A Molecular Modeling Case Study on the Thermodynamic Partition of DIPNs Derived from Naphthalene and C3-Sources Using Non-Shape-Selective Acid Catalysts
Abstract
1. Introduction
- (a)
- naphthalene conversion (200 °C, 4 h): 91.0%; yield to IPNs: 37.5%, to DIPNs: 38.4%, to PIPNs: 5.0%, to Unsaturates: 4.3% and to Others: 5.8%,
- (b)
- the use of cyclohexane as a solvent,
- (c)
- the stoichiometric ratio of naphthalene/isopropanol = 1/2.
- (a)
- naphthalene conversion (250 °C, 4 h): 90.5%; yield to IPNs: 29.5%, to DIPNs: 46.4%, to PIPNs: 19.5%, and to Unsaturates: 4.7%.
- (b)
- no additional solvent,
- (c)
- a constant supply of propene.
2. Results
2.1. Relative Energies and Structural Properties of DIPN Isomers and Their Conformers
2.2. Thermodynamic Equilibrium Distribution of DIPN Isomers
3. Discussion
4. Conclusions
- Thermodynamic equilibrium partitions of DIPN isomers were obtained with B3LYP/6-31G*, B3PW91/6-31G*, and MP2/6-31G* calculations on the lowest energy conformers obtained with MMFF and cMMFF as pre-screening methods.
- Thermodynamic equilibrium partitions of DIPN isomers obtained with B3LYP/6-31G* and B3PW91/6-31G*, using MMFF as a pre-screening method, agree better with the experimental results obtained earlier than results obtained with cMMFF as a pre-screening method.
- The observed difference between the two methods is due to an effect of ~2 kJ/mol on the energy of the local geometry of a non-hindered β-isopropyl group on naphthalene.
- The DIPN case demonstrates what level of computational accuracy is required to obtain reliable thermodynamic equilibrium partitions of isomers.
- MP2/6-31G* is a remarkable outlier, due to the significantly lower energy differences between the DIPN isomers, leading to worse thermodynamic equilibrium partitions.
5. Materials and Methods
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MMFF | Merck Molecular Force Field [2,3,4,5,6] |
cMMFF | Corrected Merck Molecular Force Field [1] |
DFT | Density Functional Theory |
CD | Conformer Distribution |
DIPN | Diisopropylnaphthalene |
PIPN | Polyisopropylnaphthalene |
H-MOR | High (Temperature) Modulus of Rupture |
H-USY | H+-form Ultra Stable Y-type zeolite |
ZG-50 | Zeolitic catalyst Zeogrid-50 [11] page 80–87 |
References
- Hehre, T.; Klunzinger, P.E.; Deppmeier, B.; Ohlinger, W.; Hehre, W. Practical Machine Learning Strategies. I. Correcting MMFF Molecular Mechanics Model to More Accurately Provide Conformational Energy Differences in Flexible Organic Molecules. J. Comput. Chem. 2025, 46, e70016. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 33, 490. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. II. MMFF94 Van Der Waals and Electrostatic Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 33, 520. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. III. Molecular Geometries and Vibrational Frequencies for MMFF94. J. Comput. Chem. 1996, 33, 553. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. J. Comput. Chem. 1996, 33, 587. [Google Scholar] [CrossRef]
- Halgren, T.A. MMFF VII. Characterization of MMFF94, MMFF94s, and Other Widely Available Force Fields for Conformational Energies and for Intermolecular-Interaction Energies and Geometries. J. Comput. Chem. 1999, 20, 730–748. [Google Scholar] [CrossRef]
- Rezac, J.; Hobza, P. Describing Noncovalent Interactions Beyond the Common Approximations: How Accurate Is the “Gold Standard, CCSD(T) at the Complete Basis Set Limit? J. Chem. Theory Comput. 2013, 9, 2151–2155. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, C.P. An Exploration Towards a More Sustainable Process for Dimethyl Naphthalene-2,6-Dicarboxylate over Acidic zeolites PhD Thesis 2008. Available online: https://repository.tudelft.nl/person/Person_26cfc979-84b1-41ee-a5a0-36399c3f4ade?page=1&object_type= (accessed on 30 June 2025).
- Bouvier, C.; Buijs, W.; Gascon, J.; Kapteijn, F.; Gagea, B.C.; Jacobs, P.A.; Martens, J.A. Shape-selective diisopropylation of naphthalene in H-Mordenite: Myth or reality? J. Catal. 2010, 270, 60–66. [Google Scholar] [CrossRef]
- Brzozowski, R.; Buijs, W. Shape-selective synthesis of 2,6-diisopropylnaphthalene on H-mordenite catalysts. J. Catal. 2012, 292, 181–187. [Google Scholar]
- Kureha Website. Available online: https://www.kureha.co.jp/en/ (accessed on 29 April 2025).
- Franck, H.G.; Stadelhofer, J.W. Industrial Aromatic Chemistry, 1st ed.; Springer: Berlin, Germany, 1987; p. 329. [Google Scholar]
- Zheng, M.; Li, D.; Wang, Z.; Sun, Z.; Qian, J.; Zhang, Z.; Chen, Q. Separation of Diisopropylnaphthalene Isomers: Advances and Challenges in the Petrochemical Industry. ACS Omega 2025, 10, 10786–10795. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Brzozowski, R.; Dobrowolski, J.C.; Jamroz, M.H.; Skupinski, W.J. Studies on diisopropylnaphthalene substitutional isomerism. Mol. Catal. A 2001, 170, 95. [Google Scholar]
- Spartan’24 Is a Product of Wavefunction Inc: Irvine, CA, 2021. Available online: https://www.wavefun.com (accessed on 30 June 2025).
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1993, 48, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.J.; Ditchfield, R.; Radom, L.; Pople, J.A. Molecular Orbital Theory of the Electronic Structure of Organic Compounds. V. Molecular Theory of Bond Separation. J. Am. Chem. Soc. 1970, 92, 4796. [Google Scholar] [CrossRef]
Isomer | c | MMFF | cMMFF | B3LYP/6-31G* | B3PW91/6-31G* | MP2/6-31G* | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
rel E lei | rel E lec | rel E lei | rel E lec | rel E lei | rel E lec | rel E lei | rel E lec | rel E lei | rel E lec | ||
1,2-DIPN | 1 | 57.99 | 0.00 | 41.86 | 0.00 | 46.06 | 0.00 | 45.80 | 0.00 | 36.29 | 0.0 |
2 | 3.57 | 0.47 | 0.99 | 1.00 | 1.37 | ||||||
3 | 10.78 | 6.48 | 7.52 | 8.14 | 7.72 | ||||||
4 | 47.24 | 35.31 | 35.92 | 36.66 | 39.21 | ||||||
1,3-DIPN | 1 | 19.99 | 0.00 | 12.52 | 0.00 | 12.32 | 0.00 | 11.91 | 0.00 | 6.86 | 0.00 |
2 | 0.25 | 2.00 | 3.78 | 3.82 | 5.17 | ||||||
3 | 7.48 | 7.29 | 6.50 | 7.25 | 7.78 | ||||||
4 | 7.55 | 9.04 | 8.24 | 8.90 | 9.67 | ||||||
1,4-DIPN | 1 | 44.36 | 0.00 | 27.30 | 0.00 | 25.36 | 0.00 | 24.43 | 0.00 | 16.68 | 0.00 |
2 | 7.97 | 7.79 | 7.23 | 7.81 | 8.11 | ||||||
3 | 16.29 | 15.71 | 14.43 | 15.85 | 16.46 | ||||||
1,5-DIPN | 1 | 44.14 | 0.00 | 26.11 | 0.00 | 25.63 | 0.00 | 25.01 | 0.00 | 18.02 | 0.00 |
2 | 8.28 | 7.79 | 7.56 | 8.17 | 7.83 | ||||||
3 | 16.58 | 15.82 | 15.90 | 16.31 | 16.21 | ||||||
1,6-DIPN | 1 | 20.03 | 0.00 | 1.81 | 0.00 | 0.00 | 0.00 | ||||
2 | 0.10 | 13.37 | 0.00 | 12.01 | −1.84 | 11.46 | −1.81 | 7.87 | −1.82 | ||
3 | 7.21 | 8.75 | 6.82 | 7.52 | 7.45 | ||||||
4 | 7.31 | 6.94 | 4.99 | 5.64 | 2.60 | ||||||
1,7-DIPN | 1 | 19.83 | 0.00 | 1.10 | 0.00 | 0.00 | 0.00 | ||||
2 | 0.47 | 14.57 | 0.00 | 12.49 | −1.85 | 11.83 | −2.19 | 7.50 | −1.28 | ||
3 | 6.73 | 7.86 | 7.11 | 7.87 | 6.68 | ||||||
4 | 7.55 | 7.32 | 5.17 | 5.58 | 6.00 | ||||||
1,8-DIPN | 1 | 82.53 | 0.00 | 61.33 | 0.00 | 66.52 | 0.00 | 65.78 | 0.00 | 53.21 | 0.00 |
2 | 34.58 | 29.44 | 25.10 | 26.07 | 27.10 | ||||||
2,3-DIPN | 1 | 19.24 | 0.00 | 17.23 | 0.00 | 19.30 | 0.00 | 18.99 | 0.00 | 12.69 | 0.00 |
2 | 9.17 | 7.11 | 7.39 | 8.06 | 7.99 | ||||||
2,6-DIPN | 1 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
2 | 0.11 | −1.93 | −1.72 | −2.06 | −1.90 | ||||||
3 | 0.23 | −3.85 | 0.56 | −3.40 | 0.00 | −4.05 | 0.00 | −3.72 | |||
2,7-DIPN | 1 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | |||
2 | 0.15 | −1.93 | −2.06 | −2.11 | −1.91 | ||||||
3 | 0.28 | −3.83 | 0.00 | −4.04 | 0.14 | −4.08 | 0.16 | −3.73 |
Isomer | p | H-USY a | ZG-50. b | B3LYP/6-31G* | B3PW91/6-31G* | MP2/6-31G* | |||
---|---|---|---|---|---|---|---|---|---|
MMFF | cMMFF | MMFF | cMMFF | MMFF | cMMFF | ||||
% | |||||||||
1,2-DIPN | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1,3-DIPN | 4 | 5.5 | 8.9 | 9.4 | 4.1 | 10.4 | 4.2 | 22.4 | 11.9 |
1,4-DIPN | 2 | 0.7 | 0.0 | 0.2 | 0.1 | 0.2 | 0.1 | 0.9 | 0.5 |
1,5-DIPN | 2 | 2.0 | 0.4 | 0.2 | 0.1 | 0.2 | 0.1 | 0.7 | 0.3 |
1,6-DIPN | 4 | 5.2 | 7.1 | 6.3 | 4.4 | 7.3 | 4.8 | 10.9 | 9.2 |
1,7-DIPN | 4 | 4.9 | 6.4 | 5.6 | 3.9 | 6.1 | 4.3 | 13.8 | 10.1 |
1,8-DIPN | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2,3-DIPN | 2 | 3.5 | 0.8 | 0.8 | 0.3 | 0.9 | 0.4 | 2.5 | 1.3 |
2,6-DIPN | 2 | 36.3 | 38.4 | 39.1 | 40.5 | 38.3 | 43.8 | 24.9 | 34.0 |
2,7-DIPN | 2 | 42.2 | 38.1 | 38.4 | 46.7 | 36.7 | 42.3 | 23.9 | 32.6 |
Sum | 100.0 | 99.8 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Isomer | p | H-USY a | ASA. b | B3LYP/6-31G* | B3PW91/6-31G* | MP2/6-31G* | |||
---|---|---|---|---|---|---|---|---|---|
MMFF | cMMFF | MMFF | cMMFF | MMFF | cMMFF | ||||
% | |||||||||
1,2-DIPN | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1,3-DIPN | 4 | 3.8 | 11.1 | 10.8 | 5.2 | 11.8 | 5.4 | 22.7 | 13.1 |
1,4-DIPN | 2 | 0.1 | 0.3 | 0.3 | 0.1 | 0.3 | 0.2 | 1.2 | 0.7 |
1,5-DIPN | 2 | 0.1 | 0.2 | 0.3 | 0.1 | 0.3 | 0.1 | 0.9 | 0.5 |
1,6-DIPN | 4 | 7.5 | 7.3 | 7.6 | 5.6 | 8.6 | 6.0 | 11.8 | 10.4 |
1,7-DIPN | 4 | 4.9 | 5.9 | 6.8 | 5.0 | 7.2 | 5.5 | 14.6 | 11.3 |
1,8-DIPN | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2,3-DIPN | 2 | 0.4 | 0.6 | 1.1 | 0.5 | 1.2 | 0.5 | 3.0 | 1.7 |
2,6-DIPN | 2 | 40.3 | 38.8 | 36.9 | 39.0 | 36.0 | 41.8 | 23.4 | 31.7 |
2,7-DIPN | 2 | 42.9 | 35.6 | 36.3 | 44.4 | 34.6 | 40.5 | 22.5 | 30.6 |
Sum | 100.0 | 99.8 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buijs, W. A Molecular Modeling Case Study on the Thermodynamic Partition of DIPNs Derived from Naphthalene and C3-Sources Using Non-Shape-Selective Acid Catalysts. Molecules 2025, 30, 3606. https://doi.org/10.3390/molecules30173606
Buijs W. A Molecular Modeling Case Study on the Thermodynamic Partition of DIPNs Derived from Naphthalene and C3-Sources Using Non-Shape-Selective Acid Catalysts. Molecules. 2025; 30(17):3606. https://doi.org/10.3390/molecules30173606
Chicago/Turabian StyleBuijs, Wim. 2025. "A Molecular Modeling Case Study on the Thermodynamic Partition of DIPNs Derived from Naphthalene and C3-Sources Using Non-Shape-Selective Acid Catalysts" Molecules 30, no. 17: 3606. https://doi.org/10.3390/molecules30173606
APA StyleBuijs, W. (2025). A Molecular Modeling Case Study on the Thermodynamic Partition of DIPNs Derived from Naphthalene and C3-Sources Using Non-Shape-Selective Acid Catalysts. Molecules, 30(17), 3606. https://doi.org/10.3390/molecules30173606