Synergistic and Antagonistic Mechanisms of Arctium lappa L. Polyphenols on Human Neutrophil Elastase Inhibition: Insights from Molecular Docking and Enzymatic Kinetics
Abstract
1. Introduction
2. Results and Discussion
2.1. Inhibitory Effect on HNE
2.1.1. Inhibitory Effect of SLT on HNE Activity
2.1.2. Inhibitory Effect of ALP on HNE Activity
2.1.3. The Inhibitory Effect of Single Ingredients in ALP on HNE
2.1.4. Combination Effects of Single Ingredients in ALP on HNE
2.2. Molecular Docking Between ALP Ingredients and HNE
2.2.1. Docking Validation
2.2.2. Binding Modes of ALP Ingredients to HNE on the Active Site
2.2.3. Binding Modes of Chlorogenic Acid, Quercetin, and Isochlorogenic Acid A with HNE
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Experimental Methods
3.2.1. Inhibitory Effect of SLT on HNE Activity
3.2.2. The Inhibitory Effect of ALP on HNE Activity
3.2.3. Inhibitory Effect of Single Ingredients in ALP on HNE
3.2.4. Combination Effect of Single Ingredients in ALP on HNE
3.3. Molecular Docking for Predicting the Binding Mode of ALP Ingredients with HNE
3.4. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALP | Arctium lappa L. polyphenols |
HNE | Human neutrophil elastase |
CI | Combination index |
IC50 | The half-inhibitory concentration |
ARDS | Acute respiratory distress syndrome |
COPD | Chronic obstructive pulmonary disease |
SLT | Sivelestat |
Cha | Chlorogenic acid |
Nea | Neochlorogenic acid |
Cra | Cryptochlorogenic acid |
Que | Quercetin |
Iso A | Isochlorogenic acid A |
Iso B | Isochlorogenic acid B |
Iso C | Isochlorogenic acid C |
Fa | Fraction affected |
References
- Voynow, J.A.; Shinbashi, M. Neutrophil Elastase and Chronic Lung Disease. Biomolecules 2021, 11, 1065. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Dirir, O.; Zamanian, R.T.; Rabinovitch, M.; Thompson, A.A.R. The role of neutrophils and neutrophil elastase in pulmonary arterial hypertension. Front. Med. 2018, 5, 217. [Google Scholar] [CrossRef]
- Bardoel, B.W.; Kenny, E.F.; Sollberger, G.; Zychlinsky, A. The balancing act of neutrophils. Cell Host Microbe 2014, 15, 526–536. [Google Scholar] [CrossRef]
- Crocetti, L.; Quinn, M.T.; Schepetkin, I.A.; Giovannoni, M.P. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014–2018) and their therapeutic applications. Expert Opin. Ther. Pat. 2019, 29, 555–578. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Song, Y.; Wang, R.; He, R.; Wang, T. Neutrophil elastase: From mechanisms to therapeutic potential. J. Pharm. Anal. 2023, 13, 355–366. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, Y.; Yang, C.; Li, X.; Yu, X. Clinical Utility of the Sivelestat for the Treatment of ALI/ARDS: Moving on in the Controversy? Intensive Care Res. 2023, 3, 12–17. [Google Scholar] [CrossRef] [PubMed]
- De Rossi, L.; Rocchetti, G.; Lucini, L.; Rebecchi, A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses—A Narrative Review. Antioxidants 2025, 14, 200. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Kan, L.; Capuano, E.; Fogliano, V.; Verkerk, R.; Mes, J.J.; Tomassen, M.M.; Oliviero, T. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell. Food Chem. 2021, 361, 130047, Erratum in Food Chem. 2022, 366, 130649. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef]
- Nielsen, A.J.; McNulty, J. Polyphenolic natural products and natural product-inspired steroidal mimics as aromatase inhibitors. Med. Res. Rev. 2019, 39, 1274–1293. [Google Scholar] [CrossRef]
- Peng, S.; Lin, L.; Zhao, M. A comparative study on the bioactivities and chemical compositions of Dancong summer tea and Anhua dark tea: Excavation of glycolipid-lowering functional factors. Food Res. Int. 2025, 204, 115825. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Nazir, M.; Hussain, H.; Tousif, M.I.; Elsebai, M.F.; Riaz, N.; Akhtar, N. Natural Phenolics as Inhibitors of the Human Neutrophil Elastase (HNE) Release: An Overview of Natural Anti-inflammatory Discoveries during Recent Years. Anti-Inflamm. Antiallergy Agents Med. Chem. 2018, 17, 70–94. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qiu, Z.; Dong, H.; Ma, C.; Qiao, Y.; Zheng, Z. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: A comparison. Int. J. Biol. Macromol. 2021, 182, 187–196. [Google Scholar] [CrossRef]
- Lee, J.; Ha, S.J.; Park, J.; Kim, Y.H.; Lee, N.H.; Kim, Y.E.; Hong, Y.-S.; Song, K.-M. Arctium lappa root extract containing L-arginine prevents TNF-α-induced early atherosclerosis in vitro and in vivo. Nutr. Res. 2020, 77, 85–96. [Google Scholar] [CrossRef]
- Lou, J.; Liu, Y.; Xu, N.; Cai, Q.; Liu, M.; Zheng, Y.; Sun, Y.; Qu, Y. Arctium lappa L. root extract improved hyperlipidemia by regulating the esterase activity and gut microbiota of rats on a high-fat diet. J. Funct. Foods 2024, 124, 106348. [Google Scholar] [CrossRef]
- Ferracane, R.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010, 51, 399–404. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, N.; Wang, Y. Inhibitory effects of polyphenolic components from Arctium lappa root on lipase activity. Sci. Technol. Food Ind. 2024, 45, 10–17. [Google Scholar]
- Melzig, M.F.; Löser, B.; Ciesielski, S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie 2001, 56, 967–970. [Google Scholar]
- Ryu, H.W.; Park, Y.J.; Lee, S.U.; Lee, S.; Yuk, H.J.; Seo, K.-H.; Kim, Y.-U.; Hwang, B.Y.; Oh, S.-R. Potential Anti-inflammatory Effects of the Fruits of Paulownia tomentosa. J. Nat. Prod. 2017, 80, 2659–2665. [Google Scholar] [CrossRef]
- Xu, G.H.; Kim, Y.H.; Choo, S.J.; Ryoo, I.-J.; Yoo, J.-K.; Ahn, J.-S.; Yoo, I.-D. Chemical constituents from the leaves of Ilex paraguariensis inhibit human neutrophil elastase. Arch. Pharm. Res. 2009, 32, 1215–1220. [Google Scholar] [CrossRef]
- Prasad Pandey, B.; Prakash Pradhan, S.; Adhikari, K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem. Biodivers. 2020, 17, e2000155. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol. 2008, 443, 365–382. [Google Scholar]
- Mohanty, M.; Mohanty, P.S. Molecular docking in organic, inorganic, and hybrid systems: A tutorial review. Monatsh. Chem. 2023, 154, 683–707. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.; Timmers, L.F.; Caceres, R.A.; de Azevedo, W.F., Jr. Evaluation of molecular docking using polynomial empirical scoring functions. Curr. Drug Targets 2008, 9, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Jain, A.N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 2003, 46, 499–511. [Google Scholar] [CrossRef]
- Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des. 2012, 26, 775–786. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Chou, T.; Martin, N. CompuSyn software, CompuSyn for Drug Combinations: PC Software and User’s Guide: A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50 and ED50 and LD50 Values; ComboSyn Inc.: Paramus, NJ, USA, 2005. Available online: https://www.combosyn.com (accessed on 13 March 2025).
- Von Nussbaum, F.; Li, V.M.-J.; Allerheiligen, S.; Anlauf, S.; Bärfacker, L.; Bechem, M.; Delbeck, M.; Fitzgerald, M.F.; Gerisch, M.; Gielen-Haertwig, H.; et al. Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases. ChemMedChem 2015, 10, 1163–1173. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, R.; Dong, L.; Chi, J.; Huang, F.; Dong, L.; Zhang, M.; Jia, X. α-Glucosidase inhibitors from brown rice bound phenolics extracts (BRBPE): Identification and mechanism. Food Chem. 2022, 372, 131306. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Ban, Y.J.; Baiseitova, A.; Nyiramana, M.M.; Kang, S.S.; Kang, D.; Park, K.H. Iridal-Type Triterpenoids Displaying Human Neutrophil Elastase Inhibition and Anti-Inflammatory Effects from Belamcanda chinensis. Molecules 2021, 26, 6602. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzym. Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
- Li, D. Identifying natural inhibitors against FUS protein in dementia through machine learning, molecular docking, and dynamics simulation. Front. Neuroinform. 2025, 18, 1439090. [Google Scholar] [CrossRef] [PubMed]
Combination | Groups | Dose A (μM) | Dose B (μM) | Inhibition Rate (%) | CI |
---|---|---|---|---|---|
chlorogenic acid (A): quercetin (B) | 1 | 6.83 | 1.56 | 32.23 ± 6.45 | 0.18 ± 0.07 |
2 | 13.66 | 3.13 | 34.40 ± 7.45 | 0.32 ± 0.16 | |
3 | 27.31 | 6.25 | 49.47 ± 1.85 | 0.27 ± 0.02 | |
4 | 54.63 | 12.50 | 53.77 ± 3.75 | 0.44 ± 0.08 | |
5 | 109.25 | 25.00 | 75.23 ± 7.39 | 0.29 ± 0.13 | |
isochlorogenic acid A (A): quercetin (B) | 1 | 5.77 | 1.56 | 21.40 ± 4.94 | 0.37 ± 0.17 |
2 | 11.53 | 3.13 | 43.00 ± 1.91 | 0.22 ± 0.03 | |
3 | 23.06 | 6.25 | 58.10 | 0.16 | |
4 | 46.13 | 12.50 | 65.53 ± 3.75 | 0.20 ± 0.05 | |
5 | 92.25 | 25.00 | 76.23 ± 3.98 | 0.21 ± 0.06 | |
chlorogenic acid (A): isochlorogenic acid A (B) | 1 | 29.75 | 25.00 | 21.47 ± 15.66 | 24.3 ± 35.54 |
2 | 59.50 | 50.00 | 25.83 ± 6.45 | 6.60 ± 4.70 | |
3 | 119.00 | 100.00 | 26.87 ± 1.85 | 9.55 ± 1.78 | |
4 | 238.00 | 200.00 | 28.93 ± 3.10 | 15.74 ± 5.08 | |
5 | 476.00 | 400.00 | 52.67 ± 3.70 | 3.98 ± 1.25 |
Number | Name | Structure | Score (kcal/mol) |
---|---|---|---|
1 | Chlorogenic acid | −7.278 | |
2 | Neochlorogenic acid | −7.092 | |
3 | Cryptochlorogenic acid | −6.284 | |
4 | Quercetin | −6.583 | |
5 | Isochlorogenic acid A | −7.607 | |
6 | Isochlorogenic acid B | −7.183 | |
7 | Isochlorogenic acid C | −7.511 |
Docking Conditions | Center X | Center Y | Center Z | Size X | Size Y | Size Z | Spacing |
---|---|---|---|---|---|---|---|
active site | −6.518 | 31.860 | −3.711 | 40 | 40 | 40 | 0.375 |
whole-protein | −14.42 | 28.644 | 1.197 | 90 | 96 | 92 | 0.503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, M.; Zhang, Y.; Zheng, Y.; Li, J.; Cai, Q.; Wang, A.; Qu, Y. Synergistic and Antagonistic Mechanisms of Arctium lappa L. Polyphenols on Human Neutrophil Elastase Inhibition: Insights from Molecular Docking and Enzymatic Kinetics. Molecules 2025, 30, 2764. https://doi.org/10.3390/molecules30132764
Sun Y, Zhang M, Zhang Y, Zheng Y, Li J, Cai Q, Wang A, Qu Y. Synergistic and Antagonistic Mechanisms of Arctium lappa L. Polyphenols on Human Neutrophil Elastase Inhibition: Insights from Molecular Docking and Enzymatic Kinetics. Molecules. 2025; 30(13):2764. https://doi.org/10.3390/molecules30132764
Chicago/Turabian StyleSun, Yixun, Mingbo Zhang, Yating Zhang, Yu Zheng, Jing Li, Qian Cai, Anqi Wang, and Yang Qu. 2025. "Synergistic and Antagonistic Mechanisms of Arctium lappa L. Polyphenols on Human Neutrophil Elastase Inhibition: Insights from Molecular Docking and Enzymatic Kinetics" Molecules 30, no. 13: 2764. https://doi.org/10.3390/molecules30132764
APA StyleSun, Y., Zhang, M., Zhang, Y., Zheng, Y., Li, J., Cai, Q., Wang, A., & Qu, Y. (2025). Synergistic and Antagonistic Mechanisms of Arctium lappa L. Polyphenols on Human Neutrophil Elastase Inhibition: Insights from Molecular Docking and Enzymatic Kinetics. Molecules, 30(13), 2764. https://doi.org/10.3390/molecules30132764