Design and Application of Superhydrophobic Magnetic Nanomaterials for Efficient Oil–Water Separation: A Critical Review
Abstract
1. Introduction
2. Theoretical Foundations of Superhydrophobic Magnetic Nanomaterials
2.1. Definition and Principles of Superhydrophobicity
2.2. Physicochemical Properties of Magnetic Nanomaterials
2.3. Synergistic Combination of Superhydrophobicity and Magnetic Properties
3. Methods of Synthesis and Modification of SHMNMs
3.1. The Basis of Superhydrophobic Materials
3.2. Methods of Synthesis of SHMNMs
3.2.1. Sol–Gel Method
3.2.2. Electrospinning
3.2.3. Dip-Coating Method
3.2.4. Laser–Chemical Processing
3.2.5. Using Biomass
4. Application of SHMNMs in Oil and Water Separation
4.1. Sorbents
4.2. Sponges and Foams
4.3. Membranes
5. Prospects and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, B.; Sun, Q.; Zhong, Q.; Mu, P.; Li, J. Current Research Situation and Future Prospect of Superwetting Smart Oil/Water Separation Materials. J. Mater. Chem. A 2022, 10, 20190–20217. [Google Scholar] [CrossRef]
- Hettithanthri, O.; Nguyen, T.B.T.; Fiedler, T.; Phan, C.; Vithanage, M.; Pallewatta, S.; Nguyen, T.M.L.; Nguyen, P.Q.A.; Bolan, N. A Review of Oil Spill Dynamics: Statistics, Impacts, Countermeasures, and Weathering Behaviors. Asia-Pac. J. Chem. Eng. 2024, 19, e3128. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Oil and Grease Removal from Wastewaters: Sorption Treatment as an Alternative to State-of-the-Art Technologies. A Critical Review. Chem. Eng. J. 2016, 297, 229–255. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Kurnia, K.A.; Siagian, U.W.R.; Ismadji, S.; Wenten, I.G. Membrane Fouling and Fouling Mitigation in Oil–Water Separation: A Review. J. Environ. Chem. Eng. 2022, 10, 107532. [Google Scholar] [CrossRef]
- Fan, Q.; Lu, T.; Deng, Y.; Zhang, Y.; Ma, W.; Xiong, R.; Huang, C. Bio-Based Materials with Special Wettability for Oil-Water Separation. Sep. Purif. Technol. 2022, 297, 121445. [Google Scholar] [CrossRef]
- Li, Z.-T.; Wu, H.-T.; Chen, W.-Y.; He, F.-A.; Li, D.-H. Preparation of Magnetic Superhydrophobic Melamine Sponges for Effective Oil-Water Separation. Sep. Purif. Technol. 2019, 212, 40–50. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.; Wang, J.; Ma, L.; Zhao, Y.; Zhou, Y.; Yang, Z.; Qu, M. Eco-Friendly, Magnetic-Driven, Superhydrophobic Sponge for Oil/Water Separation and Emulsion Purification. J. Mater. Sci. 2020, 55, 6708–6720. [Google Scholar] [CrossRef]
- Cheng, Y.; Cai, Y.; Wang, Z.; Lu, X.; Xia, H. Ultralight NiCo@rGO Aerogel Microspheres with Magnetic Response for Oil/Water Separation. Chem. Eng. J. 2022, 430, 132894. [Google Scholar] [CrossRef]
- Functional Materials for the Oil and Gas Industry; Dwivedi, D., Ranjan, A., Sangwai, J., Eds.; Emerging Trends & Technologies in Petroleum Engineering; Characterization and Applications; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-03-215100-7. [Google Scholar]
- Wang, B.; Liang, W.; Guo, Z.; Liu, W. Biomimetic Super-Lyophobic and Super-Lyophilic Materials Applied for Oil/Water Separation: A New Strategy beyond Nature. Chem. Soc. Rev. 2015, 44, 336–361. [Google Scholar] [CrossRef]
- Alimohammadian, M.; Azizian, S.; Sohrabi, B. Preparation of the Graphene-Based Smart Hydrophobic Nanocomposite and Its Application in Oil/Water Separation. Sci. Rep. 2023, 13, 19816. [Google Scholar] [CrossRef]
- Hojatjalali, M.; Bahraminia, S.; Anbia, M. Superhydrophobic Magnetic Melamine Sponge Modified by Flowerlike ZnO and Stearic Acid Using Dip Coating Method for Oil and Water Separation. Sci. Rep. 2025, 15, 7378. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Gao, M.; Xia, Y.; Chai, W.; Su, X.; Zheng, Z.; Liu, Y. Bio-Inspired Construction of Super-Hydrophobic, Eco-Friendly Multifunctional and Bio-Based Cotton Fabrics via Impregnation Method. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129647. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Liu, Z.; Si, Y.; Yu, C.; Jiang, L.; Dong, Z. Bioinspired Superwetting Oil–Water Separation Strategy: Toward the Era of Openness. Chem. Soc. Rev. 2024, 53, 10012–10043. [Google Scholar] [CrossRef]
- Keshta, B.E.; Gemeay, A.H.; Kumar Sinha, D.; Elsharkawy, S.; Hassan, F.; Rai, N.; Arora, C. State of the Art on the Magnetic Iron Oxide Nanoparticles: Synthesis, Functionalization, and Applications in Wastewater Treatment. Results Chem. 2024, 7, 101388. [Google Scholar] [CrossRef]
- Perwez, M.; Fatima, H.; Arshad, M.; Meena, V.K.; Ahmad, B. Magnetic Iron Oxide Nanosorbents Effective in Dye Removal. Int. J. Environ. Sci. Technol. 2023, 20, 5697–5714. [Google Scholar] [CrossRef]
- Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Tartaj, P.; Morales, M.A.D.P.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Serna, C.J. The Preparation of Magnetic Nanoparticles for Applications in Biomedicine. J. Phys. D Appl. Phys. 2003, 36, R182–R197. [Google Scholar] [CrossRef]
- Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape-, Size- and Structure-Controlled Synthesis and Biocompatibility of Iron Oxide Nanoparticles for Magnetic Theranostics. Theranostics 2018, 8, 3284–3307. [Google Scholar] [CrossRef]
- Lee, N.; Hyeon, T. Designed Synthesis of Uniformly Sized Iron Oxide Nanoparticles for Efficient Magnetic Resonance Imaging Contrast Agents. Chem. Soc. Rev. 2012, 41, 2575–2589. [Google Scholar] [CrossRef]
- Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef]
- Rezaei, F.; Hassanajili, S. Facile Fabrication of Superhydrophobic Magnetic Bio-Waste for Oil Spill Cleanup. Ind. Crops Prod. 2023, 201, 116848. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Tian, D.; Peng, Y.; Li, J.; Jiang, G. Superhydrophobic Magnetic Reduced Graphene Oxide-Decorated Foam for Efficient and Repeatable Oil-Water Separation. Appl. Surf. Sci. 2019, 466, 937–945. [Google Scholar] [CrossRef]
- Poon, Z.; Lee, J.B.; Morton, S.W.; Hammond, P.T. Controlling in Vivo Stability and Biodistribution in Electrostatically Assembled Nanoparticles for Systemic Delivery. Nano Lett. 2011, 11, 2096–2103. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, H.-V.; Xu, S.; Lee, T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef]
- Cao, N.; Lyu, Q.; Li, J.; Wang, Y.; Yang, B.; Szunerits, S.; Boukherroub, R. Facile Synthesis of Fluorinated Polydopamine/Chitosan/Reduced Graphene Oxide Composite Aerogel for Efficient Oil/Water Separation. Chem. Eng. J. 2017, 326, 17–28. [Google Scholar] [CrossRef]
- Turco, A.; Foscarini, A.; Piccirillo, C.; Primiceri, E.; Chiriacò, M.S.; Ferrara, F. A Promising Solution for Water Remediation: PDMS-(Nano)Carbon Hybrid Materials for Oil Removal. Appl. Mater. Today 2024, 38, 102218. [Google Scholar] [CrossRef]
- Neinhuis, C. Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef]
- Mądry, K.; Nowicki, W. Wetting between Cassie–Baxter and Wenzel Regimes: A Cellular Model Approach. Eur. Phys. J. E 2021, 44, 138. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Jung, Y.C. Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Kudaibergenova, R.M.; Roman, F.F.; Silva, A.S.; Sugurbekova, G.K. Carbon-Nanotube-Based Superhydrophobic Magnetic Nanomaterial as Absorbent for Rapid and Efficient Oil/Water Separation. Nanomaterials 2024, 14, 1942. [Google Scholar] [CrossRef]
- Shigrekar, M.; Amdoskar, V. A Review on Recent Progress and Techniques Used for Fabricating Superhydrophobic Coatings Derived from Biobased Materials. RSC Adv. 2024, 14, 32668–32699. [Google Scholar] [CrossRef]
- Chen, Y.; Kim, H. Preparation of Superhydrophobic Membranes by Electrospinning of Fluorinated Silane Functionalized Poly(Vinylidene Fluoride). Appl. Surf. Sci. 2009, 255, 7073–7077. [Google Scholar] [CrossRef]
- Ha, C.-S.; Nagappan, S. Hydrophobic and Superhydrophobic Organic Inorganic Nano-Hybrids; Pan Stanford Publishing: Singapore, 2018; ISBN 978-981-4774-68-0. [Google Scholar]
- Wang, Z.; Ren, Y.; Wu, F.; Qu, G.; Chen, X.; Yang, Y.; Wang, J.; Lu, P. Advances in the Research of Carbon-, Silicon-, and Polymer-Based Superhydrophobic Nanomaterials: Synthesis and Potential Application. Adv. Colloid Interface Sci. 2023, 318, 102932. [Google Scholar] [CrossRef]
- Kudaibergenova, R.; Ualibek, O.; Sugurbekov, E.; Demeuova, G.; Frochot, C.; Acherar, S.; Sugurbekova, G. Reduced Graphene Oxide-Based Superhydrophobic Magnetic Nanomaterial as High Selective and Recyclable Sorbent for Oil/Organic Solvent Wastewater Treatment. Int. J. Environ. Sci. Technol. 2022, 19, 8491–8506. [Google Scholar] [CrossRef]
- Saji, V.S. Carbon Nanostructure-Based Superhydrophobic Surfaces and Coatings. Nanotechnol. Rev. 2021, 10, 518–571. [Google Scholar] [CrossRef]
- Li, K.; Li, X.; Li, L. Shape-Controlled RGO/Er2O3-Based Glass Substrates for Robust Superhydrophobicity. J. Nanopart Res. 2023, 25, 180. [Google Scholar] [CrossRef]
- Sandzhieva, D.A.; Baskakov, S.A.; Ubushaeva, B.V.; Kuznetsova, O.V.; Buznik, V.M.; Dedov, A.G. Superhydrophobic Graphene Aerogel as a New Oil Sorbent. Pet. Chem. 2024, 64, 1317–1326. [Google Scholar] [CrossRef]
- Kudaibergenova, R.; Sugurbekov, Y.; Demeuova, G.; Sugurbekova, G. Facile Fabrication of High-Performance Superhydrophobic Reusable Oil-Absorbing Sponges. Coatings 2023, 13, 1777. [Google Scholar] [CrossRef]
- Ghodrati, M.; Mousavi-Kamazani, M.; Bahrami, Z. Synthesis of Superhydrophobic Coatings Based on Silica Nanostructure Modified with Organosilane Compounds by Sol–Gel Method for Glass Surfaces. Sci. Rep. 2023, 13, 548. [Google Scholar] [CrossRef]
- Heshmati, M.R.; Amiri, S.; Hosseini-Zori, M. Synthesis and Characterization of Superhydrophobic-Superoleophobic and Anti-Corrosion Coatings via Sol-Gel Process. OJOPM 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Chen, L.; Li, L.; Zhang, X. Solvent-Regulable Interfacial Groups Enable on-Demand Superhydrophobic/Superhydrophilic Silica Aerogels. Nat. Commun. 2025, 16, 2228. [Google Scholar] [CrossRef]
- Wang, Y.; Ge-Zhang, S.; Mu, P.; Wang, X.; Li, S.; Qiao, L.; Mu, H. Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review. Int. J. Mol. Sci. 2023, 24, 9675. [Google Scholar] [CrossRef]
- Yan, X.; Xiao, X.; Au, C.; Mathur, S.; Huang, L.; Wang, Y.; Zhang, Z.; Zhu, Z.; Kipper, M.J.; Tang, J.; et al. Electrospinning Nanofibers and Nanomembranes for Oil/Water Separation. J. Mater. Chem. A 2021, 9, 21659–21684. [Google Scholar] [CrossRef]
- Raman, A.; Jayan, J.S.; Deeraj, B.D.S.; Saritha, A.; Joseph, K. Electrospun Nanofibers as Effective Superhydrophobic Surfaces: A Brief Review. Surf. Interfaces 2021, 24, 101140. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, Z.; Ding, J.; Chen, H. Superhydrophobic and Magnetic Fe3O4/RGO/SA Composite Membranes for Oil-Water Separation. Mater. Chem. Phys. 2024, 312, 128688. [Google Scholar] [CrossRef]
- Cheng, X.; Li, T.; Yan, L.; Jiao, Y.; Zhang, Y.; Wang, K.; Cheng, Z.; Ma, J.; Shao, L. Biodegradable Electrospinning Superhydrophilic Nanofiber Membranes for Ultrafast Oil-Water Separation. Sci. Adv. 2023, 9, eadh8195. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, J.; Yan, L.; Wang, K.; Zhang, Y.; Drioli, E.; Ma, J. Biodegradable Nanofiber Membranes Based on Interpenetrating Network for Highly Efficient Oil/Water Separation. Adv. Compos. Hybrid. Mater. 2024, 7, 197. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Jiao, Y.; Sun, Z.; Yang, X.; Cheng, Z.; Bai, Q.; Zhang, Y.; Wang, K.; Shao, L. Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation. ACS Nano 2021, 15, 3500–3508. [Google Scholar] [CrossRef]
- Liu, X.; Gu, Y.; Mi, T.; Wang, X.; Zhang, X. Dip-Coating Approach to Fabricate Durable PDMS/STA/SiO2 Superhydrophobic Polyester Fabrics. Coatings 2021, 11, 326. [Google Scholar] [CrossRef]
- Sutar, R.S.; Latthe, S.S.; Jundle, A.R.; Gaikwad, P.P.; Ingole, S.S.; Nagappan, S.; Kim, Y.H.; Bhosale, A.K.; Saji, V.S.; Liu, S. A Facile Approach for Oil-Water Separation Using Superhydrophobic Polystyrene-Silica Coated Stainless Steel Mesh Bucket. Mar. Pollut. Bull. 2024, 198, 115790. [Google Scholar] [CrossRef]
- Kao, L.-H.; Lin, W.-C.; Huang, C.-W.; Tsai, P.-S. Fabrication of Robust and Effective Oil/Water Separating Superhydrophobic Textile Coatings. Membranes 2023, 13, 401. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.; Yang, Q.; Guo, C.; Chen, F.; Hou, X. A Review of Femtosecond Laser-Structured Superhydrophobic or Underwater Superoleophobic Porous Surfaces/Materials for Efficient Oil/Water Separation. RSC Adv. 2019, 9, 12470–12495. [Google Scholar] [CrossRef]
- Milionis, A.; Fragouli, D.; Brandi, F.; Liakos, I.; Barroso, S.; Ruffilli, R.; Athanassiou, A. Superhydrophobic/Superoleophilic Magnetic Elastomers by Laser Ablation. Appl. Surf. Sci. 2015, 351, 74–82. [Google Scholar] [CrossRef]
- Xiong, W.; Zhu, L.; Jiang, R.; Chen, C. Laser Manufacturing of Superwetting Oil–Water Separation Materials: A Review. Separations 2024, 11, 126. [Google Scholar] [CrossRef]
- Weng, W.; Deng, Q.; Yang, P.; Yin, K. Femtosecond Laser-Chemical Hybrid Processing for Achieving Substrate-Independent Superhydrophobic Surfaces. J. Cent. South Univ. 2024, 31, 1–10. [Google Scholar] [CrossRef]
- Jin, R.; Gong, J.; Xiang, B.; Li, J. Biomass Materials with Special Wettability: A Sustainable Solution for Efficient Oil–Water Separation. J. Mater. Chem. A 2024, 12, 23315–23336. [Google Scholar] [CrossRef]
- Yin, Z.; Li, Y.; Song, T.; Bao, M.; Li, Y.; Lu, J.; Li, Y. Preparation of Superhydrophobic Magnetic Sawdust for Effective Oil/Water Separation. J. Clean. Prod. 2020, 253, 120058. [Google Scholar] [CrossRef]
- Wei, X.; Xu, X.; Liu, Z.; Zhao, X.; Zhang, L. Versatile Superhydrophobic Magnetic Biomass Aerogel for Oil/Water Separation and Removal of Multi-Class Emerging Pollutants. Sep. Purif. Technol. 2024, 345, 127371. [Google Scholar] [CrossRef]
- Beagan, A.; Lin, J.; Lu, Y.; Mohamed, M.E. Sustainable and Efficient Oil-Water Separation Using Bio Tin Oxide-Based Superhydrophobic Membrane. Front. Water 2024, 6, 1390739. [Google Scholar] [CrossRef]
- He, Z.; Ren, Y.; Liu, J.; Li, Y.-Y. High-Solid Co-Digestion Performance of Lipids and Food Waste by Mesophilic Hollow Fiber Anaerobic Membrane Bioreactor. Bioresour. Technol. 2023, 374, 128812. [Google Scholar] [CrossRef]
- Sun, X.; Fu, H.; Bao, M.; Liu, W.; Luo, C.; Li, Y.; Li, Y.; Lu, J. Development of a New Hydrophobic Magnetic Biochar for Removing Oil Spills on the Water Surface. Biochar 2022, 4, 60. [Google Scholar] [CrossRef]
- Zubairu, A.; Hambali, H.U. Biomass-Based Sorbents for Oil Spill Clean-up: A Review. Malay. J. Catal. 2025, 9, 1–15. [Google Scholar] [CrossRef]
- Farahat, M.; Sobhy, A.; Sanad, M.M.S. Superhydrophobic Magnetic Sorbent via Surface Modification of Banded Iron Formation for Oily Water Treatment. Sci. Rep. 2022, 12, 11016. [Google Scholar] [CrossRef]
- Ren, A.; Rius-Ayra, O.; Kang, M.; Llorca-Isern, N. Durably Superhydrophobic Magnetic Cobalt Ferrites for Highly Efficient Oil–Water Separation and Fast Microplastic Removal. Langmuir 2024, 40, 21533–21546. [Google Scholar] [CrossRef]
- Qasim, M.; Ali, A.; Alnaser, A. Micropatterned Superhydrophobic Meshes Coated with Low-Cost Carbon Nanoparticles for Efficient Oil/Water Separation. RSC Adv. 2024, 14, 20426–20440. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Guo, Z.; Ma, S.; He, Z. Recent Advances in Superhydrophobic Papers for Oil/Water Separation: A Mini-Review. ACS Omega 2022, 7, 43330–43336. [Google Scholar] [CrossRef]
- Shayesteh, H.; Khosrowshahi, M.S.; Mashhadimoslem, H.; Maleki, F.; Rabbani, Y.; Emrooz, H.B.M. Durable Superhydrophobic/Superoleophilic Melamine Foam Based on Biomass-Derived Porous Carbon and Multi-Walled Carbon Nanotube for Oil/Water Separation. Sci. Rep. 2023, 13, 4515. [Google Scholar] [CrossRef]
- Morsy, M.; Abdel-Salam, A.I.; Rayan, D.A.; Gomaa, I.; Elzwawy, A. Oil/Water Separation and Functionality of Smart Carbon Nanotube–Titania Nanotube Composite. J. Nanopart Res. 2022, 24, 226. [Google Scholar] [CrossRef]
- Li, B.; Qi, B.; Guo, Z.; Wang, D.; Jiao, T. Recent Developments in the Application of Membrane Separation Technology and Its Challenges in Oil-Water Separation: A Review. Chemosphere 2023, 327, 138528. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S.; Wu, T.; Li, Y. A Robust Superhydrophobic Polyurethane Sponge Loaded with Multi-Walled Carbon Nanotubes for Efficient and Selective Oil-Water Separation. Nanomaterials 2021, 11, 3344. [Google Scholar] [CrossRef] [PubMed]
- Kudaibergenov, K.; Ongarbayev, Y.; Zulkhair, M.; Tulepov, M.; Tileuberdi, Y. Rice Husk Ash for Oil Spill Cleanup. AMM 2013, 446–447, 1508–1511. [Google Scholar] [CrossRef]
- Ongarbayev, Y.K.; Belgibayeva, A.S.; Kudaybergenov, K.K.; Mansurov, Z.A. Oil Spill Cleanup from Sea Water by Porous Sorbents. Eurasian Chem.-Technol. J. 2015, 17, 41–45. [Google Scholar] [CrossRef]
- Diaz, B.R.; Crick, C.R. Superhydrophobic Coatings with Environmentally Friendly Materials. In Superhydrophobic Coating—Recent Advances in Theory and Applications; IntechOpen: London, UK, 2023; ISBN 978-0-85466-281-4. [Google Scholar]
- Lin, J.; Lin, F.; Liu, R.; Li, P.; Fang, S.; Ye, W.; Zhao, S. Scalable Fabrication of Robust Superhydrophobic Membranes by One-Step Spray-Coating for Gravitational Water-in-Oil Emulsion Separation. Sep. Purif. Technol. 2020, 231, 115898. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Z.; Wang, Y.; Bai, X.; Fu, Y.Q.; Guo, B.; Tan, C.; Zhang, J.; Hu, P. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials. ACS Appl. Mater. Interfaces 2018, 10, 2174–2184. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, H.; Huang, X.; Hu, C.; Xu, Z.; Yin, H.; Li, T.; Ren, K. Superhydrophobic Granular Filter Media Modified with Mesoporous Nanoparticles for Magnetically Guided Oil Cleanup. J. Mater. Chem. A 2025, 13, 23046–23058. [Google Scholar] [CrossRef]
- Fan, S.; Pei, S.; Shen, T.; Xu, G.; Li, Y.; Fan, W. Fabrication of Superhydrophobic Magnetic Sawdust as Effective and Recyclable Oil Sorbents. Materials 2019, 12, 3432. [Google Scholar] [CrossRef]
- Keirouz, A.; Galiano, F.; Russo, F.; Fontananova, E.; Castro-Dominguez, B.; Figoli, A.; Mattia, D.; Leese, H.S. Cyrene-Enabled Green Electrospinning of Nanofibrous Graphene-Based Membranes for Water Desalination via Membrane Distillation. ACS Sustain. Chem. Eng. 2024, 12, 17713–17725. [Google Scholar] [CrossRef] [PubMed]
Base Type | Contact Angle (°) | Stability | Compatibility with Magnetic Nanoparticles | Advantages | Limitations | Sources |
---|---|---|---|---|---|---|
Inorganic (SiO2, TiO2) | >150 (depending on method) | Medium, requires protection from abrasion | Low, additional modification of Fe3O4 is required | Ease of creating microstructure, high chemical resistance | Fragility, poor adhesion to soft substrates | [38] |
Polymer (PDMS, PU) | 160–167 | High, withstands up to 30 abrasion cycles | Average, magnetic particle encapsulation is possible | Flexibility, compatibility with various surfaces | Limited thermal stability, requires modification | [39] |
Carbon materials (rGO, CNT) | 162–165, stable in pH tests | Moderate, depends on the modification method | Good, rGO and CNTs are easily modified with Fe3O4 | High specific surface area, chemical stability | Additional functionalization is required | [40,41] |
Hybrid structures (rGO + Fe3O4, polymer + oxide) | Up to 162, stable after 10 cycles | High, retains properties after repeated use | Excellent, structure is designed to incorporate Fe3O4 | Combination of strength and functionality | Complexity of synthesis and distribution of components | [42,43] |
Method | Principle | Advantages | Disadvantages | Examples of Achieved Properties | Sources |
---|---|---|---|---|---|
Sol–gel method | Hydrolysis and polycondensation of precursors (TEOS, GPTMS, etc.) → formation of oxide network → application to substrate → modification with organofluorine | Ease of obtaining nanostructures; controlled composition; chemical resistance | Fragility of the resulting coatings; not always compatible with soft substrates | Contact angle > 160°; corrosion and chemical resistance; applicable with Fe3O4, TiO2 | [45,46] |
Electrospinning | Pulling a polymer solution in an electric field → formation of nanofibers → modification with a hydrophobic agent or introduction of nanoparticles | Creation of porous membranes; high surface area; substrate flexibility | Post-processing is required; difficulty in uniformly coating large areas | Contact angle 160–167°; stability after 10+ cycles; compatible with Fe3O4, rGO | [50,51] |
Dip-coating method | Substrate immersion in solution → nanoparticle deposition → drying/curing | Ease of implementation; suitable for sponges, fabrics, meshes; scalability | Dependent on viscosity, speed, concentration; possible defects | Wetting angles 158–162°; stability in pH 3–11; high separation efficiency (up to 99.8%) | [56] |
Laser–chemical treatment | Localized ablation with femtosecond laser → formation of microstructure → chemical modification with stearate | Precision; versatility (works with metal, glass, polymer); does not require templates | Requires laser equipment; high cost; not always compatible with magnetic components | Contact angle > 160°; maintained after heating and washing cycles | [61] |
Use of biomass | Preparation of biomatrix (carbonization/heat treatment) → introduction of Fe3O4 → hydrophobization (PDMS, stearate) | Environmentally friendly; low cost; magnetic controllability; reusability | Limited mechanical strength; requires selection of biomaterial | Contact angle > 150°; sorption 45–70 g/g; magnetic sensitivity; stability > 10 cycles | [64] |
Material/System | Synthesis Method and Components | Wettability (Contact Angle) | Oil Absorption/Separation Efficiency | Stability | Reusability (Cycles) | Advantages | Limitations |
---|---|---|---|---|---|---|---|
ZS@BIF sorbent [69] | Zinc stearate on BIF via coating | 151° | 22 g/g (cyclohexane), 99.9% removal | Stable up to 60 days | ~10 cycles (~95% retained) | High efficiency, magnetic recovery | Limited to light oils |
CoFe2O4 particles [70] | Co-precipitation + lauric acid | 157.3° | 94–99.6% for various oils | Moderate | >10 cycles (>93% retained) | Wide pH stability, magnetic | Need for post-modification |
Cu mesh [71] | RTV-1 + soot + femtosecond laser | 168.9° | 98% separation | High chemical resistance | >10 cycles | High hydrophobicity, durable | Requires laser equipment |
Cellulose papers [72] | Cellulose + nanoparticles + silanes | >150° | >99% separation, >10,000 L/m2·h flux | Moderate | Up to 100 cycles | High permeability, chemical resistance | Fragility |
PU sponge + MWCNT [73] | Silicone + MWCNTs | 151.3° | 14.99–86.53 g/g | Good under washing/heating | >10 cycles (<10% loss) | Absorbs light and heavy oils, durable | Lower precision of structure |
Melamine foam + PC/MWCNT [74] | Biomass carbon or MWCNT + PDMS | 156–159° | 46–143 g/g | High chemical resistance | >10 cycles | High sorption, resistant to pH, salt | Biomass source needed |
CNT–TNT membrane [75,76] | MWCNT + TiO2 nanotubes + doping | >155° | >95% separation | Flexible, good stability | Stable in flow systems | High mechanical strength, thin films | Complex fabrication |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudaibergenova, R.M.; Baibazarova, E.A.; Balpanova, D.T.; Sugurbekova, G.K.; Serikbayeva, A.M.; Kalmakhanova, M.S.; Murzakasymova, N.S.; Kabdushev, A.A.; Orynbayev, S.A. Design and Application of Superhydrophobic Magnetic Nanomaterials for Efficient Oil–Water Separation: A Critical Review. Molecules 2025, 30, 3313. https://doi.org/10.3390/molecules30153313
Kudaibergenova RM, Baibazarova EA, Balpanova DT, Sugurbekova GK, Serikbayeva AM, Kalmakhanova MS, Murzakasymova NS, Kabdushev AA, Orynbayev SA. Design and Application of Superhydrophobic Magnetic Nanomaterials for Efficient Oil–Water Separation: A Critical Review. Molecules. 2025; 30(15):3313. https://doi.org/10.3390/molecules30153313
Chicago/Turabian StyleKudaibergenova, Rabiga M., Elvira A. Baibazarova, Didara T. Balpanova, Gulnar K. Sugurbekova, Aizhan M. Serikbayeva, Marzhan S. Kalmakhanova, Nazgul S. Murzakasymova, Arman A. Kabdushev, and Seitzhan A. Orynbayev. 2025. "Design and Application of Superhydrophobic Magnetic Nanomaterials for Efficient Oil–Water Separation: A Critical Review" Molecules 30, no. 15: 3313. https://doi.org/10.3390/molecules30153313
APA StyleKudaibergenova, R. M., Baibazarova, E. A., Balpanova, D. T., Sugurbekova, G. K., Serikbayeva, A. M., Kalmakhanova, M. S., Murzakasymova, N. S., Kabdushev, A. A., & Orynbayev, S. A. (2025). Design and Application of Superhydrophobic Magnetic Nanomaterials for Efficient Oil–Water Separation: A Critical Review. Molecules, 30(15), 3313. https://doi.org/10.3390/molecules30153313