Antioxidant Effects of Essential Oils from the Peels of Citrus Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction of Essential Oils
2.3. Gas-Chromatography–Mass-Spectroscopy Analysis
2.4. Determination of the Total Phenolic Content
2.5. DPPH Free Radical Scavenging Ability
2.6. ABTS Free Radical Scavenging Assay
2.7. Determination of Ferric-Reducing Antioxidant Potential
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition of the Essential Oils
3.2. Total Phenolic Contents
3.3. DPPH Radical Scavenging
3.4. ABTS Radical Scavenging Assay
3.5. FRAP Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
EI | Electron ionization |
FRAP | Ferric-reducing antioxidant potential |
KI | Kovats retention index |
ROS | Reactive oxygen species |
RSM | Response surface methodology |
SPSS | Statistical Package for the Social Sciences |
TPC | Total phenolic content |
References
- He, T.; Li, X.; Wang, X.; Xu, X.; Yan, X.; Li, X.; Sun, S.; Dong, Y.; Ren, X.; Liu, X.; et al. Chemical composition and antioxidant potential on essential oils of Thymus quinquecostatus Celak. from Loess Plateau in China, regulating Nrf2/Keap1 signaling pathway in zebrafish. Sci. Rep. 2020, 10, 11280. [Google Scholar]
- Ďuračková, Z. Some current insights into oxidative stress. Physiol. Res. 2010, 59, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Masenga, S.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defence. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Sundar, I.K.; Yao, H.; Rahman, I. Oxidative Stress and Chromatin Remodeling in Chronic Obstructive Pulmonary Disease and Smoking-Related Diseases. Antioxid. Redox Signal. 2013, 18, 1956–1971. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez De la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Cuendet, M.; Hostettmann, K.; Potterat, O.; Dyatmiko, W. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv. Chim. Acta 1997, 80, 1144–1152. [Google Scholar] [CrossRef]
- Kebede, M.; Admassu, S. Application of antioxidants in food processing industry: Options to improve the extraction yields and market value of natural products. Adv. Food Technol. Nutr. Sci. 2019, 5, 38–49. [Google Scholar] [CrossRef]
- Silva, M.M.; Lidon, F.C. An overview on applications and side effects of antioxidant food additives. Emir. J. Food Agric. 2016, 28, 823–832. [Google Scholar] [CrossRef]
- Jayalakshmi, C.P.; Sharma, J.D. Effect of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on rat erythrocytes. Environ. Res. 1986, 41, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Effect of organic production system on broiler carcass and meat quality. Meat Sci. 2002, 60, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Hayes, J.E.; Allen, P.; Brunton, N.; O’Grady, M.N.; Kerry, J.P. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem. 2011, 126, 948–955. [Google Scholar] [CrossRef]
- Akbarirad, H.; Gohari Ardabili, A.; Kazemeini, S.M.; Mousavi Khaneghah, A. An overview on some of important sources of natural antioxidants. Int. Food Res. J. 2016, 23, 928–933. [Google Scholar]
- Butnariu, M.; Grozea, I. Antioxidant (Antiradical) compounds. J. Bioequivalence Bioavailab. 2012, 4, xvii–xix. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crops Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Iriti, M.; Colnaghi, G.; Chemat, F.; Smadja, J.; Faoro, F.; Visinoni, F.A. Histo-cytochemistry and scanning electron microscopy of Lavender glandular trichomes following conventional and microwave-assisted hydrodistillation of essential oils: A comparative study. Flavour Fragr. J. 2006, 21, 704–712. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Sánchez-Zapata, E.; Fernández-López, J.; Pérez-Álvarez, J.A. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 2010, 25, 13–19. [Google Scholar] [CrossRef]
- Yang, S.A.; Jeon, S.K.; Lee, E.J.; Shim, C.H.; Lee, I.S. Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Nat. Prod. Res. 2010, 24, 140–151. [Google Scholar] [CrossRef]
- Kamal, G.M.; Anwarm, F.; Hussain, A.I.; Sarri, N.; Ashraf, M.Y. Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int. Food Res. J. 2011, 18, 1275–1282. [Google Scholar]
- Rehman, A.; Deyuan, Z.; Hussain, I.; Iqbal, M.S.; Yang, Y.; Jingdong, L. Prediction of major agricultural fruits production in Pakistan by using an econometric analysis and machine learning technique. Int. J. Fruit Sci. 2018, 18, 445–461. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Ahmad Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant activity of Citrus fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Caler, P.C. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front. Immunol. 2021, 12, 712608. [Google Scholar] [CrossRef]
- Fernandes, A.C.F.; Santana, A.L.; Martins, I.M.; Moreira, D.K.; Macedo, J.A.; Macedo, G.A. Anti-glycation effect and the α-amylase, lipase, and α-glycosidase inhibition properties of a polyphenolic fraction derived from citrus wastes. Prep. Biochem. Biotechnol. 2020, 50, 794–802. [Google Scholar] [CrossRef]
- Mustafa, N.E.M. Citrus essential oils: Current and prospective uses in the food industry. Recent Pat. Food Nutr. Agric. 2015, 7, 115–127. [Google Scholar] [CrossRef]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Biological Activities and Safety of Citrus spp. Essential Oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Koteswararao, R.; Sinha, M.; Baral, E.; Cho, M.H. Citrus essential oils: Extraction, authentication and application in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Tisserand, R.; Rodney, Y. Essential Oil Safety: A Guide for Health Care Professionals; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Mahmoud, E.A. Essential oils of Citrus fruit peels antioxidant, antibacterial and additive value as food preservative. J. Food Dairy Sci. 2017, 8, 111–116. [Google Scholar] [CrossRef]
- Toscano-Garibay, J.D.; Arriaga-Alba, M.; Sánchez-Navarrete, J.; Mendoza-García, M.; Flores-Estrada, J.J.; Moreno-Eutimio, M.A.; Espinosa-Aguirre, J.J.; González-Ávila, M.; Ruiz-Pérez, N.J. Antimutagenic and antioxidant activity of the essential oils of Citrus sinensis and Citrus latifolia. Sci. Rep. 2017, 7, 11479. [Google Scholar] [CrossRef] [PubMed]
- Frassinetti, S.; Caltavuturo, L.; Cini, M.; Della Croce, C.M.; Maserti, B.E. Antibacterial and antioxidant activity of essential oils from Citrus spp. J. Essent. Oil Res. 2011, 23, 27–31. [Google Scholar] [CrossRef]
- Olatunya, A.M.; Akintayo, E.T. Evaluation of the effect of drying on the chemical composition and antioxidant activity of the essential oil of peels from three species of citrus group. Int. Food Res. J. 2017, 24, 1991–1997. [Google Scholar]
- Yang, J.; Choi, W.; Jeung, E.; Kim, K.; Park, M. Anti-inflammatory effect of essential oil extracted from Pinus densiflora (Sieb. et Zucc.) wood on RBL-2H3 cells. J. Wood Sci. 2021, 67, 52. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef]
- Saber, M.; Harhar, H.; Bouyahya, A.; Ouchbani, T.; Tabyaoui, M. Chemical composition and antioxidant activity of essential oil of sawdust from Moroccan Thuya (Tetraclinis articulate (Vahl) Masters). Biointerface Res. Appl. Chem. 2021, 11, 7912–7920. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Moller, A.C.; Parra, C.; Said, B.; Werner, E.; Flores, S.; Villena, J.; Russo, A.; Caro, N.; Montenegro, I.; Madrid, A. Antioxidant and anti-proliferative activity of essential oil and main components from leaves of Aloysia polystachya harvested in central Chile. Molecules 2020, 26, 131. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Yang, S. Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci. Hum. Wellness 2014, 3, 183–190. [Google Scholar] [CrossRef]
- Palazzolo, E.; Laudicina, V.A.; Germana, M.A. Current and Potential Use of Citrus Essential Oils. Curr. Org. Chem. 2013, 17, 3042–3049. [Google Scholar] [CrossRef]
- Burnett, C.L.; Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Citrus-Derived Peel Oils as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 33S–59S. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Jemaa, M.B.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Nikirakis, J.; Kowcz, A. International Cosmetic Ingredient Dictionary and Handbook; Personal Care Products Council: Washington, DC, USA, 2023. [Google Scholar]
- Jongedijk, E.; Cankar, K.; Buchhaupt, M.; Schrader, J.; Bouwmeester, H.; Beekwilder, J. Biotechnological production of limonene in microorganisms. Appl. Microbiol. Biotechnol. 2016, 100, 2927–2938. [Google Scholar] [CrossRef]
- Souza, M.C.; Siani, A.C.; Ramos, M.F.S.; Menezes-de-Lima, O.J.; Henriques, M.G.M.O. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie 2003, 58, 582–586. [Google Scholar]
- Dabbah, R.; Edwards, V.M.; Moats, W.A. Antimicrobial action of some citrus fruit oils on selected food-borne bacteria. Appl. Microbiol. 1970, 19, 27–31. [Google Scholar] [CrossRef]
- Haag, J.D.; Lindstrom, M.J.; Gould, M.N. Limonene-induced regression of mammary carcinomas. Cancer Res. 1992, 52, 4021–4026. [Google Scholar]
- do Amaral, J.F.; Silva, M.I.; Neto, M.R.; Neto, P.F.; Moura, B.A.; de Melo, C.T.; de Araújo, F.L.; de Sousa, D.P.; de Vasconcelos, P.F.; de Vasconcelos, S.M.; et al. Antinociceptive effect of the monoterpene R-(+)-limonene in mice. Biol. Pharm. Bull. 2007, 30, 1217–1220. [Google Scholar] [CrossRef]
- Erasto, P.; Viljoen, A.M. Limonene—A review: Biosynthetic, ecological and pharmacological relevance. Nat. Prod. Commun. 2008, 3, 1193–1202. [Google Scholar] [CrossRef]
- Liu, J.; Yong, H.; Yao, X.; Hu, H.; Yun, D.; Xiao, L. Recent advances in phenolic-protein conjugates: Synthesis, characterization, biological activities and potential applications. RSC Adv. 2019, 9, 35825–35840. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jun, B.S.; Kim, S.K.; Cha, J.Y.; Cho, Y.S. Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctorius L.). Korean J. Food Nutr. 2000, 29, 1127–1132. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar]
- Zhang, H.; Yang, Y.; Zhou, Z. Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. J. Integr. Agric. 2018, 17, 256–263. [Google Scholar] [CrossRef]
- Banjarnahor, S.D.S.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Indones. 2014, 23, 239–244. [Google Scholar] [CrossRef]
- Dehghan, G.; Torbati, S.; Mohammadian, R.; Movafeghi, A.; Talebpour, A.H. Essential oil composition, total phenol and flavonoid contents and antioxidant activity of Salvia sahendica at different developmental stages. J. Essent. Oil Bear. Plants 2018, 21, 1030–1040. [Google Scholar] [CrossRef]
- Andres, A.I.; Petron, M.J.; Lopez, A.M.; Timon, M.L. Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in Craft Brewers’ spent grain using response surface methodology (RSM). Foods 2020, 9, 1398. [Google Scholar] [CrossRef]
- Couttolenc, A.; Medina, M.E.; Trigos, Á.; Espinoza, C. Antioxidant capacity of fungi associated with corals and sponges of the reef system of Veracruz, Mexico. Electron. J. Biotechnol. 2022, 55, 40–46. [Google Scholar] [CrossRef]
- Lin, X.; Cao, S.; Sun, J.; Lu, D.; Zhong, B.; Chun, J. The chemical compositions, and antibacterial and antioxidant activities of four types of citrus essential oils. Molecules. 2021, 26, 3412. [Google Scholar] [CrossRef]
- Raspo, M.A.; Vignola, M.B.; Andreatta, A.E.; Juliani, H.R. Antioxidant and antimicrobial activities of citrus essential oils from Argentina and the United States. Food Biosci. 2020, 36, 100651. [Google Scholar] [CrossRef]
- Denkova-Kostova, R.; Teneva, D.; Tomova, T.; Goranov, B.; Denkova, Z.; Shopska, V.; Slavchev, A.; Hristova-Ivanova, Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume). J. Biosci. 2020, 76, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.A.; Terol, J.; Ibanez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Song, H.S.; Ukeda, H.; Sawamura, M. Radical-scavenging activities of Citrus essential oils and their components: Detection using 1,1-diphenyl-2-picryllhydrazyl. J. Agric. Food Chem. 2000, 48, 4156–4161. [Google Scholar] [CrossRef] [PubMed]
- Peschel, W.; Sánchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzía, I.; Jiménez, D.; Lamuela-Raventós, R.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Badalamenti, N.; Bruno, M.; Schicchi, R.; Geraci, A.; Leporini, M.; Gervasi, L.; Tundis, R.; Loizzo, M.R. Chemical compositions and antioxidant activities of essential oils, and their combinations, obtained from Flavedo by-product of seven cultivars of Sicilian Citrus aurantium L. Molecules 2022, 27, 1580. [Google Scholar] [CrossRef]
No. | Sample Name | Common Name | Abbreviation | Voucher Specimen No. |
---|---|---|---|---|
1 | Citrus japonica Thunb. | Kumquat | KU | WTFRC10032742 |
2 | Citrus junos Siebold ex Tanaka | Yuzu | YU | WTFRC10032743 |
3 | Citrus limon (L.) Osbeck ‘Lisbon’ | Lisbon lemon | LI | WTFRC10033803 |
4 | Citrus maxima (Burm.) Merr. | Dangyuja | DA | WTFRC10032725 |
5 | Citrus maxima (Burm.) Merr. a | Pomelo | PU | WTFRC10032744 |
6 | Citrus medica L. b | Buddha’s hand | FC | WTFRC10033804 |
7 | Citrus paradisi Macfad. ‘Redblush’ | Grapefruit | RU | WTFRC10032741 |
8 | Citrus platymamma hort. ex Tanaka | Byungkyul | BY | WTFRC10032726 |
9 | Citrus reticulata Blanco c | Miyagawa Satsuma | MW | WTFRC10032727 |
10 | Citrus reticulata Blanco ‘Ponkan’ | Ponkan | PO | WTFRC10032734 |
11 | Citrus reticulata Blanco d | Satsuma | SM | WTFRC10032740 |
12 | Citrus sinensis (L.) Osbeck ‘Navel’ | Orange | YN | WTFRC10032732 |
13 | Citrus sunki (Hayata) Yu.Tanaka | Jinkyul | JI | WTFRC10032733 |
14 | Citrus × aurantium L. e | Amanatsu | NA | WTFRC10032737 |
15 | Citrus × aurantium L. f | Kamja | KA | WTFRC10032735 |
16 | Citrus × aurantium L. g | Seminole | SE | WTFRC10032729 |
17 | Citrus × latifolia (Yu.Tanaka) Yu. Tanaka | Persian lime | PL | WTFRC10032736 |
18 | Citrus unshiu × Citrus sinensis | Kiyomi | KY | WTFRC10032739 |
19 | (Citrus unshiu × Citrus sinensis) × Citrus reticulata | Shiranui | SH | WTFRC10032728 |
20 | (Citrus unshiu × Citrus sinensis) × Citrus unshiu | Tsunokaori | TS | WTFRC10032731 |
21 | [(Citrus unshiu × Citrus sinensis) × Citrus reticulata] × Citrus reticulata | Setoka | ST | WTFRC10032730 |
KI a | Compound Name | KU | YU | LI | DA | PU | FC | RU | BY | MW | PO | SM | YN | JI | NA | KA | SE | PL | KY | SH | TS | ST |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
920 | α-Thujene | 0.2 | 0.1 | 0.6 | 0.1 | 0.1 | 0.1 | tr | tr | 0.2 | 0.1 | |||||||||||
926 | α-Pinene | 0.3 | 1.1 | 1.1 | 0.3 | 0.2 | 2.0 | 0.4 | 0.3 | 0.6 | 0.7 | 0.7 | 0.3 | 0.5 | 0.5 | 0.4 | 0.6 | 1.6 | 0.3 | 0.4 | 0.6 | 0.5 |
965 | Sabinene | tr | 0.1 | 0.1 | 0.3 | 0.1 | tr | 0.1 | tr | tr | 0.1 | tr | 0.2 | tr | 0.2 | 0.2 | 0.6 | |||||
970 | β-Pinene | 0.5 | 6.0 | 0.2 | 1.6 | 0.1 | 0.9 | 0.3 | 0.3 | 0.3 | 2.0 | 0.2 | 0.9 | 0.1 | 7.6 | tr | 0.3 | 0.4 | ||||
986 | β-Myrcene | 1.3 | 1.3 | 1.0 | 21.6 | 28.1 | 1.3 | 19.5 | 1.2 | 1.2 | 1.3 | 1.3 | 1.2 | 1.1 | 1.2 | 1.3 | 0.8 | 1.2 | 1.4 | 1.2 | 1.1 | |
1024 | α-Terpinene | 0.4 | 0.3 | 0.5 | 0.3 | tr | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | tr | 0.1 | 0.6 | 0.1 | 0.2 | 0.2 | 0.4 | |||
1034 | m-Cymene | 0.6 | 1.3 | tr | 0.8 | tr | 0.3 | 0.1 | 0.4 | tr | 0.2 | 0.1 | 1.9 | 1.3 | 0.1 | |||||||
1041 | D-Limonene | 97.2 | 78.0 | 69.0 | 76.3 | 68.8 | 59.2 | 93.5 | 77.1 | 90.6 | 90.5 | 89.3 | 95.7 | 92.4 | 90.4 | 95.2 | 92.0 | 50.9 | 96.5 | 94.2 | 89.2 | 91.1 |
1047 | cis-β-Ocimene | tr | 0.1 | 1.2 | 0.1 | 0.1 | tr | tr | 0.1 | |||||||||||||
1058 | trans-β-Ocimene | tr | 0.3 | 0.1 | 0.4 | 0.2 | 1.8 | 0.4 | 0.5 | 0.1 | 0.1 | 0.1 | tr | 0.4 | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | 0.4 | 0.2 | 0.1 |
1068 | γ-Terpinene | tr | 11.5 | 9.7 | tr | 0.1 | 27.3 | 0.7 | 0.1 | 4.6 | 5.1 | 5.5 | 0.2 | 0.1 | 5.0 | 0.1 | 3.4 | 17.6 | 0.1 | 0.4 | 3.9 | 0.8 |
1090 | Terpinolene | tr | 0.7 | 1.0 | 0.1 | 0.2 | 1.3 | 0.3 | 0.1 | 0.3 | 0.3 | 0.3 | 0.1 | 0.1 | 0.4 | 0.2 | 0.2 | 1.9 | 0.1 | 0.1 | 0.3 | 0.2 |
1099 | Linalool | 0.1 | 2.0 | 0.4 | 0.1 | 0.2 | 0.1 | 0.2 | 0.4 | 0.4 | 0.7 | 0.1 | 0.4 | 0.7 | 0.2 | 0.6 | 0.3 | 0.7 | 0.1 | 0.5 | 0.3 | 1.0 |
1179 | Terpinen-4-ol | tr | 0.3 | 1.2 | tr | 0.1 | 0.5 | 1.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 1.7 | 0.2 | 0.7 | 0.7 | 1.8 |
1194 | α-Terpineol | 0.3 | 1.0 | 3.3 | 0.2 | 0.4 | 0.7 | 0.6 | 0.3 | 0.4 | 0.3 | 0.3 | 0.6 | 0.5 | 0.8 | 0.6 | 1.0 | 5.9 | 0.5 | 0.5 | 0.4 | 0.5 |
1243 | (Z)-Citral | 1.4 | 0.1 | 0.3 | 1.7 | |||||||||||||||||
1273 | (E)-Citral | 2.2 | 0.1 | 0.3 | 2.4 | |||||||||||||||||
1362 | Neryl acetate | 0.3 | 0.1 | tr | 0.9 | 0.1 | 0.1 | |||||||||||||||
1395 | β-Elemene | tr | 0.1 | tr | tr | tr | 0.5 | tr | 0.7 | tr | 1.0 | 0.1 | 0.1 | tr | 0.1 | tr | 0.1 | 0.1 | ||||
1513 | β-Bisabolene | tr | 0.1 | 0.1 | 0.1 | 0.1 | tr | 0.5 | ||||||||||||||
Monoterpene hydrocarbons | 99.0 | 95.1 | 90.0 | 98.9 | 97.9 | 96.4 | 97.3 | 98.6 | 98.0 | 98.4 | 98.2 | 97.9 | 96.8 | 98.1 | 98.1 | 98.1 | 83.7 | 98.4 | 97.5 | 97.4 | 95.4 | |
Oxygenated monoterpenes | 0.5 | 3.5 | 9.1 | 0.6 | 1.2 | 1.7 | 2.4 | 0.9 | 1.0 | 1.3 | 0.5 | 1.6 | 1.5 | 1.4 | 1.6 | 1.6 | 13.4 | 1.1 | 2.2 | 2.0 | 4.0 | |
Sesquiterpene hydrocarbons | 0.2 | 0.9 | 0.3 | 0.2 | tr | 0.5 | 0.2 | 0.2 | 0.8 | tr | 1.1 | 0.4 | 1.3 | 0.2 | 0.1 | 0.1 | 1.5 | 0.1 | 0.1 | 0.2 | 0.1 | |
Oxygenated sesquiterpenes | 0.1 | 0.2 | 0.5 | tr | tr | tr | tr | tr | tr | tr | tr | tr | 0.1 | 0.1 | tr | tr | 1.2 | 0.1 | tr | 0.1 | tr | |
Unknown compounds | 0.2 | 0.4 | 0.2 | 0.3 | 0.9 | 1.4 | 0.2 | 0.3 | 0.1 | 0.2 | 0.2 | 0.1 | 0.3 | 0.2 | 0.2 | 0.1 | 0.3 | 0.4 | 0.2 | 0.3 | 0.5 |
Sample | TPC (mg GAE/100 g) | DPPH (IC50, mg/mL) |
---|---|---|
KU | 244.56 ± 14.29 * | 2215.52 ± 203.67 * |
YU | 360.04 ± 24.75 * | 462.07 ± 33.48 * |
LI | 306.43 ± 18.90 * | 1612.08 ± 2.16 * |
DA | 310.55 ± 12.37 * | 165.86 ± 12.49 * |
PU | 277.56 ± 14.29 * | 1719.85 ± 196.09 * |
FC | 318.80 ± 18.90 * | 1185.47 ± 150.95 * |
RU | 265.19 ± 7.14 * | 536.91 ± 54.30 * |
BY | 281.68 ± 37.80 * | 304.25 ± 20.41 * |
MW | 265.19 ± 18.90 * | 305.44 ± 28.38 * |
PO | 314.68 ± 43.45 * | 282.74 ± 15.05 * |
SM | 289.93 ± 7.14 * | 262.50 ± 10.53 * |
YN | 265.19 ± 14.29 * | 333.29 ± 48.96 * |
JI | 289.93 ± 18.90 * | 203.75 ± 63.39 * |
NA | 256.94 ± 18.90 * | 1059.67 ± 0.00 * |
KA | 219.82 ± 14.29 * | 515.45 ± 45.22 * |
SE | 269.31 ± 31.14 * | 432.89 ± 65.86 * |
PL | 339.42 ± 31.14 * | 3025.67 ± 153.06 * |
KY | 223.94 ± 12.37 * | 704.05 ± 40.37 * |
SH | 314.68 ± 18.90 * | 148.60 ± 8.20 * |
TS | 327.05 ± 14.29 * | 221.56 ± 16.53 * |
ST | 322.92 ± 21.43 * | 86.17 ± 4.87 * |
Sample | ABTS (IC50, mg/mL) |
---|---|
KU | 12.08 ± 2.13 * |
YU | 0.28 ± 0.03 * |
LI | 4.98 ± 0.48 * |
DA | 0.52 ± 0.18 * |
PU | 4.83 ± 1.00 * |
FC | 2.79 ± 0.20 * |
RU | 2.44 ± 0.09 * |
BY | 1.34 ± 0.28 * |
MW | 1.04 ± 0.29 * |
PO | 0.60 ± 0.05 * |
SM | 0.84 ± 0.10 * |
YN | 1.02 ± 0.07 * |
JI | 0.66 ± 0.04 * |
NA | 3.36 ± 0.17 * |
KA | 4.49 ± 0.30 * |
SE | 0.80 ± 0.12 * |
PL | 5.16 ± 0.69 * |
KY | 6.04 ± 0.28 * |
SH | 0.72 ± 0.16 * |
TS | 0.56 ± 0.08 * |
ST | 0.16 ± 0.06 |
Ascorbic acid | 0.01 ± 0.00 * |
Sample | FRAP (mg/100 g) | Sample | FRAP (mg/100 g) |
---|---|---|---|
BY | 1624.78 ± 71.07 * | PO | 2302.55 ± 237.26 * |
DA | 1685.96 ± 74.72 * | PU | 1267.06 ± 77.77 * |
FC | 1620.07 ± 29.39 * | RU | 1690.67 ± 21.57 * |
JI | 1808.34 ± 58.79 * | SE | 1737.74 ± 63.67 * |
KA | 1549.47 ± 80.29 * | SH | 1770.69 ± 37.36 * |
KU | 1248.23 ± 120.64 * | SM | 1676.55 ± 94.02 * |
KY | 1257.65 ± 91.87 * | ST | 2213.12 ± 35.54 * |
LI | 425.49 ± 0.00 * | TS | 1690.67 ± 158.71 * |
MW | 2071.92 ± 155.54 * | YN | 2015.44 ± 45.39 * |
NA | 815.21 ± 29.39 * | YU | 1403.56 ± 64.71 * |
PL | 1290.60 ± 64.71 * |
Compound Name | DPPH (IC50, mg/mL) | ABTS (IC50, mg/mL) |
---|---|---|
Citronellal | 479.52 ± 9.13 | 5.29 ± 1.83 * |
Humulene | 376.77 ± 4.22 | 2.69 ± 0.19 ** |
Linalool | 813.71 ± 13.40 | 15.13 ± 4.95 * |
Nonanal | 1020.32 ± 410.20 | 30.19 ± 10.01 |
Octanal | 935.06 ± 35.13 | 12.59 ± 1.77 * |
Sabinene | 823.90 ± 0.00 | 15.70 ± 3.12 ** |
Terpinen-4-ol | 2026.76 ± 237.68 | 36.05 ± 4.79 ** |
α-Phellandrene | 204.30 ± 31.29 | 5.32 ± 0.05 ** |
α-Terpinene | 242.30 ± 30.28 | 0.21 ± 0.10 * |
β-Elemene | 451.89 ± 9.04 | 7.83 ± 1.09 ** |
β-Eudesmol | 595.26 ± 40.21 | 12.25 ± 0.18 ** |
β-Farnesene | 394.52 ± 58.13 | 7.43 ± 0.56 ** |
Ascorbic acid | 2.45 ± 0.77 * | 0.05 ± 0.01 ** |
Compound Name | FRAP (mg/100 g) |
---|---|
Citronellal | 843.45 ± 8.15 ** |
Humulene | 3418.06 ± 139.31 ** |
Linalool | 852.87 ± 14.12 ** |
Nonanal | 587.57 ± 16.30 ** |
Octanal | 1168.22 ± 29.39 ** |
Sabinene | 2180.18 ± 101.82 ** |
Terpinen-4-ol | 829.33 ± 8.15 ** |
α-Phellandrene | 4015.81 ± 129.41 ** |
α-Terpinene | 6519.82 ± 99.18 ** |
β-Elemene | 3625.15 ± 282.88 ** |
β-Eudesmol | 1224.70 ± 57.07 ** |
β-Farnesene | 3841.66 ± 66.73 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Park, M.-J. Antioxidant Effects of Essential Oils from the Peels of Citrus Cultivars. Molecules 2025, 30, 833. https://doi.org/10.3390/molecules30040833
Yang J, Park M-J. Antioxidant Effects of Essential Oils from the Peels of Citrus Cultivars. Molecules. 2025; 30(4):833. https://doi.org/10.3390/molecules30040833
Chicago/Turabian StyleYang, Jiyoon, and Mi-Jin Park. 2025. "Antioxidant Effects of Essential Oils from the Peels of Citrus Cultivars" Molecules 30, no. 4: 833. https://doi.org/10.3390/molecules30040833
APA StyleYang, J., & Park, M.-J. (2025). Antioxidant Effects of Essential Oils from the Peels of Citrus Cultivars. Molecules, 30(4), 833. https://doi.org/10.3390/molecules30040833