SUS. Available online: https://www.gov.br/saude/pt-br/composicao/sectics/plantas-medicinais-e-fitoterapicos/plantas-medicinais-e-fitoterapicos-no-sus (accessed on 11 January 2025).
- Reflora-Lista de Espécies da Flora do Brasil. Available online: https://reflora.jbrj.gov.br/reflora/listaBrasil/ (accessed on 11 January 2025).
- Soni, M.; Yadav, A.; Maurya, A.; Das, S.; Dubey, N.K.; Dwivedy, A.K. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023, 12, 4017. [Google Scholar] [CrossRef]
- Silva Júnior, A.Q.; Rodrigues, G.S.; Alcântara de Sousa, K.; Maduro Bouillet, L.E.; Bianchi dos Santos, G.; de Sousa Barroso, A.; Veras Mourão, R.H. Molecular Modelling and Anticholinesterase Activity of the Essential Oil from Three Chemotypes of Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson (Verbenaceae). Heliyon 2024, 10, e29063. [Google Scholar] [CrossRef]
- Sarrazin, S.L.F.; da Silva, L.A.; Oliveira, R.B.; Raposo, J.D.A.; da Silva, J.K.R.; Salimena, F.R.G.; Maia, J.G.S.; Mourão, R.H.V. Antibacterial action against food-borne microorganisms and antioxidant activity of carvacrol-rich oil from Lippia origanoides Kunth. Lipids Health Dis. 2015, 14, 146. [Google Scholar] [CrossRef]
- Lee, J.; Koo, N.; Min, D.B. Reactive Oxygen Species, Aging, and Antioxidative Nutraceuticals. Compr. Rev. Food Sci. Food Saf. 2004, 3, 21–33. [Google Scholar] [CrossRef]
- Heo, J.H.; Eom, B.H.; Ryu, H.W.; Kang, M.-G.; Park, J.E.; Kim, D.-Y.; Kim, J.-H.; Park, D.; Oh, S.-R.; Kim, H. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of khellactone coumarin derivatives isolated from Peucedanum japonicum Thurnberg. Sci. Rep. 2020, 10, 21695. [Google Scholar] [CrossRef]
- Szwajgier, D. Anticholinesterase activity of selected phenolic acids and flavonoids—Interaction testing in model solutions. Ann. Agric. Environ. Med. 2015, 22, 690–694. [Google Scholar] [CrossRef]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Birks, J.S.; Harvey, R.J. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 2018, 6, CD001190. [Google Scholar] [CrossRef] [PubMed]
- Mahata, R.; Das, S.; Tripathi, K.; Choudhury, S.M. Molecular Insights into the Therapeutic Attributes of Carvacrol: Special Emphasis on Anti-Carcinogenicity and Future Perspectives. Next Res. 2025, 2, 100099. [Google Scholar] [CrossRef]
- Bastos de Araújo, D.; Gurgel do Amaral, A.L.; Maia da Fonseca, S.; Rodrigues de Souza, K.; Santos da Paz, A.P.; Jóia de Mello, V.; Barbosa, G.B.; Otake Hamoy, M.K.; Hamoy, M. Lippia origanoides Essential Oil Possesses Anticonvulsant Effect in Pentylenetetrazol-Induced Seizures in Rats: A Behavioral, Electroencephalographic, and Electromyographic Study. Front. Pharmacol. 2023, 14, 1289336. [Google Scholar] [CrossRef] [PubMed]
- Quintero Ruiz, N.; Córdoba Campo, Y.; Stashenko, E.E.; Fuentes, J.L. Antigenotoxic Effect Against Ultraviolet Radiation-induced DNA Damage of the Essential Oils from Lippia Species. Photochem. Photobiol. 2017, 93, 1063–1072. [Google Scholar] [CrossRef]
- Sarrazin, S.L.F.; Silva, L.A.; Assunção, A.P.F.; Oliveira, R.B.; Calao, V.Y.P.; Silva, R.; Stashenko, E.E.; Maia, J.G.S.; Mourão, R.H.V. Antimicrobial and Seasonal Evaluation of the Carvacrol-Chemotype Oil from Lippia origanoides Kunth. Molecules 2015, 20, 1860–1871. [Google Scholar] [CrossRef]
- Ribeiro, F.P.; de Oliveira, M.S.; Feitosa, A.O.; Marinho, P.S.B.; Marinho, A.M.R.; de Aguiar Andrade, E.H.; Ribeiro, A.F. Chemical Composition and Antibacterial Activity of the Lippia origanoides Kunth Essential Oil from the Carajás National Forest, Brazil. Evid.-Based Complement. Altern. Med. 2021, 2021, 9930336. [Google Scholar] [CrossRef]
- SellamiBéjaoui, A.; Chaabane, H.; Jemli, M.; Boulila, A.; Boussaid, M. Essential Oil Composition and Antibacterial Activity of Origanum vulgare Subsp. glandulosum Desf. at Different Phenological Stages. J. Med. Food 2013, 16, 1115–1120. [Google Scholar] [CrossRef]
- Stashenko, E.; Ruiz, C.; Muñoz-Acevedo, A.; Castañeda, M.; Martínez, J. Composition and Antioxidant Activity of Essential Oils of Lippia origanoides H.B.K. Grown in Colombia. Nat. Prod. Commun. 2008, 3, 563–566. [Google Scholar] [CrossRef]
- Hernandes, C.; Pina, E.S.; Taleb-Contini, S.H.; Bertoni, B.W.; Cestari, I.M.; Espanha, L.G.; Varanda, E.A.; Camilo, K.F.; Martinez, E.Z.; França, S.C.; et al. Lippia origanoides Essential Oil: An Efficient and Safe Alternative to Preserve Food, Cosmetic and Pharmaceutical Products. J. Appl. Microbiol. 2017, 122, 900–910. [Google Scholar] [CrossRef]
- Alme Vicuña, G.C.; Stashenko, E.E.; Fuentes, J.L. Chemical Composition of the Lippia origanoides Essential Oils and Their Antigenotoxicity against Bleomycin-Induced DNA Damage. Fitoterapia 2010, 81, 343–349. [Google Scholar] [CrossRef]
- Hoseini, B.; Jaafari, M.R.; Golabpour, A.; Momtazi-Borojeni, A.A.; Karimi, M.; Eslami, S. Application of Ensemble Machine Learning Approach to Assess the Factors Affecting Size and Polydispersity Index of Liposomal Nanoparticles. Sci. Rep. 2023, 13, 18012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, A.; Chuang, R.; Xu, L.; Han, C.; Li, H.; Xia, N. Preparation and Characterization of Egg White Protein-Based Composite Edible Coating Containing Thymol Nanoemulsion. Foods 2024, 13, 3809. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Park, J.; Song, H.Y.; Choi, S.J. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition. J. Food Sci. 2019, 84, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.P.; Folly, D.; Esteves, R.; Ruppelt, B.M.; da Silva, V.M.; Matos, A.P.d.S.; Santos, J.A.A.d.; Rangel, L.d.S.; Santos, M.G.; von Ranke, N.L.; et al. Molluscicidal and Cercaricidal Effects of Myrciaria floribunda Essential Oil Nanoemulsion. Molecules 2023, 28, 5944. [Google Scholar] [CrossRef]
- Mushtaq, A.; Mohd Wani, S.; Malik, A.R.; Gull, A.; Ramniwas, S.; Ahmad Nayik, G.; Ercisli, S.; Alina Marc, R.; Ullah, R.; Bari, A. Recent Insights into Nanoemulsions: Their Preparation, Properties and Applications. Food Chem. X 2023, 18, 100684. [Google Scholar] [CrossRef]
- Rezaei, A.; Rafieian, F.; Akbari-Alavijeh, S.; Kharazmi, M.S.; Jafari, S.M. Release of Bioactive Compounds from Delivery Systems by Stimuli-Responsive Approaches; Triggering Factors, Mechanisms, and Applications. Adv. Colloid Interface Sci. 2022, 307, 102728. [Google Scholar] [CrossRef]
- Xu, F.; Shi, Y.; Li, B.; Liu, C.; Zhang, Y.; Zhong, J. Characterization, Stability and Antioxidant Activity of Vanilla Nano-Emulsion and Its Complex Essential Oil. Foods 2024, 13, 801. [Google Scholar] [CrossRef]
- Prado, J.C.S.; de Aguiar, F.L.L.; Prado, G.M.; Nascimento, J.F.D.; de Sousa, N.V.; Barbosa, F.C.B.; Lima, D.M.; Rodrigues, T.H.S.; Bessa, N.U.d.C.; Abreu, F.O.M.d.S.; et al. Development and characterization of nanoemulsions containing Lippia origanoides Kunth essential oil and their antifungal potential against Candida albicans. J. Appl. Microbiol. 2024, 135, lxae271. [Google Scholar] [CrossRef]
- da Silva, A.T.; Cândido, A.E.C.M.; Júnior, E.D.C.M.; do É, G.N.; Moura, M.P.S.; Souza, R.d.F.S.; Guimarães, M.L.; Peixoto, R.d.M.; de Oliveira, H.P.; da Costa, M.M. Bactericidal and synergistic effects of Lippia origanoides essential oil and its main constituents against multidrug-resistant strains of Acinetobacter baumannii. ACS Omega 2024, 9, 43927–43939. [Google Scholar] [CrossRef]
- Nieto Marín, V.; Buccini, D.F.; Gomes da Silva, V.; Fernandez Soliz, I.A.; Franco, O.L. Nanoformulations of Bioactive Compounds Derived from Essential Oils with Antimicrobial Activity. Nano Trends 2025, 9, 100070. [Google Scholar] [CrossRef]
- Imran, M.; Aslam, M.; Alsagaby, S.A.; Saeed, F.; Ahmad, I.; Afzaal, M.; Arshad, M.U.; Abdelgawad, M.A.; El-Ghorab, A.H.; Khames, A.; et al. Therapeutic Application of Carvacrol: A Comprehensive Review. Food Sci. Nutr. 2022, 10, 3544–3561. [Google Scholar] [CrossRef] [PubMed]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendhi, A.; Alshehri, M.A.; Kandasamy, S.; Sarangi, P.K.; Sharma, A. Deciphering the Importance of Nanoencapsulation to Improve the Availability of Bioactive Molecules in Food Sources to the Human Body. Food Chem. 2025, 464, 141762. [Google Scholar] [CrossRef]
- Natrajan, D.; Srinivasan, S.; Sundar, K.; Ravindran, A. Formulation of Essential Oil-Loaded Chitosan–Alginate Nanocapsules. J. Food Drug Anal. 2015, 23, 560–568. [Google Scholar] [CrossRef]
- Albuquerque, P.M.; Azevedo, S.G.; de Andrade, C.P.; D’Ambros, N.C.d.S.; Pérez, M.T.M.; Manzato, L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers 2022, 14, 5495. [Google Scholar] [CrossRef]
- Chen, X.; Drew, J.; Berney, W.; Lei, W. Neuroprotective Natural Products for Alzheimer’s Disease. Cells 2021, 10, 1309. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Das, S.; Dubey, N.K. Nanoencapsulation of Essential Oils and Their Bioactive Constituents: A Novel Strategy to Control Mycotoxin Contamination in Food System. Food Chem. Toxicol. 2021, 149, 112019. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Zhang, Z.; Li, H. Advances in Controllable Release Essential Oil Microcapsules and Their Promising Applications. Molecules 2023, 28, 4979. [Google Scholar] [CrossRef]
- Özer, Z.; Gören, A.C.; Kılıç, T.; Öncü, M.; Çarıkçı, S.; Dirmenci, T. The Phenolic Contents, Antioxidant and Anticholinesterase Activity of Section Amaracus (Gled.) Vogel and Anatolicon Ietsw. of Origanum L. Species. Arab. J. Chem. 2020, 13, 5027–5039. [Google Scholar] [CrossRef]
- Birsan, R.I.; Wilde, P.; Waldron, K.W.; Rai, D.K. Anticholinesterase Activities of Different Solvent Extracts of Brewer’s Spent Grain. Foods 2021, 10, 930. [Google Scholar] [CrossRef]
- Hung, N.H.; Quan, P.M.; Satyal, P.; Dai, D.N.; Hoa, V.V.; Huy, N.G.; Giang, L.D.; Ha, N.T.; Huong, L.T.; Hien, V.T.; et al. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules 2022, 27, 7092. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.R.; de Andrade, J.C.; de Sousa, N.F.; Ribeiro Portela, A.C.; Oliveira Pires, H.F.; Bezerra Remígio, M.C.R.; Alves, D.D.N.; de Andrade, H.H.N.; Dias, A.L.; da Silva Stiebbe Salvadori, M.G.; et al. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer’s and Parkinson’s Disorders: A Review with Experimental Approach. Curr. Neuropharmacol. 2023, 21, 842–866. [Google Scholar] [CrossRef]
- Re, L.; Barocci, S.; Sonnino, S.; Mencarelli, A.; Vivani, C.; Paolucci, G.; Scarpantonio, A.; Rinaldi, L.; Mosca, E. Linalool Modifies the Nicotinic Receptor-Ion Channel Kinetics at the Mouse Neuromuscular Junction. Pharmacol. Res. 2000, 42, 177–182. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Frias, J.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Lima, E. Anticholinesterase and Anti-Inflammatory Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae): In Vitro and In Silico Studies. Int. J. Mol. Sci. 2024, 25, 12328. [Google Scholar] [CrossRef]
- Liao, W.; Badri, W.; Dumas, E.; Ghnimi, S.; Elaissari, A.; Saurel, R.; Gharsallaoui, A. Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. Appl. Sci. 2021, 11, 5778. [Google Scholar] [CrossRef]
- Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE Inhibitors from Plants and Their Contribution to Alzheimer’s Disease Therapy. Curr. Neuropharmacol. 2013, 11, 388–413. [Google Scholar] [CrossRef]
- Didigwu, O.K.; Nnadi, C.O. Drug-Likeness, Pharmacokinetics, and Toxicity Prediction of Phytotoxic Terpenoids. Proceedings 2024, 102, 47. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Jastrzębska, M.; Marciniec, K.; Chrobak, E.; Bębenek, E.; Boryczka, S. Lipophilicity, Pharmacokinetic Properties, and Molecular Docking Study on SARS-CoV-2 Target for Betulin Triazole Derivatives with Attached 1,4-Quinone. Pharmaceutics 2021, 13, 781. [Google Scholar] [CrossRef]
- Carpenter, T.S.; Kirshner, D.A.; Lau, E.Y.; Wong, S.E.; Nilmeier, J.P.; Lightstone, F.C. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys. J. 2014, 107, 630–641. [Google Scholar] [CrossRef]
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X20903555. [Google Scholar] [CrossRef]
- Kam, A.; Li, K.M.; Razmovski-Naumovski, V.; Nammi, S.; Chan, K.; Li, Y.; Li, G.Q. The Protective Effects of Natural Products on Blood-Brain Barrier Breakdown. Curr. Med. Chem. 2012, 19, 1830–1845. [Google Scholar] [CrossRef]
- He, Q.; Liu, J.; Liang, J.; Liu, X.; Li, W.; Liu, Z.; Ding, Z.; Tuo, D. Towards Improvements for Penetrating the Blood-Brain Barrier—Recent Progress from a Material and Pharmaceutical Perspective. Cells 2018, 7, 24. [Google Scholar] [CrossRef]
- Spisni, E.; Valerii, M.C.; Massimino, M.L. Essential Oil Molecules Can Break the Loop of Oxidative Stress in Neurodegenerative Diseases. Biology 2023, 12, 1504. [Google Scholar] [CrossRef]
- Babazadeh, A.; Mohammadi Vahed, F.; Jafari, S.M. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J. Control. Release 2020, 321, 211–221. [Google Scholar] [CrossRef]
- Santos, A.S.; Alves, S.D.M.; Figueiredo, F.J.C.; Da Rocha Neto, O.G. Descrição de Sistema e de Métodos de Extração de Óleos Essenciais e Determinação de Umidade de Biomassa em Laboratório; Embrapa Amazônia Oriental: Belém, Brazil, 2004. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mondello, L. FFNSC 2: Flavors and Fragrances of Natural and Synthetic Compounds, Mass Spectral Database; John Wiley & Sons Inc.: New York, NY, USA, 2011. [Google Scholar]
- Silva Júnior, A.Q.d.; Garcia, M.M.; Farias, W.d.S.; Sousa, D.J.d.A.d.; Barroso, A.d.S.; Figueiredo, P.L.B.; Santos, G.B.d.; de Oliveira, R.B.; Mourão, R.H.V. Anxiolytic, Antidepressant, and Anticholinesterase Effects of Essential Oil from Myrcia sylvatica (G.Mey.) DC. Biomolecules 2025, 15, 110. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Anton, N.; Vandamme, T.F. The universality of low-energy nano-emulsification. Int. J. Pharm. 2009, 377, 142–147. [Google Scholar] [CrossRef]
- Lorber, B.; Fischer, F.; Bailly, M.; Roy, H.; Kern, D. Protein analysis by dynamic light scattering: Methods and techniques for students. Biochem. Mol. Biol. Educ. 2012, 40, 372–382. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Albano, S.M.; Lima, A.S.; Pedro, M.G.M.L.G.; Barroso, J.G.; Figueiredo, A.C. Antioxidant, Anti-5-lipoxygenase and Antiacetylcholinesterase Activities of Essential Oils and Decoction Waters of Some Aromatic Plants. Rec. Nat. Prod. 2012, 6, 35–48. [Google Scholar]
Constituents | IRcalc | IRlit | Conc. (%) |
---|---|---|---|
α-Pinene | 932 | 932 | 0.16 |
Myrcene | 989 | 988 | 1.84 |
α-Terpinene | 1016 | 1014 | 1.09 |
p-Cymene | 1023 | 1020 | 11.1 |
1,8-Cineole | 1029 | 1026 | 1.07 |
γ-Terpinene | 1057 | 1054 | 3.49 |
Linalool | 1099 | 1095 | 4.60 |
α-Terpineol | 1190 | 1186 | 0.13 |
Thymol Methyl Ether | 1233 | 1232 | 1.56 |
Safrole | 1287 | 1285 | 1.98 |
Thymol | 1292 | 1289 | 10.20 |
Carvacrol | 1305 | 1298 | 41.20 |
(E)-Caryophyllene | 1419 | 1417 | 2.78 |
α-Humulene | 1453 | 1452 | 0.25 |
γ-Gurjunene | 1494 | 1495 | 11.8 |
Caryophyllene Oxide | 1582 | 1582 | 1.09 |
1-epi-Cubenol | 1630 | 1627 | 0.28 |
Monoterpene hydrocarbons | 18.75 | ||
Oxygenated monoterpenes | 57.59 | ||
Sesquiterpene hydrocarbons | 16.81 | ||
Oxygenated sesquiterpenes | 1.37 | ||
Total (%) | 95.00 |
Temperature (°C) | Average Droplet Size (nm) | Polydispersity Index |
---|---|---|
25 | 10.87 ± 0.020 | 0.131 ± 0.012 |
35 | 12.02 ± 0.097 | 0.135 ± 0.013 |
45 | 14.10 ± 0.040 | 0.136 ± 0.011 |
55 | 17.79 ± 0.155 | 0.155 ± 0.010 |
65 | 26.83 ± 0.138 | 0.173 ± 0.005 |
75 | 66.09 ± 0.373 | 0.193 ± 0.005 |
Thermal Stress | Macroscopic Characteristics | Average Size (nm) | Polydispersity Index | Zeta Potential (mV) | Conductivity (mS/cm) |
---|---|---|---|---|---|
Before | Translucent | 10.87 ± 0.020 | 0.131 ± 0.012 | −1.634 ± 0.464 | 0.2809 |
After | Translucent | 10.16 ± 0.050 | 0.069 ± 0.011 | −1.866 ± 0.482 | 0.3709 |
Molecule | Absorption | Distribution | ||||
---|---|---|---|---|---|---|
LogP [a] | PCaco−2 [b] | HIA (%) [b] | PMDCK [b] | LPP (%) [b] | BHE [a] | |
Carvacrol | 3.81 | 38.0121 | 100 | 87.3307 | 100 | 6.38799 |
p-Cymene | 3.90 | 23.4337 | 100 | 237.5070 | 100 | 4.96983 |
Thymol | 3.34 | 38.0122 | 100 | 87.3307 | 100 | 6.38802 |
γ-Terpinene | 3.36 | 23.6401 | 100 | 244.9090 | 100 | 8.03745 |
Linalool | 3.21 | 29.3550 | 100 | 115.4210 | 100 | 6.12506 |
γ-Gurjunene | 5.00 | 23.6411 | 100 | 57.0682 | 100 | 13.4717 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Júnior, A.Q.d.S.; Rodrigues, G.d.S.; Barroso, A.d.S.; Figueiredo, P.L.B.; Machado, F.P.; Ferreira, M.A.; Fernandes, C.P.; Santos, G.B.d.; Mourão, R.H.V. Essential Oil of Lippia origanoides Kunth: Nanoformulation, Anticholinesterase Activity, and Molecular Docking. Molecules 2025, 30, 1554. https://doi.org/10.3390/molecules30071554
Júnior AQdS, Rodrigues GdS, Barroso AdS, Figueiredo PLB, Machado FP, Ferreira MA, Fernandes CP, Santos GBd, Mourão RHV. Essential Oil of Lippia origanoides Kunth: Nanoformulation, Anticholinesterase Activity, and Molecular Docking. Molecules. 2025; 30(7):1554. https://doi.org/10.3390/molecules30071554
Chicago/Turabian StyleJúnior, Antônio Quaresma da Silva, Gabriela dos Santos Rodrigues, Adenilson de Sousa Barroso, Pablo Luis Baia Figueiredo, Francisco Paiva Machado, Mikaela Amaral Ferreira, Caio Pinho Fernandes, Gabriela B. dos Santos, and Rosa Helena V. Mourão. 2025. "Essential Oil of Lippia origanoides Kunth: Nanoformulation, Anticholinesterase Activity, and Molecular Docking" Molecules 30, no. 7: 1554. https://doi.org/10.3390/molecules30071554
APA StyleJúnior, A. Q. d. S., Rodrigues, G. d. S., Barroso, A. d. S., Figueiredo, P. L. B., Machado, F. P., Ferreira, M. A., Fernandes, C. P., Santos, G. B. d., & Mourão, R. H. V. (2025). Essential Oil of Lippia origanoides Kunth: Nanoformulation, Anticholinesterase Activity, and Molecular Docking. Molecules, 30(7), 1554. https://doi.org/10.3390/molecules30071554