Electrochemical α-C(sp3)–H/N–H Cross-Coupling of Isochromans and Azoles
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Instruments
3.2. Cyclic Voltammetry Experiments
3.3. General Procedure for the Electrochemical Synthesis of 1-(Isochroman-1-yl)-1H-Indazole
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girad, S.A.; Knauber, T.; Li, C.-J. The Cross-Dehydrogenative Coupling of Csp3-H Bonds: A Versatile Strategy for C-C Bond Formations. Angew. Chem. Int. Ed. 2014, 53, 74–100. [Google Scholar] [CrossRef]
- Tang, S.; Lei, A. Oxidative R1–H/R2–H Cross-Coupling with Hydrogen Evolution. J. Am. Chem. Soc. 2018, 140, 13128–13135. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Kang, H.; Li, J.; Li, C.-J. En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions. J. Org. Chem. 2019, 84, 12705–12721. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C−C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res. 2009, 42, 335–344. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative Coupling between Two Hydrocarbons: An Update of Recent C–H Functionalizations. Chem. Rev. 2015, 115, 12138–12204. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, D.; Lei, A. Recent Advances of Transition-Metal Catalyzed Radical Oxidative Cross-Couplings. Acc. Chem. Res. 2014, 47, 3459–3470. [Google Scholar] [CrossRef]
- Yuan, Y.; Lei, A. Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions. Acc. Chem. Res. 2019, 52, 3309–3324. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Recent Advances in Oxidative R1-H/R2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem. Rev. 2019, 119, 6769–6787. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, K.; Zeng, C. Use of Electrochemistry in the Synthesis of Heterocyclic Structures. Chem. Rev. 2018, 118, 4485–4540. [Google Scholar] [CrossRef]
- Röckl, J.L.; Pollok, D.; Franke, R.; Waldvogel, S.R. A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls. Acc. Chem. Res. 2020, 53, 45–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Z.; Warratz, S.; Ma, C.; Ackermann, L. Recent advances in electrooxidative radical transformations of alkynes. Sci. China Chem. 2023, 66, 703–724. [Google Scholar] [CrossRef]
- Roy, S.; Karmakar, S.; Mondal, I.; Naskar, K.; Deb, I. Electrochemical C(sp3)–C(sp3) cross-dehydrogenative coupling: Enabling access to 9-substituted fluorescent acridanes. Chem. Commun. 2023, 59, 9074–9077. [Google Scholar] [CrossRef]
- Kong, Y.; Kim, J.K.; Li, Y.; Zhang, J.; Huang, M.; Wu, Y. An oxidant- and catalyst-free electrooxidative cross-coupling approach to 3-tetrahydroisoquinoline substituted coumarins. Green Chem. 2021, 23, 1274–1279. [Google Scholar] [CrossRef]
- Cao, H.; Long, C.-J.; Yang, D.; Guan, Z.; He, Y.-H. Electrochemical Cross-Dehydrogenative Coupling of Isochroman and Unactivated Ketones. J. Org. Chem. 2023, 88, 4145–4154. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Song, H.; Wang, Q. Phosphorous acid–assisted electrochemical α-tetrahydrofuranylation of sulfonamides and amides. Green Chem. 2023, 25, 1970–1974. [Google Scholar] [CrossRef]
- Zhu, Q.-R.; Zhang, P.-Z.; Sun, X.; Gao, H.; Wang, P.-L.; Li, H. Electrochemical N(sp2)–H/C(sp3)–H cross-coupling reaction between sulfoximines and alkylarenes. Green Chem. 2024, 26, 5824–5831. [Google Scholar] [CrossRef]
- Kong, Y.; Huang, M.; Li, Y.; Kim, J.K.; Gong, M.; Wu, Y. Convergent Paired Electrolysis for the Synthesis of Pyrazolyl-Substituted Tetrahydroisoquinolines. Adv. Synth. Catal. 2023, 365, 4198–4204. [Google Scholar] [CrossRef]
- Fang, S.; Zhong, K.; Zeng, S.; Hu, X.; Sun, P.; Ruan, Z. The electrochemically enabled α-C(sp3)–H azolation of ketones. Chem. Commun. 2023, 59, 11425–11428. [Google Scholar] [CrossRef]
- Hou, Z.-W.; Liu, D.-J.; Xiong, P.; Lai, X.-L.; Song, J.; Xu, H.-C. Site-Selective Electrochemical Benzylic C−H Amination. Angew. Chem. Int. Ed. 2021, 60, 2943–2947. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Song, H.; Wang, Q. Electrochemical direct α-amidation and α-pyrazolation of N-alkoxy- and N-aryloxycarbonyl pyrrolidines. Green Chem. 2024, 26, 7419–7423. [Google Scholar] [CrossRef]
- Hou, Z.-W.; Li, L.; Wang, L. Organocatalytic electrochemical amination of benzylic C–H bonds. Org. Chem. Front. 2021, 8, 4700–4705. [Google Scholar] [CrossRef]
- Wu, J.; Shi, H.; Liu, J.; Wang, R.; Zhou, J.; Xu, X.-L.; Xu, H.-J. Electrochemical oxidative C(sp3)–H/O–H cross-coupling for the synthesis of α-acyloxyketones. Org. Chem. Front. 2023, 10, 2459–2464. [Google Scholar] [CrossRef]
- Wang, H.; He, M.; Li, Y.; Zhang, H.; Yang, D.; Nagasaka, M.; Lv, Z.; Guan, Z.; Cao, Y.; Gong, F.; et al. Electrochemical Oxidation Enables Regioselective and Scalable α-C(sp3)-H Acyloxylation of Sulfides. J. Am. Chem. Soc. 2021, 143, 3628–3637. [Google Scholar] [CrossRef]
- Wang, Z.; Niu, K.; Liu, Y.; Song, H.; Wang, Q. Electrochemical α-C(sp3)–H/O–H cross-coupling of isochromans and alcohols assisted by benzoic acid. Chem. Commun. 2022, 58, 10949–10952. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Pajkert, R.; Wang, L.; Li, Z.; Röschenthaler, G.-V.; Han, J. Chemistry of electrochemical oxidative reactions of sulfinate salts. Green Chem. 2020, 22, 3028–3059. [Google Scholar] [CrossRef]
- Martins, D.G.M.; Meirinho, A.G.; Ahmed, D.N.; Braga, D.A.L.; Mendes, D.S.R. Recent Advances in Electrochemical Chalcogen (S/Se)-Functionalization of Organic Molecules. ChemElectroChem 2019, 6, 5928–5940. [Google Scholar] [CrossRef]
- Wang, J.-H.; Li, X.-B.; Li, J.; Lei, T.; Wu, H.-L.; Nan, X.-L.; Tung, C.-H.; Wu, L.-Z. Photoelectrochemical cell for P–H/C–H cross-coupling with hydrogen evolution. Chem. Commun. 2019, 55, 10376–10379. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Fang, P.; Wu, J.; Wang, F.; Liu, Z.-Q. Electrochemical chlorination of least hindered tertiary and benzylic C(sp3)–H bonds. Green Chem. 2024, 26, 507–512. [Google Scholar] [CrossRef]
- Fuchigami, T.; Inagi, S. Recent Advances in Electrochemical Systems for Selective Fluorination of Organic Compounds. Acc. Chem. Res. 2020, 53, 322–334. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, H.; Lei, A. Oxidation-Induced C-H Functionalization: A Formal Way for C-H Activation. Chin. J. Chem. 2018, 36, 692–697. [Google Scholar] [CrossRef]
- Zhao, Z.; Kang, K.; Yue, J.; Ji, X.; Qiao, H.; Fan, P.; Zheng, X. Research progress in biological activities of isochroman derivatives. Eur. J. Med. Chem. 2021, 210, 113073. [Google Scholar] [CrossRef] [PubMed]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef] [PubMed]
- Khwaza, V.; Aderibigbe, B.A. Antifungal Activities of Natural Products and Their Hybrid Molecules. Pharmaceutics 2023, 15, 2673. [Google Scholar] [CrossRef]
- Deng, Y.; Hu, Z.; Xue, J.; Yin, J.; Zhu, T.; Liu, S. Visible-Light-Promoted α-C(sp3)–H Amination of Ethers with Azoles and Amides. Org. Lett. 2024, 26, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.D.; Doan, S.H.; Ngo, A.N.V.; Nguyen, T.T.; Phan, N.T.S. Direct C–N coupling of azoles with ethers via oxidative C–H activation under metal–organic framework catalysis. J. Ind. Eng. Chem. 2016, 44, 136–145. [Google Scholar] [CrossRef]
- Sun, B.; Yan, Z.; Jin, C.; Su, W. (Diacetoxyiodo)benzene-Mediated Transition-Metal-Free Amination of C(sp3)–H Bonds Adjacent to Heteroatoms with Azoles: Synthesis of N-Alkylated Azoles. Synlett 2018, 29, 2432–2436. [Google Scholar]
- Gong, M.; Wu, Q.; Kim, J.K.; Huang, M.; Li, Y.; Wu, Y.; Kim, J.S. Electric-field-controlled highly regioselective thiocyanation of N-containing heterocycles. Sci. China Chem. 2024, 67, 1263–1269. [Google Scholar] [CrossRef]
- Alkorta, I.; Claramunt, R.M.; Elguero, J.; Gutiérrez-Puebla, E.; Monge, M.Á.; Reviriego, F.; Roussel, C. Study of the Addition Mechanism of 1H-Indazole and Its 4-, 5-, 6-, and 7-Nitro Derivatives to Formaldehyde in Aqueous Hydrochloric Acid Solutions. J. Org. Chem. 2022, 87, 5866–5881. [Google Scholar] [CrossRef]
- Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1974, 52, 355–393. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Y.; Zhou, Y.; Chiang, C.-W.; Lei, A. Electro-Oxidative C(sp3)-H Amination of Azoles via Intermolecular Oxidative C(sp3)-H/N-H Cross-Coupling. ACS Catal. 2017, 7, 8320–8323. [Google Scholar] [CrossRef]
Entry | Anode/Cathode | Electrolyte | Additive | Yield (%) b |
---|---|---|---|---|
1 | RVC/Ni | n-Bu4NBF4 | - | trace |
2 | RVC/Ni | n-Bu4NBF4 | TfOH | 39 |
3 | RVC/Ni | n-Bu4NBF4 | AcOH | 2 |
4 c | RVC/Ni | n-Bu4NBF4 | TfOH | 73 |
5 c | RVC/Ni | n-Bu4NClO4 | TfOH | 54 |
6 c | RVC/Ni | n-Bu4NPF6 | TfOH | 88 |
7 c | RVC/Ni | n-Bu4NOAc | TfOH | 39 |
8 c | C/Ni | n-Bu4NPF6 | TfOH | 73 |
9 c | RVC/Pt | n-Bu4NPF6 | TfOH | 71 |
10 c,d | RVC/Ni | n-Bu4NPF6 | TfOH | 50 |
11 c,e,f | RVC/Ni | n-Bu4NPF6 | TfOH | 72 |
12 c,g | RVC/Ni | n-Bu4NPF6 | TfOH | 88 |
13 c,h | RVC/Ni | n-Bu4NPF6 | TfOH | 69 |
14 c,f | RVC/Ni | n-Bu4NPF6 | TfOH | 84 |
15 c | RVC/Ni | n-Bu4NPF6 | - | 70 |
16 c,i | RVC/Ni | n-Bu4NPF6 | TfOH | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Yan, B.; Wu, L.; Li, Y.; Hao, X.; Gong, M.; Wu, Y. Electrochemical α-C(sp3)–H/N–H Cross-Coupling of Isochromans and Azoles. Molecules 2025, 30, 4. https://doi.org/10.3390/molecules30010004
Li G, Yan B, Wu L, Li Y, Hao X, Gong M, Wu Y. Electrochemical α-C(sp3)–H/N–H Cross-Coupling of Isochromans and Azoles. Molecules. 2025; 30(1):4. https://doi.org/10.3390/molecules30010004
Chicago/Turabian StyleLi, Guoping, Bing Yan, Liangliang Wu, Yabo Li, Xinqi Hao, Ming Gong, and Yangjie Wu. 2025. "Electrochemical α-C(sp3)–H/N–H Cross-Coupling of Isochromans and Azoles" Molecules 30, no. 1: 4. https://doi.org/10.3390/molecules30010004
APA StyleLi, G., Yan, B., Wu, L., Li, Y., Hao, X., Gong, M., & Wu, Y. (2025). Electrochemical α-C(sp3)–H/N–H Cross-Coupling of Isochromans and Azoles. Molecules, 30(1), 4. https://doi.org/10.3390/molecules30010004