Nucleophilic Addition Reactions to 10-Acetonitrilium Derivative of nido-Carborane and Intramolecular NH⋯HB Interactions in N-Alkyl Amidines 10-RNHC(Me)=NH-7,8-C2B9H11
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of 10-MeC(OH)=NH-7,8-C2B9H11 (2)
3.3. Synthesis of (Et3NH)[10-MeC(=O)NH-7,8-C2B9H11] (3)
3.4. Synthesis of 10-MeOC(Me)=NH-7,8-C2B9H11 (4)
3.5. Synthesis of 10-EtOC(Me)=NH-7,8-C2B9H11 (5)
3.6. Synthesis of 10-MeNHC(Me)=NH-7,8-C2B9H11 (6)
3.7. Synthesis of 10-EtNHC(Me)=NH-7,8-C2B9H11 (7)
3.8. Synthesis of 10-Me2NC(Me)=NH-7,8-C2B9H11 (8)
3.9. Synthesis of 10-Et2NC(Me)=NH-7,8-C2B9H11 (9)
3.10. Synthesis of 10-(CH2)5NC(Me)=NH-7,8-C2B9H11 (10)
3.11. Synthesis of 10-O(CH2CH2)2NC(Me)=NH-7,8-C2B9H11 (11)
3.12. Single Crystal X-Ray Diffraction Study
3.13. Quantum Chemical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wee, K.-R.; Cho, Y.-J.; Jeong, S.; Kwon, S.; Lee, J.-D.; Suh, I.-H.; Kang, S.O. Carborane-based optoelectronically active organic molecules: Wide band gap host materials for blue phosphorescence. J. Am. Chem. Soc. 2012, 134, 17982–17990. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yan, H.; Zhao, Q. Carboranes as a tool to tune phosphorescence. Chem. Eur. J. 2016, 22, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Planas, J.G.; Teixidor, F.; Viñas, C. N,O-Type carborane-based materials. Crystals 2016, 6, 50. [Google Scholar] [CrossRef]
- Li, Z.; Ma, C.; Wen, Y.; Wei, Z.; Xing, X.; Chu, J.; Yu, C.; Wang, K.; Wang, Z.-K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Timofeev, S.V.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B. Bis(dicarbollide) complexes of transition metals as a platform for molecular switches. Study of complexation of 8,8′-bis(methylsulfanyl) derivatives of cobalt and iron bis(dicarbollides). Molecules 2020, 25, 5745. [Google Scholar] [CrossRef] [PubMed]
- Ochi, J.; Tanaka, K.; Chujo, Y. Recent progress in the development of solid-state luminescent o-carboranes with stimuli responsivity. Angew. Chem. Int. Ed. 2020, 59, 9841–9855. [Google Scholar] [CrossRef]
- Li, S.; Qiu, P.; Kang, J.-X.; Shi, Z.; Zhang, Y.; Ma, Y.; Chen, X. Halogenated sodium/lithium monocarba-closo-decaborates: Syntheses, characterization, and solid-state ionic conductivity. Mater. Chem. Front. 2021, 5, 8037–8046. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, T.; Duttwyler, S.; Zhang, Y. Supramolecular Cu(II)–dipyridyl frameworks featuring weakly coordinating dodecaborate dianions for selective gas separation. CrystEngComm 2021, 23, 282–291. [Google Scholar] [CrossRef]
- Zhang, X.; Rendina, L.M.; Müllner, M. Carborane-containing polymers: Synthesis, properties, and applications. ACS Polym. Au 2024, 4, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Lin, X.; Huang, J.; Zhang, L. Recent advances in carborane-based crystalline porous materials. Molecules 2024, 29, 3916. [Google Scholar] [CrossRef] [PubMed]
- Tolmachev, V.; Sjöberg, S. Polyhedral boron compounds as potential linkers for attachment of radiohalogens to targeting proteins and peptides. A review. Collect. Czech. Chem. Commun. 2002, 67, 913–935. [Google Scholar] [CrossRef]
- Řezáčová, P.; Pokorná, J.; Brynda, J.; Kožíšek, M.; Cígler, P.; Lepšík, M.; Fanfrlík, J.; Řezáč, J.; Grantz Šašková, K.; Sieglová, I.; et al. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. J. Med. Chem. 2009, 52, 7132–7141. [Google Scholar] [CrossRef] [PubMed]
- Scholz, M.; Hey-Hawkins, E. Carbaboranes as pharmacophores: Properties, synthesis, and application strategies. Chem. Rev. 2011, 111, 7035–7062. [Google Scholar] [CrossRef] [PubMed]
- Leśnikowski, Z.J. Challenges and opportunities for the application of boron clusters in drug design. J. Med. Chem. 2016, 59, 7738–7758. [Google Scholar] [CrossRef]
- Hu, K.; Yang, Z.; Zhang, L.; Xie, L.; Wang, L.; Xu, H.; Josephson, L.; Liang, S.H.; Zhang, M.-R. Boron agents for neutron capture therapy. Coord. Chem. Rev. 2020, 405, 213139. [Google Scholar] [CrossRef]
- Kugler, M.; Nekvinda, J.; Holub, J.; El Anwar, S.; Das, W.; Šícha, V.; Pospíšilová, K.; Fábry, M.; Král, V.; Brynda, J.; et al. Inhibitors of CA IX enzyme based on polyhedral boron compounds. ChemBioChem 2021, 22, 2741–2761. [Google Scholar] [CrossRef] [PubMed]
- Fink, K.; Uchman, M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord. Chem. Rev. 2021, 431, 213684. [Google Scholar] [CrossRef]
- Oloo, S.O.; Smith, K.M.; Vicente, M.G.H. Multi-functional boron-delivery agents for boron neutron capture therapy of cancers. Cancers 2023, 15, 3277. [Google Scholar] [CrossRef]
- Cebula, J.; Fink, K.; Boratyński, J.; Goszczyński, T.M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023, 477, 214940. [Google Scholar] [CrossRef]
- Gos, M.; Cebula, J.; Goszczyński, T.M. Metallacarboranes in medicinal chemistry: Current advances and future perspectives. J. Med. Chem. 2024, 67, 8481–8501. [Google Scholar] [CrossRef]
- Semioshkin, A.A.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008, 977–992. [Google Scholar] [CrossRef]
- Druzina, A.A.; Shmalko, A.V.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. Russ. Chem. Rev. 2021, 90, 785–830. [Google Scholar] [CrossRef]
- Tsurubuchi, T.; Shirakawa, M.; Kurosawa, W.; Matsumoto, K.; Ubagai, R.; Umishio, H.; Suga, Y.; Yamazaki, J.; Arakawa, A.; Maruyama, Y.; et al. Evaluation of a novel boron-containing α-D-mannopyranoside for BNCT. Cells 2020, 9, 1277. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Sivaev, I.B.; Dubey, R.D.; Semioshkin, A.; Shmal’ko, A.V.; Kosenko, I.D.; Lebedeva, K.V.; Mandal, S.; Sreejyothi, P.; Sarkar, A.; et al. Boron-containing lipids and liposomes: New conjugates of cholesterol with polyhedral boron hydrides. Chem. Eur. J. 2020, 26, 13832–13841. [Google Scholar] [CrossRef]
- Nakagawa, F.; Kawashima, H.; Morita, T.; Nakamura, H. Water-soluble closo-docecaborate-containing pteroyl derivatives targeting folate receptor-positive tumors for boron neutron capture therapy. Cells 2020, 9, 1615. [Google Scholar] [CrossRef]
- Novopashina, D.S.; Vorobyeva, M.A.; Lomzov, A.A.; Silnikov, V.N.; Venyaminova, A.G. Terminal mono- and bis-conjugates of oligonucleotides with closo-dodecaborate: Synthesis and physico-chemical properties. Int. J. Mol. Sci. 2021, 22, 182. [Google Scholar] [CrossRef] [PubMed]
- Cebula, J.; Fink, K.; Goldeman, W.; Szermer-Olearnik, B.; Nasulewicz-Goldeman, A.; Psurski, M.; Cuprych, M.; Kędziora, A.; Dudek, B.; Bugla-Płoskońska, G.; et al. Structural patterns enhancing the antibacterial activity of metallacarborane-based antibiotics. J. Med. Chem. 2023, 66, 14948–14962. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Kashiwagi, H.; Morita, T.; Fukuo, Y.; Okada, S.; Miura, K.; Matsumoto, Y.; Sugawara, Y.; Enomoto, T.; Suzuki, M.; et al. Efficient neutron capture therapy of glioblastoma with pteroyl-closo-dodecaborate-conjugated 4-(p-iodophenyl)butyric acid (PBC-IP). J. Control. Release 2023, 360, 249–259. [Google Scholar] [CrossRef]
- Garaev, T.M.; Yudin, I.I.; Breslav, N.V.; Grebennikova, T.V.; Matveev, E.Y.; Eshtukova-Shcheglova, E.A.; Avdeeva, V.V.; Zhizhin, K.Y.; Kuznetsov, N.T. In vitro study of antiviral properties of compounds based on 1,4-dioxane derivative of closo-decaborate anion with amino acid ester residues against influenza virus A/IIV-Orenburg/83/2012(H1N1)pdm09. Molecules 2024, 29, 5886. [Google Scholar] [CrossRef]
- Nishimura, K.; Tanaka, S.; Miura, K.; Okada, S.; Suzuki, M.; Nakamura, H. A Water-soluble small molecule boron carrier targeting biotin receptors for neutron capture therapy. ACS Omega, 2024; in press. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Sivaev, I.B.; Bregadze, V.I. Nitrilium derivatives of polyhedral boron compounds (boranes, carboranes, metallocarboranes): Synthesis and reactivity. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 983–988. [Google Scholar] [CrossRef]
- Nelyubin, A.V.; Klyukin, I.N.; Zhdanov, A.P.; Grigor’ev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Synthesis of substituted derivatives of closo-decaborate anion with a peptide bond: The way towards designing biologically active boron-containing compounds. Russ. J. Inorg. Chem. 2019, 64, 1499–1506. [Google Scholar] [CrossRef]
- Nelyubin, A.V.; Klyukin, I.N.; Novikov, A.S.; Zhdanov, A.P.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Nucleophilic addition of amino acid esters to nitrilium derivatives of closo-decaborate anion. Mendeleev Commun. 2021, 31, 201–203. [Google Scholar] [CrossRef]
- Nelyubin, A.V.; Selivanov, N.A.; Bykov, A.Y.; Klyukin, I.N.; Kubasov, A.S.; Zhdanov, A.P.; Zhizhin, K.Y.; Kuznetsov, N.T. New method for synthesis of N-borylated amino acids based on closo-decaborate and closo-dodecaborate anions. Russ. J. Inorg. Chem. 2022, 67, 1776–1784. [Google Scholar] [CrossRef]
- Nelyubin, A.V.; Selivanov, N.A.; Bykov, A.Y.; Klyukin, I.N.; Novikov, A.S.; Zhdanov, A.P.; Karpechenko, N.Y.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Primary amine nucleophilic addition to nitrilium closo-dodecaborate [B12H11NCCH3]−: A Simple and effective route to the new BNCT drug design. Int. J. Mol. Sci. 2021, 22, 13391. [Google Scholar] [CrossRef]
- Laskova, J.; Ananiev, I.; Kosenko, I.; Serdyukov, A.; Stogniy, M.; Sivaev, I.; Grin, M.; Semioshkin, A.; Bregadze, V.I. Nucleophilic addition reactions to nitrilium derivatives [B12H11NCCH3]− and [B12H11NCCH2CH3]−. Synthesis and structures of closo-dodecaborate-based iminols, amides and amidines. Dalton Trans. 2022, 51, 3051–3059. [Google Scholar] [CrossRef]
- Grimes, R.N. Metallacarboranes in the new millennium. Coord. Chem. Rev. 2000, 200–202, 773–811. [Google Scholar] [CrossRef]
- Satapathy, R.; Dash, B.D.; Maguire, J.A.; Hosmane, N.S. Advances in the metallacarborane chemistry of f-block elements. Dalton Trans. 2010, 39, 6613–6625. [Google Scholar] [CrossRef] [PubMed]
- Grimes, R.N. Carboranes, 2nd ed.; Academic Press: London, UK, 2016; pp. 711–903. [Google Scholar] [CrossRef]
- Kar, S.; Pradhan, A.N.; Ghosh, G. Polyhedral metallaboranes and metallacarboranes. In Comprehensive Organometallic Chemistry IV; Elsevier: Amsterdam, The The Netherlands, 2022; Volume 9, pp. 263–369. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Sivaev, I.B.; Bregadze, V.I. Nucleophilic addition reactions to the ethylnitrilium derivative of nido-carborane 10-EtC≡N-7,8-C2B9H11. New J. Chem. 2018, 42, 17958–17967. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Godovikov, I.A.; Sivaev, I.B.; Bregadze, V.I. Synthesis of novel carboranyl amidines. J. Organomet. Chem. 2020, 909, 121111. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Markov, V.Y.; Sivaev, I.B. Synthesis and crystal structures of nickel(II) and palladium(II) complexes with o-carboranyl amidine ligands. Dalton Trans. 2021, 50, 4967–4975. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Erokhina, S.A.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. 10-NCCH2CH2OCH2CH2C≡N-7,8-C2B9H11: Synthesis and reactions with various nucleophiles. Polyhedron 2019, 174, 114170. [Google Scholar] [CrossRef]
- Young, D.C.; Howe, D.V.; Hawthorne, M.F. Ligand derivatives of (3)-1,2-dicarbadodecahydroundecaborate(-1). J. Am. Chem. Soc. 1969, 91, 859–862. [Google Scholar] [CrossRef]
- Frank, R.; Auer, H.; Hey-Hawkins, E. Functionalisation of the nido-dicarbaborate anion nido-7,8-C2B9H12− by hydride abstraction. J. Organomet. Chem. 2013, 747, 217–224. [Google Scholar] [CrossRef]
- Zhdanov, A.P.; Lisovsky, M.V.; Goeva, L.V.; Razgonyaeva, G.A.; Polyakova, I.N.; Zhizhin, K.Y.; Kuznetsov, N.T. Nucleophilic addition of alcohols to the C-N multiple bonds of the nitrilium substituent in the anion [2-B10H9(N≡CMe)]−. Russ. Chem. Bull. 2009, 58, 1694–1700. [Google Scholar] [CrossRef]
- Zhdanov, A.P.; Klyukin, I.N.; Bykov, A.Y.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Nucleophilic addition of alcohols to anionic [2-B10H9NCR]− (R = Et, t-Bu): An approach to producing new borylated imidates. Polyhedron 2017, 123, 176–183. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Godovikov, I.A.; Bregadze, V.I. Synthesis of 10-methylsulfide and 10-alkylmethylsulfonium nido-carborane derivatives: B–H···π interactions between the B–H–B hydrogen atom and alkyne group in 10-RC≡CCH2S(Me)-7,8-C2B9H11. Eur. J. Inorg. Chem. 2017, 2017, 4436–4443. [Google Scholar] [CrossRef]
- Zhdanov, A.O.; Polyakova, I.N.; Razgonyaeva, G.A.; Zhizhin, K.Y.; Kuznetsov, N.T. Reactions of nucleophilic addition of primary amines to the nitrilium derivative of the closo-decaborate anion [2-B10H9(N≡CCH3)]−. Russ. J. Inorg. Chem. 2011, 56, 847–855. [Google Scholar] [CrossRef]
- Voinova, V.V.; Klyukin, I.N.; Zhdanov, A.P.; Grigor’ev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Synthesis of new boron-containing ligands and their hafnium(IV) complexes. Russ. J. Inorg. Chem. 2020, 65, 839–845. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Wang, T.; Liu, J.; Spingler, B.; Duttwyler, S. Synthesis and structural characterization of amidine, amide, urea and isocyanate derivatives of the amino-closo-dodecaborate anion [B12H11NH3]−. Molecules 2018, 23, 3137. [Google Scholar] [CrossRef]
- Ryabchikova, M.N.; Nelyubin, A.V.; Smirnova, A.V.; Finogenova, Y.A.; Skribitsky, V.A.; Shpakova, K.E.; Kubasov, A.S.; Zhdanov, A.P.; Lipengolts, A.A.; Grigorieva, E.Y.; et al. Preparation of closo-dodecaborate anion conjugate with ethyl glycinate and study of its biodistribution in melanoma model B16F10. Russ. J. Inorg. Chem. 2024, 69. [Google Scholar] [CrossRef]
- Šícha, V.; Plešek, J.; Kvíčalová, M.; Císařová, I.; Grüner, B. Boron(8) substituted nitrilium and ammonium derivatives, versatile cobalt bis(1,2-dicarbollide) building blocks for synthetic purposes. Dalton Trans. 2009, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Anufriev, S.A.; Bogdanova, E.V.; Gorodetskaya, N.A.; Anisimov, A.A.; Suponitsky, K.Y.; Grishin, I.D.; Sivaev, I.B. Charge-compensated nido-carborane derivatives in the synthesis of iron(II) bis(dicarbollide) complexes. Dalton Trans. 2024, 53, 3363–3376. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Erokhina, S.A.; Suponitsky, K.Y.; Godovikov, I.A.; Filippov, O.A.; Fabrizi de Biani, F.; Corsini, M.; Chizhov, A.O.; Sivaev, I.B. Methylsulfanyl-stabilized rotamers of cobalt bis(dicarbollide). Eur. J. Inorg. Chem. 2017, 2027, 4444–4451. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Bregadze, V.I. Practical synthesis of 9-methylthio-7,8-nido-carborane [9-MeS-7,8-C2B9H11]−. Some evidences of BH···X hydride-halogen bonds in 9- XCH2(Me)S-7,8-C2B9H11 (X = Cl, Br, I). J. Organomet. Chem. 2017, 849–850, 315–323. [Google Scholar] [CrossRef]
- Zhdanov, A.P.; Nelyubin, A.V.; Klyukin, I.N.; Selivanov, N.A.; Bortnikov, E.O.; Grigoriev, M.S.; Zhizhin, K.Y.; Kuznetsov, N.T. Nucleophilic addition reaction of secondary amines to acetonitrilium closo-decaborate [2-B10H9NCCH3]−. Russ. J. Inorg. Chem. 2019, 64, 841–846. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Prikaznov, A.V.; Anufriev, S.A. On relative electronic effects of polyhedral boron hydrides. J. Organomet. Chem. 2013, 747, 254–256. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals; Butterworth Heinemann: Burlington, VT, USA, 2009. [Google Scholar]
- Bruker AXS Inc. APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Kudin, K.N., Jr.; Burant, J.C.; Millam, J.M.; et al. Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, UK, 2004. [Google Scholar]
- Suponitsky, K.Y.; Burakov, N.I.; Kanibolotsky, A.L.; Mikhailov, V.A. Multiple noncovalent bonding in halogen complexes with oxygen organics. I. Tertiary amides. J. Phys. Chem. A 2016, 120, 4179–4190. [Google Scholar] [CrossRef]
- Sheremetev, A.B.; Aleksandrova, N.S.; Semyakin, S.S.; Suponitsky, K.Y.; Lempert, D.B. Synthesis and characterization of 3-(5-(fluorodinitromethyl)-1H-1,2,4-triazol-3-yl)-4-nitrofurazan: A novel promising energetic component of boron-based fuels for rocket ramjet engines. Chem. Asian J. 2019, 14, 4255–4261. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. AIMAll, version 15.05.18; TK Gristmill Software: Overland Park, KS, USA, 2015.
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Rozas, I.; Elguero, J.; Molins, E. About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions. Chem. Phys. Lett. 2001, 336, 457–461. [Google Scholar] [CrossRef]
- Lyssenko, K.A. Analysis of supramolecular architectures: Beyond molecular packing diagrams. Mendeleev Commun. 2012, 22, 1–7. [Google Scholar] [CrossRef]
Bond (Å) or Angle (deg) | Compound 4 (X = O(1)) | Compound 6 (X = N(2)) | Compound 7 (X = N(2)) | |||
---|---|---|---|---|---|---|
X-Ray | Calcd. | X-Ray | Calcd. | X-Ray | Calcd. | |
B(10)-N(1) | 1.528(2) | 1.533 | 1.513(3) | 1.523 | 1.514(2) | 1.522 |
N(1)=C(1) | 1.294(2) | 1.286 | 1.315(3) | 1.308 | 1.318(2) | 1.309 |
C(1)-X | 1.313(2) | 1.318 | 1.324(3) | 1.321 | 1.322(2) | 1.321 |
B(11)-B(10)-N(1)-C(1) | −104.1(2) | −108.8 | −102.1(3) | 1142.4 | −101.8(2) | −137.3 |
B(10)-N(1)-C(1)-X | 179.5(2) | −179.4 | −3.0(4) | 3.2 | −4.4(2) | 2.9 |
B(10)-N(1)-C(1)-C(2) | −2.1(3) | 1.1 | 175.9(2) | −176.7 | 175.7(2) | −177.3 |
N(1)-C(1)-X-C(3) | −177.4(2) | 179.1 | 176.9(2) | −177.6 | 175.2(2) | −175.9 |
Bond (Å) or Angle (deg) | Compound 8 | Compound 9 | Compound 10 | Compound 11 | |||||
---|---|---|---|---|---|---|---|---|---|
X-Ray | Calc. | X-Ray | Calc. | X-Ray Mol. A | X-Ray Mol. A’ | Calc. | X-Ray | Calc. | |
B(10)-N(1) | 1.518(2) | 1.529 | 1.516(2) | 1.528 | 1.518(2) | 1.518(2) | 1.530 | 1.520(2) | 1.531 |
N(1)=C(1) | 1.329(2) | 1.306 | 1.324(2) | 1.307 | 1.319(2) | 1.319(2) | 1.306 | 1.325(2) | 1.303 |
C(1)-N(2) | 1.324(2) | 1.337 | 1.330(2) | 1.337 | 1.331(2) | 1.331(2) | 1.342 | 1.330(2) | 1.344 |
B(11)-B(10)-N(1)-C(1) | −102.7(2) | −109.2 | −96.4(2) | −114.8 | −93.8(2) | −97.3(2) | −109.5 | −87.1(2) | −108.3 |
B(10)-N(1)-C(1)-N(2) | 175.9(2) | −177.2 | −173.6(2) | −176.9 | 177.5(2) | 167.4(2) | 175.9 | 168.9(2) | 175.4 |
B(10)-N(1)-C(1)-C(2) | −4.3(2) | 2.7 | 4.5(2) | 3.0 | −2.3(3) | −13.9(2) | −3.4 | −10.2(2) | −4.0 |
N(1)-C(1)-N(2)-C(3) | 176.4(2) | −175.6 | −160.4(2) | 179.7 | 5.2(2) | −7.6(2) | −0.7 | −0.5(2) | 2.2 |
N(1)-C(1)-N(2)-C(4) | −3.5(2) | 2.8 | - | - | - | - | - | - | - |
N(1)-C(1)-N(2)-C(5) | - | - | 10.7(2) | 0.2 | 170.2(2) | -176.5(2) | 165.3 | 171.3(2) | 163.8 |
[B] | B-N(1)H, Å | N(1)H=C(1), Å | C(1)-N(2), Å | Ref. |
---|---|---|---|---|
closo-decaboran-2-yl | 1.5366(19) | 1.3079(18) | 1.3455(17) | [58] |
closo-dodecaboranyl | 1.5309(15) | 1.3177(13) | 1.3400(13) | [36] |
nido-carboran-10-yl | 1.5202(16) | 1.3254(16) | 1.3295(15) | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakholkov, K.R.; Bogdanova, E.V.; Stogniy, M.Y.; Suponitsky, K.Y.; Anufriev, S.A.; Sivaev, I.B.; Bregadze, V.I. Nucleophilic Addition Reactions to 10-Acetonitrilium Derivative of nido-Carborane and Intramolecular NH⋯HB Interactions in N-Alkyl Amidines 10-RNHC(Me)=NH-7,8-C2B9H11. Molecules 2025, 30, 828. https://doi.org/10.3390/molecules30040828
Pakholkov KR, Bogdanova EV, Stogniy MY, Suponitsky KY, Anufriev SA, Sivaev IB, Bregadze VI. Nucleophilic Addition Reactions to 10-Acetonitrilium Derivative of nido-Carborane and Intramolecular NH⋯HB Interactions in N-Alkyl Amidines 10-RNHC(Me)=NH-7,8-C2B9H11. Molecules. 2025; 30(4):828. https://doi.org/10.3390/molecules30040828
Chicago/Turabian StylePakholkov, Kirill R., Ekaterina V. Bogdanova, Marina Yu. Stogniy, Kyrill Yu. Suponitsky, Sergey A. Anufriev, Igor B. Sivaev, and Vladimir I. Bregadze. 2025. "Nucleophilic Addition Reactions to 10-Acetonitrilium Derivative of nido-Carborane and Intramolecular NH⋯HB Interactions in N-Alkyl Amidines 10-RNHC(Me)=NH-7,8-C2B9H11" Molecules 30, no. 4: 828. https://doi.org/10.3390/molecules30040828
APA StylePakholkov, K. R., Bogdanova, E. V., Stogniy, M. Y., Suponitsky, K. Y., Anufriev, S. A., Sivaev, I. B., & Bregadze, V. I. (2025). Nucleophilic Addition Reactions to 10-Acetonitrilium Derivative of nido-Carborane and Intramolecular NH⋯HB Interactions in N-Alkyl Amidines 10-RNHC(Me)=NH-7,8-C2B9H11. Molecules, 30(4), 828. https://doi.org/10.3390/molecules30040828