Isolation and In Vitro Activity of Sesquiterpene Lactones from Eremanthus crotonoides as SARS-CoV-2 Protease Inhibitors and Cytotoxic Agents
Abstract
1. Introduction
2. Results and Discussion
2.1. Extraction Yield and Fractionation of Leaves
2.2. Chemical Characterization of E. crotonoides Crude Extract
2.3. Isolation and Identification of Sesquiterpene Lactones
2.4. Cytotoxicity Against Human Carcinoma Cells
2.5. Enzymatic Inhibition Against PLpro and 3CLpro
3. Materials and Methods
3.1. Collection, Preparation and Extraction of E. crotonoides
3.2. Fractionation of Crude Extracts Using the Liquid–Liquid Partitioning
3.3. Metabolic Profiling of the Crude Extract by High-Resolution UPLC-MSn
3.4. Isolation of Compounds
3.5. NMR Analysis
3.6. Biological Activities
3.6.1. Cytotoxic Activity Against Cancer Cells
3.6.2. Screening of Plant Extract, Fraction and Isolated Compounds for Inhibition of SARS-CoV-2 PLpro and 3CLpro Enzymatic Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loeuille, B.F.P. Eremanthus in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em. Available online: https://floradobrasil.jbrj.gov.br/FB5314 (accessed on 23 September 2022).
- Silva, E.L.; Lobo, J.F.R.; Vinther, J.M.; Borges, R.M.; Staerk, D. High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antidiabetic compounds in Eremanthus crotonoides (Asteraceae). Molecules 2016, 21, 782. [Google Scholar] [CrossRef]
- Lobo, J.F.; Castro, E.S.; Gouvea, D.R.; Fernandes, C.P.; Almeida, F.B.D.; de Amorim, L.M.; Burth, P.; Rocha, L.; Santos, M.G.; Pinto, A.C.; et al. Antiproliferative activity of Eremanthus crotonoides extracts and centratherin demonstrated in brain tumor cell lines. Rev. Bras. De Farm. 2012, 22, 1295–1300. [Google Scholar] [CrossRef]
- Valente, J.G.; da Silva, I.C.; Muzitano, M.F.; Guimarães, D.O.; Leal, I.C. Antibacterial, Antibiofilm, and Synergistic Effects of Eremanthus crotonoides Against Multidrug-Resistant Staphylococcus strains. Rev. Bras. Farm. 2021, 31, 486–491. [Google Scholar] [CrossRef]
- Araujo, M.H.D.; Simão, T.L.B.V.; Konno, T.U.P.; Guimarães, D.O.; Leal, I.C.R.; Lasunskaia, E.; Muzitano, M.F. Anti-mycobacterial and Anti-inflammatory Activity of Restinga Plants: A Dual Approach in Searching for New Drugs to Treat Severe Tuberculosis. Rodriguésia 2021, 72, e01152019. [Google Scholar] [CrossRef]
- Ramirez, D.A. Small molecules putative structure elucidation in endemic Colombian fruits: CFM-ID approach. Int. J. Food Prop. 2022, 25, 2604–2616. [Google Scholar] [CrossRef]
- Ren, Q.; Long, S. Chemical identification and quantification of Hu-Gu capsule by UHPLC-Q-TOF-MS and HPLC-DAD. Rev. Bras. De Farm. 2017, 27, 557–563. [Google Scholar] [CrossRef]
- Lee, H.J.; Pan, C.H.; Kim, E.S.; Kim, C.Y. Online High Performance Liquid Chromatography (HPLC)-ABTS Based Assay and HPLC-Electrospray Ionization Mass Spectrometry Analysis of Antioxidant Phenolic Compounds in Salsola komarovii. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 317–321. [Google Scholar] [CrossRef]
- Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci. 2018, 25, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Felipe, D.F.; Brambilla, L.Z.S.; Porto, C.; Pilau, E.J.; Cortez, D.A.G. Phytochemical analysis of Pfaffia glomerata inflorescences by LC-ESI-MS/MS. Molecules 2014, 19, 15720–15734. [Google Scholar] [CrossRef]
- Abrankó, L.; Szilvássy, B. Mass spectrometric profiling of flavonoid glycoconjugates possessing isomeric aglycones. J. Mass Spectrom. 2015, 50, 71–80. [Google Scholar] [CrossRef]
- Rauha, J.P.; Vuorela, H.; Kostiainen, R. Effect of eluent on the ionization efficiency of flavonoids by ion spray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization mass spectrometry. J. Mass Spectrom. 2001, 36, 1269–1280. [Google Scholar] [CrossRef]
- Crotti, A.E.; Fonseca, T.; Hong, H.; Staunton, J.; Galembeck, S.E.; Lopes, N.P.; Gates, P.J. The fragmentation mechanism of five-membered lactones by electrospray ionisation tandem mass spectrometry. Int. J. Mass Spectrom. 2004, 232, 271–276. [Google Scholar] [CrossRef]
- Spring, O.; Schilling, E.E. The origin of Helianthus × multiflorus and H. × laetiflorus (Asteraceae). Biochem. Syst. Ecol. 1990, 18, 19–23. [Google Scholar] [CrossRef]
- Spring, O. Sesquiterpene lactones from Helianthus tuberosus. Phytochemistry 1991, 30, 519–522. [Google Scholar] [CrossRef]
- Spring, O.; Edward, E.S. The sesquiterpene lactone chemistry of Helianthus sect. Atrorubentes (Asteraceae: Heliantheae). Biochem. Syst. Ecol. 1991, 19, 59–79. [Google Scholar] [CrossRef]
- Soares, A.C.F.; Silva, A.N.; Matos, P.M.; Silva, E.H.D.; Heleno, V.C.G.; Lopes, N.P.; Sass, D.C. Complete 1H and 13C NMR Structural Assignments for a Group of Four Goyazensolide-Type Furanoheliangolides. Química Nova 2012, 35, 2205–2209. [Google Scholar] [CrossRef]
- Santos Junior, F.M.; Covington, C.L.; de Albuquerque, A.C.F.; Lobo, J.F.; Borges, R.M.; de Amorim, M.B.; Polavarapu, P.L. Absolute Configuration of (−)-Centratherin, a Sesquiterpenoid Lactone, Defined by Means of Chiroptical Spectroscopy. J. Nat. Prod. 2015, 78, 2617–2623. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Patouret, R.; Barluenga, S.; Plank, M.; Loewith, R.; Winssinger, N. Identification of a Covalent Importin-5 Inhibitor, Goyazensolide, from a Collective Synthesis of Furanoheliangolides. ACS Cent. Sci. 2021, 7, 954–962. [Google Scholar] [CrossRef]
- Kolli, E.H.; León, F.; Benayache, F.; Estévez, S.; Quintana, J.; Estévez, F.; Brouard, I.; Bermejo, J.; Benayache, S. Cytotoxic sesquiterpene lactones and other constituents of Centaurea omphalotricha. J. Braz. Chem. Soc. 2012, 23, 977–983. [Google Scholar] [CrossRef]
- Ángeles, M.A.G.; Rafael-Pita, C.; Fernández, N.; Baixinho, J.D.; Anastácio, J.; Cankar, K.; Bosch, D.; Santons, C.N. Targeting proteases involved in the viral replication of SARS-CoV-2 by sesquiterpene lactones from chicory (Cichorium intybus L.). Food Funct. 2022, 13, 8977–8988. [Google Scholar]
- Moustaqil, M.; Ollivier, E.; Chiu, H.P.; Van, T.S.; Rudolffi-Soto, P.; Stevens, C.; Bhumkar, A.; Hunter, D.J.B.; Freiberg, A.N.; Jacques, D.; et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): Implications for disease presentation across species. Emerg. Microbes Infect. 2021, 10, 178–195. [Google Scholar] [CrossRef]
- Migheli, R.; Virdis, P.; Galleri, G.; Arru, C.; Lostia, G.; Coradduzza, D.; Muroni, M.R.; Pintore, G.; Podda, L.; Fozza, C.; et al. Antineoplastic Properties by Proapoptotic Mechanisms Induction of Inula viscosa and Its Sesquiterpene Lactones Tomentosin and Inuviscolide. Biomedicines 2022, 10, 2739. [Google Scholar] [CrossRef]
- Paço, A.; Brás, T.; Santos, J.O.; Sampaio, P.; Gomes, A.C.; Duarte, M.F. Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022, 27, 1142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xia, Y.; Yang, L.; He, J.; Li, Y.; Xia, C. Brevilin A, a Sesquiterpene Lactone, Inhibits the Replication of Influenza A Virus In Vitro and In Vivo. Viruses 2019, 11, 835. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cui, Q.; Cooper, L.; Zhang, P.; Lee, H.; Chen, Z.; Wang, Y.; Liu, X.; Rong, L.; Du, R. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci. 2021, 11, 45. [Google Scholar] [CrossRef]
- Wasilewicz, A.; Kirchweger, B.; Bojkova, D.; Abi Saad, M.J.; Langeder, J.; Butikofer, M.; Adelsberger, S.; Grienke, U.; Jr-Cinatl, J.; Petermann, O.; et al. Identification of Natural Products Inhibiting SARS-CoV-2 by Targeting Viral Proteases: A Combined in Silico and in Vitro Approach. J. Nat. Prod. 2023, 86, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.T.; Ricardo, M.G.; Rennert, R.; Frolov, A.; Porzel, A.; Brandt, W.; Stark, P.; Westermann, B.; Arnold, N. Rare glutamic acid methyl ester peptaibols from Sepedonium ampullosporum damon KSH 534 exhibit promising antifungal and anticancer activity. Int. J. Mol. Sci. 2021, 22, 12718. [Google Scholar] [CrossRef]
- Ware, I.; Franke, K.; Hussain, H.; Morgan, I.; Rennert, R.; Wessjohann, L.A. Bioactive phenolic compounds from Peperomia obtusifolia. Molecules 2022, 27, 4363. [Google Scholar] [CrossRef]
Position | Centratherin | Goyazensolide | ||
---|---|---|---|---|
C | δ 13C [ppm] | δ 1H [ppm] m (J [Hz]) | δ 13C [ppm] | δ 1H [ppm] m (J [Hz]) |
1 | 207.5 | -- | 207.4 | -- |
2 | 107.6 | 5.92 s | 107.5 | 5.91 s |
3 | 187.1 | -- | 187.0 | -- |
4 | 137.0 | -- | 137.1 | -- |
5 | 135.3 | 6.23 dt (3.2; 1.7) | 135.2 | 6.22 dt (3.2, 1.7) |
6 | 83.6 | 5.36 dq-like (5.0, 2.4) | 83.4 | 5.33 dt (5.0, 2.5) |
7 | 52.3 | 3.82 dq-like (5.5, 2.8) | 52.2 | 3.84 dq (5.6, 2.8) |
8 | 74.9 | 4.49 dt-like (11.9, 2.2) | 75.2 | 4.51 dt (11.8, 2.3) |
9 | 44.7 | 9α-2.72 dd (13.9, 11.9) | 44.5 | 9α-2.72 dd (14.0, 11.8) |
9β-2.23 dd (14.0, 1.9) | 9β-2.24 dd (14.0, 2.0) | |||
10 | 91.4 | -- | 91.3 | -- |
11 | 136.0 | -- | 134.9 | -- |
12 | 171.0 | -- | 170.9 | -- |
13 | 125.6 | 5.61 d (2.6) | 125.7 | 5.65 d (2.7) |
6.15 d (3.0) | 6.14 d (3.1) | |||
14 | 20.8 | 1.51 s (1.8) | 20.8 | 1.51 s, 3H |
15 | 63.2 | 4.30 q-like (2H) | 63.2 | 4.31 q (2.2) |
1′ | 168.7 | -- | 168.3 | -- |
2′ | 128.0 | -- | 137.0 | -- |
3′ | 141.4 | 6.15–6.09 m | 127.1 | 6.06–6.03 m |
5.62 quint (1.6) | ||||
4′ | 15.9 | 1.87 dq (7.3, 1.6), 3H | 18.1 | 1.837 s, 3H |
5′ | 20.2 | 1.80 q (1.5), 3H | -- | -- |
Sample | Concentration | PC-3 MTT | PC-3 CV | HCT-116 MTT | HCT-116 CV |
---|---|---|---|---|---|
EBEC | 0.01 µg/mL | 126.8 ± 3.0 | 102.3 ± 2.9 | 112.0 ± 5.2 | 96.1 ± 1.3 |
EBEC | 50 µg/mL | 0.0 ± 11.1 | 0.0 ± 2.0 | 0.0 ± 2.7 | 0.0 ± 3.0 |
FDEC | 0.05 µg/mL | 98.0 ± 2.4 | 108.6 ± 6.8 | 105.0 ± 5.5 | 105.3 ± 6.1 |
FDEC | 50 µg/mL | 0.6 ± 31.3 | 0.0 ± 4.3 | 0.0 ± 3.0 | 0.0 ± 6.0 |
CENT | 0.01 µM | 100.0 ± 13.5 | 100.0 ± 3.6 | 100.0 ± 9.6 | 114.5 ± 5.6 |
CENT | 10 µM | 0.0 ± 11.4 | 0.0 ± 5.3 | 0.0 ± 21.7 | 3.5 ± 9.1 |
GOYA | 0.01 µM | 86.6 ± 4.7 | 89.5 ± 2.8 | 99.6 ± 5.9 | 113.0 ± 4.0 |
GOYA | 10 µM | 100.0 ± 18.0 | 91.4 ± 1.7 | 100.0 ± 5.8 | 92.1 ± 9.0 |
DGTN | 125 µg/mL (101.7 µM) | 0.0 ± 8.6 | 0.0 ± 7.1 | 0.0 ± 6.5 | 0.0 ± 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Moura, P.H.B.; Ximenes, N.G.d.R.; Santos, B.B.; Leal, C.M.; Constant, L.E.C.; Costa, S.d.S.; Pinto, S.C.; Muzitano, M.F.; Allonso, D.; Wessjohann, L.A.; et al. Isolation and In Vitro Activity of Sesquiterpene Lactones from Eremanthus crotonoides as SARS-CoV-2 Protease Inhibitors and Cytotoxic Agents. Molecules 2025, 30, 4053. https://doi.org/10.3390/molecules30204053
de Moura PHB, Ximenes NGdR, Santos BB, Leal CM, Constant LEC, Costa SdS, Pinto SC, Muzitano MF, Allonso D, Wessjohann LA, et al. Isolation and In Vitro Activity of Sesquiterpene Lactones from Eremanthus crotonoides as SARS-CoV-2 Protease Inhibitors and Cytotoxic Agents. Molecules. 2025; 30(20):4053. https://doi.org/10.3390/molecules30204053
Chicago/Turabian Stylede Moura, Patricia Homobono Brito, Natalie Giovanna da Rocha Ximenes, Beatriz Bastos Santos, Carla Monteiro Leal, Larissa Esteves Carvalho Constant, Stephany da Silva Costa, Shaft Corrêa Pinto, Michelle Frazao Muzitano, Diego Allonso, Ludger A. Wessjohann, and et al. 2025. "Isolation and In Vitro Activity of Sesquiterpene Lactones from Eremanthus crotonoides as SARS-CoV-2 Protease Inhibitors and Cytotoxic Agents" Molecules 30, no. 20: 4053. https://doi.org/10.3390/molecules30204053
APA Stylede Moura, P. H. B., Ximenes, N. G. d. R., Santos, B. B., Leal, C. M., Constant, L. E. C., Costa, S. d. S., Pinto, S. C., Muzitano, M. F., Allonso, D., Wessjohann, L. A., & Leal, I. C. R. (2025). Isolation and In Vitro Activity of Sesquiterpene Lactones from Eremanthus crotonoides as SARS-CoV-2 Protease Inhibitors and Cytotoxic Agents. Molecules, 30(20), 4053. https://doi.org/10.3390/molecules30204053