Discovery, Biological Evaluation and Binding Mode Investigation of Novel Butyrylcholinesterase Inhibitors Through Hybrid Virtual Screening
Abstract
:1. Introduction
2. Results and Discussion
2.1. Machine Learning Modeling and Evaluation
2.1.1. Model Training and Selection
2.1.2. Model Performance Evaluation
2.2. Virtual Screening Framework
2.3. Hybrid Virtual Screening
2.4. Hits Identification
2.5. In Vitro Biological Activity Evaluation
2.5.1. Enzyme Inhibition
2.5.2. Toxicity and Neuroprotective Effect Studies
2.5.3. Enzyme Kinetics Analysis
2.6. Binding Mode Investigation
2.6.1. Fluorescence Quenching Experiments
2.6.2. Three-Dimensional Fluorescence Spectroscopy
2.6.3. Molecular Docking
2.6.4. Molecular Dynamics Simulation
3. Materials and Methods
3.1. Data Source
3.2. Machine Learning Modeling
3.3. Machine Learning Valuation
3.4. Molecular Docking
3.5. In Silico ADME Prediction and BBB Permeability
3.6. BChE Inhibition Assay and Kinetic Study
3.7. In Vitro Cytotoxicity and Neuroprotection Assay
3.8. Spectroscopic Studies
3.9. Molecular Dynamics Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzheimer’s Association. 2024 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. J. Alzheimers Assoc. 2024, 20, 3708–3821. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.P.; Wei, C.B.; Chen, S.Q.; Li, F.Y.; Tang, Y.; Qin, W.; Zhao, L.N.; Jin, H.M.; Xu, H.; Wang, F.; et al. The Cost of Alzheimer’s Disease in China and Re-Estimation of Costs Worldwide. Alzheimers Dement. J. Alzheimers Assoc. 2018, 14, 483–491. [Google Scholar] [CrossRef]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef]
- Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s Disease: Clinical Trials and Drug Development. Lancet Neurol. 2010, 9, 702–716. [Google Scholar] [CrossRef]
- Xie, J.; Liang, R.; Wang, Y.; Huang, J.; Cao, X.; Niu, B. Progress in Target Drug Molecules for Alzheimer’s Disease. Curr. Top. Med. Chem. 2020, 20, 4–36. [Google Scholar] [CrossRef] [PubMed]
- Kashif, M.; Sivaprakasam, P.; Vijendra, P.; Waseem, M.; Pandurangan, A.K. A Recent Update on Pathophysiology and Therapeutic Interventions of Alzheimer’s Disease. Curr. Pharm. Des. 2023, 29, 3428–3441. [Google Scholar] [CrossRef]
- Selkoe, D.J. Alzheimer’s Disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a004457. [Google Scholar] [CrossRef]
- Gs, B. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef]
- Chen, Z.-R.; Huang, J.-B.; Yang, S.-L.; Hong, F.-F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef]
- Patocka, J.; Kuca, K.; Jun, D. Acetylcholinesterase and Butyrylcholinesterase—Important Enzymes of Human Body. Acta Medica (Hradec Kral.) 2004, 47, 215–228. [Google Scholar] [CrossRef]
- Haake, A.; Nguyen, K.; Friedman, L.; Chakkamparambil, B.; Grossberg, G.T. An Update on the Utility and Safety of Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Expert Opin. Drug Saf. 2020, 19, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.Y.; Zhen, T.F.; Harakandi, C.H.; Wang, L.; Guo, H.C.; Chen, Y.; Sun, H.P. New Insights into Butyrylcholinesterase: Pharmaceutical Applications, Selective Inhibitors and Multitarget-Directed Ligands. Eur. J. Med. Chem. 2024, 275, 116569. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.; López, Ó. Butyrylcholinesterase Inhibitors as Potential Anti-Alzheimer’s Agents: An Updated Patent Review (2018-Present). Expert Opin. Ther. Pat. 2022, 32, 913–932. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.H.; Ahmad, K.; Rabbani, G.; Danishuddin, M.; Choi, I. Computer Aided Drug Design and Its Application to the Development of Potential Drugs for Neurodegenerative Disorders. Curr. Neuropharmacol. 2018, 16, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, H.Y.; Shen, C.; Hu, X.P.; Gao, J.B.; Li, D.; Cao, D.S.; Hou, T.J. Combined Strategies in Structure-Based Virtual Screening. Phys. Chem. Chem. Phys. PCCP 2020, 22, 3149–3159. [Google Scholar] [CrossRef]
- Vázquez, J.; López, M.; Gibert, E.; Herrero, E.; Luque, F.J. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. Molecules 2020, 25, 4723. [Google Scholar] [CrossRef]
- La Monica, G.; Alamia, F.; Bono, A.; Mingoia, F.; Martorana, A.; Lauria, A. In Silico Design of Dual Estrogen Receptor and Hsp90 Inhibitors for ER-Positive Breast Cancer through a Mixed Ligand/Structure-Based Approach. Molecules 2024, 29, 6040. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front. Chem. 2020, 8, 726. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, N.; Gehlot, A. Application of Artificial Intelligence in Drug Design: A Review. Comput. Biol. Med. 2024, 179, 108810. [Google Scholar] [CrossRef]
- Khan, M.K.; Raza, M.; Shahbaz, M.; Hussain, I.; Khan, M.; Xie, Z.J.; Shah, S.S.A.; Tareen, A.; Bashir, Z.; Khan, K. The Recent Advances in the Approach of Artificial Intelligence (AI) towards Drug Discovery. Front. Chem. 2024, 12, 1408740. [Google Scholar] [CrossRef]
- Fang, J.S.; Yang, R.Y.; Gao, L.; Zhou, D.; Yang, S.Q.; Liu, A.-L.; Du, G. Predictions of BuChE Inhibitors Using Support Vector Machine and Naive Bayesian Classification Techniques in Drug Discovery. J. Chem. Inf. Model. 2013, 53, 3009–3020. [Google Scholar] [CrossRef]
- Malik, A.A.; Ojha, S.C.; Schaduangrat, N.; Nantasenamat, C. ABCpred: A Webserver for the Discovery of Acetyl- and Butyryl-Cholinesterase Inhibitors. Mol. Divers. 2022, 26, 467–487. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Singh, R.; Kumar, D.; Gutti, G.; Gore, P.; Sahu, B.; Kumar, A.; Singh, S.K. Identification of Sulfonamide-Based Butyrylcholinesterase Inhibitors Using Machine Learning. Future Med. Chem. 2022, 14, 1049–1070. [Google Scholar] [CrossRef]
- Nguyen, H.D. In Silico Identification of Novel Heterocyclic Compounds Combats Alzheimer’s Disease through Inhibition of Butyrylcholinesterase Enzymatic Activity. J. Biomol. Struct. Dyn. 2024, 42, 10890–10910. [Google Scholar] [CrossRef]
- Xu, T.; Li, S.Z.; Li, A.J.; Zhao, J.H.; Sakamuru, S.; Huang, W.W.; Xia, M.H.; Huang, R.L. Identification of Potent and Selective Acetylcholinesterase/Butyrylcholinesterase Inhibitors by Virtual Screening. J. Chem. Inf. Model. 2023, 63, 2321–2330. [Google Scholar] [CrossRef] [PubMed]
- Vella, D.; Ebejer, J.-P. Few-Shot Learning for Low-Data Drug Discovery. J. Chem. Inf. Model. 2023, 63, 27–42. [Google Scholar] [CrossRef]
- Miles, J.A.; Ross, B.P. Recent Advances in Virtual Screening for Cholinesterase Inhibitors. ACS Chem. Neurosci. 2021, 12, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Shityakov, S.; Förster, C.Y.; Skorb, E. Comparative in Silico Analysis of CNS-Active Molecules Targeting the Blood–Brain Barrier Choline Transporter for Alzheimer’s Disease Therapy. Silico Pharmacol. 2024, 12, 71. [Google Scholar] [CrossRef]
- Achary, G.R.P. Applications of Quantitative Structure-Activity Relationships (QSAR) Based Virtual Screening in Drug Design: A Review. Mini-Rev. Med. Chem. 2020, 20, 1375–1388. [Google Scholar] [CrossRef]
- Polishchuk, P. Interpretation of Quantitative Structure-Activity Relationship Models: Past, Present, and Future. J. Chem. Inf. Model. 2017, 57, 2618–2639. [Google Scholar] [CrossRef]
- Shahlaei, M. Descriptor Selection Methods in Quantitative Structure-Activity Relationship Studies: A Review Study. Chem. Rev. 2013, 113, 8093–8103. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ling, C.X. Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef]
- Obi, J.C. A Comparative Study of Several Classification Metrics and Their Performances on Data. World J. Adv. Eng. Technol. Sci. 2023, 8, 308–314. [Google Scholar]
- Hawkins, D.M.; Basak, S.C.; Mills, D. Assessing Model Fit by Cross-Validation. J. Chem. Inf. Comput. Sci. 2003, 43, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Shiammala, P.N.; Duraimutharasan, N.K.B.; Vaseeharan, B.; Alothaim, A.S.; Al-Malki, E.S.; Snekaa, B.; Safi, S.Z.; Singh, S.K.; Velmurugan, D.; Selvaraj, C. Exploring the Artificial Intelligence and Machine Learning Models in the Context of Drug Design Difficulties and Future Potential for the Pharmaceutical Sectors. Methods 2023, 219, 82–94. [Google Scholar] [CrossRef]
- Yu, D.; Du, J.; He, P.; Wang, N.; Li, L.; Liu, Y.; Yang, C.; Xu, H.; Li, Y. Identification of Natural Xanthine Oxidase Inhibitors: Virtual Screening, Anti-Xanthine Oxidase Activity, and Interaction Mechanism. Int. J. Biol. Macromol. 2024, 259, 129286. [Google Scholar] [CrossRef]
- Gupta, M.; Lee, H.J.; Barden, C.J.; Weaver, D.F. The Blood–Brain Barrier (BBB) Score. J. Med. Chem. 2019, 62, 9824–9836. [Google Scholar] [CrossRef]
- Martorana, A.; Di Lorenzo, F.; Esposito, Z.; Lo Giudice, T.; Bernardi, G.; Caltagirone, C.; Koch, G. Dopamine D2-Agonist Rotigotine Effects on Cortical Excitability and Central Cholinergic Transmission in Alzheimer’s Disease Patients. Neuropharmacology 2013, 64, 108–113. [Google Scholar] [CrossRef]
- Koch, G.; Motta, C.; Bonni, S.; Pellicciari, M.C.; Picazio, S.; Casula, E.P.; Maiella, M.; Di Lorenzo, F.; Ponzo, V.; Ferrari, C.; et al. Effect of Rotigotine vs Placebo on Cognitive Functions among Patients with Mild to Moderate Alzheimer Disease a Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2010372. [Google Scholar] [CrossRef]
- Gurram, P.C.; Satarker, S.; Nassar, A.; Mudgal, J.; Nampoothiri, M. Virtual Structure-Based Docking and Molecular Dynamics of FDA-Approved Drugs for the Identification of Potential IKKB Inhibitors Possessing Dopaminergic Activity in Alzheimer’s Disease. Chem. Pap. 2023, 77, 1971–1988. [Google Scholar] [CrossRef]
- Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimers Dis. JAD 2017, 57, 1105–1121. [Google Scholar] [CrossRef]
- Jannat, S.; Balupuri, A.; Ali, M.Y.; Hong, S.S.; Choi, C.W.; Choi, Y.-H.; Ku, J.-M.; Kim, W.J.; Leem, J.Y.; Kim, J.E.; et al. Inhibition of β-Site Amyloid Precursor Protein Cleaving Enzyme 1 and Cholinesterases by Pterosins via a Specific Structure–activity Relationship with a Strong BBB Permeability. Exp. Mol. Med. 2019, 51, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, V.K.; Singh, D.K. Kinetics of Enzyme Inhibition by Active Molluscicidal Agents Ferulic Acid, Umbelliferone, Eugenol and Limonene in the Nervous Tissue of Snail Lymnaea acuminata. Phytother. Res. 2009, 23, 172–177. [Google Scholar] [CrossRef]
- Pesaresi, A. Mixed and Non-Competitive Enzyme Inhibition: Underlying Mechanisms and Mechanistic Irrelevance of the Formal Two-Site Model. J. Enzym. Inhib. Med. Chem. 2023, 38, 2245168. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, Y.; Yang, C.; Du, J.; Yu, D.; He, P.; Xu, H.; Li, L.; Zhao, P.; Li, Y. Molecular Insights into Vasicine and Butyrylcholinesterase Interactions: A Complimentary Biophysical, Multi-Spectroscopic, and Computational Study. Int. J. Biol. Macromol. 2025, 292, 139253. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Du, H. Different Effects of Forsythoside E on Acetylcholinesterase and Butyrylcholinesterase by Fluorescent Spectroscopy. J. Appl. Spectrosc. 2022, 89, 559–566. [Google Scholar] [CrossRef]
- Callen, H.B.; Griffiths, R.B. Thermodynamics and an Introduction to Thermostatistics. Am. J. Phys. 1987, 55, 860–861. [Google Scholar] [CrossRef]
- Farid, N.A.; Youssef, N.F.; Abdellatef, H.E.; Sharaf, Y.A. Spectrofluorimetric Methods for the Determination of Mirabegron by Quenching Tyrosine and L-Tryptophan Fluorophores: Recognition of Quenching Mechanism by Stern Volmer Relationship, Evaluation of Binding Constants and Binding Sites. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 293, 122473. [Google Scholar] [CrossRef]
- Iwahara, J.; Esadze, A.; Zandarashvili, L. Physicochemical Properties of Ion Pairs of Biological Macromolecules. Biomolecules 2015, 5, 2435–2463. [Google Scholar] [CrossRef]
- Mohseni-Shahri, F.S.; Housaindokht, M.R.; Bozorgmehr, M.R.; Moosavi-Movahedi, A.A. Influence of Taxifolin on the Human Serum Albumin–Propranolol Interaction: Multiple Spectroscopic and Chemometrics Investigations and Molecular Dynamics Simulation. J. Solut. Chem. 2016, 45, 265–285. [Google Scholar] [CrossRef]
- Li, Q.; Xing, S.; Chen, Y.; Liao, Q.; Xiong, B.; He, S.; Lu, W.; Liu, Y.; Yang, H.; Li, Q.; et al. Discovery and Biological Evaluation of a Novel Highly Potent Selective Butyrylcholinsterase Inhibitor. J. Med. Chem. 2020, 63, 10030–10044. [Google Scholar] [CrossRef] [PubMed]
- Ghahremanian, S.; Rashidi, M.M.; Raeisi, K.; Toghraie, D. Molecular Dynamics Simulation Approach for Discovering Potential Inhibitors against SARS-CoV-2: A Structural Review. J. Mol. Liq. 2022, 354, 118901. [Google Scholar] [CrossRef] [PubMed]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef]
- Landrum, G. RDKit: Open-Source Cheminformatics Software. 2023. Available online: https://www.rdkit.org (accessed on 10 October 2023).
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Bhat, P.C.; Prosper, H.B.; Sekmen, S.; Stewart, C. Optimizing Event Selection with the Random Grid Search. Comput. Phys. Commun. 2018, 228, 245–257. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Košak, U.; Brus, B.; Knez, D.; Šink, R.; Žakelj, S.; Trontelj, J.; Pišlar, A.; Šlenc, J.; Gobec, M.; Živin, M.; et al. Development of an In-Vivo Active Reversible Butyrylcholinesterase Inhibitor. Sci. Rep. 2016, 6, 39495. [Google Scholar] [CrossRef]
- Rishton, G.M.; LaBonte, K.; Williams, A.J.; Kassam, K.; Kolovanov, E. Computational Approaches to the Prediction of Blood-Brain Barrier Permeability: A Comparative Analysis of Central Nervous System Drugs versus Secretase Inhibitors for Alzheimer’s Disease. Curr. Opin. Drug Discov. Devel. 2006, 9, 303–313. [Google Scholar]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
Model | Accuracy | AUC Score | Optimal Parameters |
---|---|---|---|
RF | 95.36% | 0.9728 | ‘max_depth’ = None; ‘min_samples_split’ = 5; ‘n_estimators’ = 200 |
SVM | 94.64% | 0.9677 | ‘C’ = 10; ‘gamma’ = ‘scale’; ‘kernel’ = ‘rbf’ |
KNN | 94.09% | 0.9721 | ‘n_neighbors’ = 7; ‘weights’ = ‘distance’ |
XGBOOST | 94.94% | 0.9740 | ‘max_depth’ = 9; ‘n_estimators’ = 100; ‘eval_metric’ = ‘logloss’ |
NO. | Name | Probability 2 | Docking Score | Residue | Structure |
---|---|---|---|---|---|
1 | Indacaterol 1 | 0.837774 | −11.13 | Trp82, His438, Glh197, Asp70, Phe329 | |
2 | DC-05 | 0.631031 | −10.846 | Trp82, Asp70, Phe329, Trp231 | |
3 | Z26395438 | 0.82116044 | −9.39 | Trp82, His438, Phe329 | |
4 | GSK-3β inhibitor 12 | 0.5691432 | −8.696 | Trp82, His438, Phe329 | |
5 | WAY-323062 | 0.89035976 | −8.492 | Trp82, Phe329 | |
6 | STM2120 | 0.69138443 | −8.313 | Trp82, Asp70 | |
7 | TM2-115 | 0.7532605 | −8.107 | Trp82, Phe329, Trp231 | |
8 | piboserod | 0.7946475 | −7.942 | Asp70, Phe329, Trp231 | |
9 | Metergoline | 0.8255164 | −7.937 | Tyr332, Phe329 | |
10 | Rotigotine 1 | 0.75426644 | −7.683 | Trp82, His438, Tyr332, Trp231, Phe329 | |
11 | T16Ainh-A01 | 0.7628014 | −7.548 | Trp82, Phe329 | |
12 | Iprindole | 0.7948465 | −7.54 | Trp82, Tyr332 | |
positive control | Tacrine | — | −8.040 | Trp82, His438 | |
positive control | Donepezil | — | −7.914 | Trp82, Tyr332 | |
positive control | Galantamine | — | −7.142 | Trp82 |
NO. | Compounds | IC50 (μM) 1 |
---|---|---|
1 | indacaterol | n.a. 2 |
2 | DC-05 | n.a. 2 |
3 | Z26395438 | n.a. 2 |
4 | GSK-3β inhibitor 12 | n.a. 2 |
5 | WAY-323062 | n.a. 2 |
6 | STM2120 | n.a. 2 |
7 | TM2-115 | ≈50 |
8 | piboserod | 15.33 ± 3.84 |
9 | Metergoline | 18.36 ± 3.29 |
10 | Rotigotine | 12.76 ± 4.22 |
11 | T16Ainh-A01 | n.a. 2 |
12 | Iprindole | n.a. 2 |
positive control | Tacrine | 0.14 ± 0.09 |
positive control | Donepezil | 7.63 ± 1.21 |
positive control | Galantamine | 15.62 ± 2.01 |
System | T (K) | Ksv × 103 (L·mol−1) | Ra 1 | Ka × 104 (L·mol−1) | Rb 2 | n | ∆H (kJ·mol−1) | ∆S (J·mol−1·K−1) | ∆G (kJ·mol−1) |
---|---|---|---|---|---|---|---|---|---|
piboserod | 298 | 5.250 | 0.998 | 8.595 | 0.999 | 1.052 | −35.77 | −44.61 | −22.48 |
304 | 4.720 | 0.999 | 6.724 | 0.999 | 1.035 | −22.21 | |||
310 | 4.250 | 0.995 | 4.912 | 0.999 | 1.014 | −21.94 | |||
Rotigotine | 298 | 2.64 | 0.999 | 5.084 | 0.998 | 1.066 | −79.41 | −195.34 | −21.20 |
304 | 2.25 | 0.998 | 2.896 | 0.997 | 1.022 | −20.03 | |||
310 | 1.54 | 0.999 | 1.469 | 0.999 | 0.975 | −21.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhao, P.; Yang, C.; Yin, Q.; Wang, N.; Liu, Y.; Li, Y. Discovery, Biological Evaluation and Binding Mode Investigation of Novel Butyrylcholinesterase Inhibitors Through Hybrid Virtual Screening. Molecules 2025, 30, 2093. https://doi.org/10.3390/molecules30102093
Li L, Zhao P, Yang C, Yin Q, Wang N, Liu Y, Li Y. Discovery, Biological Evaluation and Binding Mode Investigation of Novel Butyrylcholinesterase Inhibitors Through Hybrid Virtual Screening. Molecules. 2025; 30(10):2093. https://doi.org/10.3390/molecules30102093
Chicago/Turabian StyleLi, Lizi, Puchen Zhao, Can Yang, Qin Yin, Na Wang, Yan Liu, and Yanfang Li. 2025. "Discovery, Biological Evaluation and Binding Mode Investigation of Novel Butyrylcholinesterase Inhibitors Through Hybrid Virtual Screening" Molecules 30, no. 10: 2093. https://doi.org/10.3390/molecules30102093
APA StyleLi, L., Zhao, P., Yang, C., Yin, Q., Wang, N., Liu, Y., & Li, Y. (2025). Discovery, Biological Evaluation and Binding Mode Investigation of Novel Butyrylcholinesterase Inhibitors Through Hybrid Virtual Screening. Molecules, 30(10), 2093. https://doi.org/10.3390/molecules30102093