Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from Serratia marcescens for Biocontrol of Spodoptera frugiperda Larvae Infesting Maize Crops
Abstract
:1. Introduction
2. Results
2.1. Molecular-Based Phylogeny of the Highest Chitinase-Producing Bacterial Isolate
2.2. Gene Cloning and Heterologous Expression of ChiB
2.3. Partial Protein Purification and SDS-PAGE
2.4. DNA Sequence and Phylogenetic Analysis of ChiB Gene
2.5. Homology Modeling and Structure Validation of Modeled Chitinase B
2.5.1. Alignment of the Chitinase B Model and Template (1W1V) Structure
2.5.2. Docking and Molecular Interaction Studies
2.5.3. Insecticidal Efficiency of Recombinant Chitinase B against Spodoptera frugiperda Larvae
Laboratory Assessment Results
2.6. Field Evaluation
3. Discussion
4. Materials and Methods
4.1. Isolation and Maintenance of Chitinase-Producing Bacteria
4.2. Chitinolytic Assay
4.2.1. Preparation of Production Media
4.2.2. Preparation of Colloidal Chitin
4.2.3. Assay of Chitinase Activity
4.2.4. Bacterial DNA Purification and PCR Amplification
4.2.5. Phylogenetic Analysis
4.3. Molecular Cloning and Heterologous Expression of ChiB Gene
4.3.1. Bacterial Strains, Growth Media, and Plasmids
4.3.2. Primer Design and ChiB Gene Amplification
4.3.3. Gene Cloning and Transformation
4.3.4. Heterologous Expression of Chitinase B in E. coli BL21 (DE3)
4.3.5. Expression of Chitinase B in E. coli and SDS-PAGE
4.3.6. DNA Sequencing and Analysis of ChiB Gene
4.3.7. Template Search and Homology Modeling
4.3.8. Structure Validation of Modeled Protein
4.3.9. Alignment of the Chitinase Model and the Template Structure
4.3.10. Molecular Docking
4.4. Insecticidal Activity Assessment
4.4.1. Laboratory Screening
4.4.2. Field Evaluation
4.4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Long, H.; Jin, T.; Peng, Z.; Sun, Y.; Feng, T. Potential of Entomopathogenic Nematode HbSD as a Candidate Biocontrol Agent against Spodoptera frugiperda. Insects 2022, 14, 2. [Google Scholar] [CrossRef]
- Sun, C.; Li, S.; Wang, K.; Feng, H.; Tian, C.; Liu, X.; Li, X.; Yin, X.; Wang, Y.; Wei, J.; et al. Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda. Toxins 2022, 14, 721. [Google Scholar] [CrossRef]
- Dahi, H.F.; Salem, S.A.; Gamil, W.E.; Mohamed, H.O. Heat Requirements for the Fall Armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) as a New Invasive Pest in Egypt. Egypt. Acad. J. Biol. Sci. A Entomol. 2020, 13, 73–85. [Google Scholar] [CrossRef]
- Kenis, M.; Benelli, G.; Biondi, A.; Calatayud, P.-A.; Day, R.; Desneux, N.; Harrison, R.D.; Kriticos, D.; Rwomushana, I.; Berg, J.v.D.; et al. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2023, 43, 187–241. [Google Scholar] [CrossRef]
- Kumar, R.M.; Gadratagi, B.-G.; Paramesh, V.; Kumar, P.; Madivalar, Y.; Narayanappa, N.; Ullah, F. Sustainable Management of Invasive Fall Armyworm, Spodoptera frugiperda. Agronomy 2022, 12, 2150. [Google Scholar] [CrossRef]
- Deshmukh, S.; Pavithra, H.B.; Kalleshwaraswamy, C.M.; Shivanna, B.K.; Maruthi, M.S.; Mota-Sanchez, D. Field Efficacy of Insecticides for Management of Invasive Fall Armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on Maize in India. Fla. Entomol. 2020, 103, 221–227. [Google Scholar] [CrossRef]
- Tambo, J.A.; Day, R.K.; Lamontagne-Godwin, J.; Silvestri, S.; Beseh, P.K.; Oppong-Mensah, B.; Phiri, N.A.; Matimelo, M. Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: An analysis of farmers’ control actions. Int. J. Pest Manag. 2020, 66, 298–310. Available online: https://www.tandfonline.com/doi/abs/10.1080/09670874.2019.1646942 (accessed on 10 January 2024). [CrossRef]
- Kebede, M. Out-break, Distribution and Management of fall armyworm, Spodoptera frugiperda J.E. Smith in Africa: The Status and Prospects. Am. J. Agric. Res. 2018, 4, 20190130. [Google Scholar]
- Xia, J.-L.; Xiong, J.; Zhang, R.-Y.; Liu, K.-K.; Huang, B.; Nie, Z.-Y. Production of Chitinase and its Optimization from a Novel Isolate Serratia marcescens XJ-01. Indian J. Microbiol. 2011, 51, 301–306. [Google Scholar] [CrossRef]
- Javed, S.; Hamid, R.; Khan, M.; Ahmad, M.; Ahmad, M.M.; Abdin, M.Z.; Musarrat, J. Chitinases: An update. J. Pharm. Bioallied Sci. 2013, 5, 21–29. [Google Scholar] [CrossRef]
- Aggarwal, C.; Paul, S.; Tripathi, V.; Paul, B.; Khan, A. Chitinolytic activity in Serratia marcescens (strain SEN) and potency against different larval instars of Spodoptera litura with effect of sublethal doses on insect development. BioControl 2015, 60, 631–640. [Google Scholar] [CrossRef]
- Danişmazoğlu, M.; Demir, I.; Sezen, K.; Muratoğlu, H.; Nalçacioğlu, R. Cloning and expression of chitinase A, B, and C (chiA, chiB, chiC) genes from Serratia marcescens originating from Helicoverpa armigera and determining their activities. Turk. J. Biol. 2015, 39, 78–87. [Google Scholar] [CrossRef]
- Vaaje-Kolstad, G.; Horn, S.J.; Sørlie, M.; Eijsink, V.G.H. The chitinolytic machinery of Serratia marcescens—A model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J. 2013, 280, 3028–3049. [Google Scholar] [CrossRef]
- Gupta, R.D.; Goldsmith, M.; Ashani, Y.; Simo, Y.; Mullokandov, G.; Bar, H.; Ben-David, M.; Leader, H.; Margalit, R.; Silman, I.; et al. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat. Chem. Biol. 2011, 7, 120–125. [Google Scholar] [CrossRef]
- Veliz, E.A.; Martínez-Hidalgo, P.; Hirsch, A.M. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol. 2017, 3, 689–705. [Google Scholar] [CrossRef]
- El-Barbary, M.I.; Hal, A.M. Molecular identification and pathogenicity of Citrobacter and Serratia species isolated from cultured Oreochromis niloticus. Egypt. J. Aquat. Res. 2017, 43, 255–263. [Google Scholar] [CrossRef]
- Yan, F.; Ye, X.; Li, C.; Wang, P.; Chen, S.; Lin, H. Isolation, purification, gene cloning and expression of antifungal protein from Bacillus amyloliquefaciens MG-3. Food Chem. 2021, 349, 129130. [Google Scholar] [CrossRef] [PubMed]
- Ariyaei, A.; Farhadi, A.; Moradian, F.; Mianji, G.R. Cloning, expression and characterization of a novel alkaline serine protease gene from native Iranian Bacillus sp.; a producer of protease for use in livestock. Gene 2019, 693, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Brurberg, M.B.; Nes, I.F.; Eijsink, V.G.H. Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 1996, 142, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.-S.; Xie, X.-L.; Liang, G.; Gong, F.; Wang, Y.; Wei, X.-Q.; Wang, Q.; Ji, Z.-L.; Chen, Q.-X. The GH18 family of chitinases: Their domain architectures, functions and evolutions. Glycobiology 2011, 22, 23–34. [Google Scholar] [CrossRef]
- Meekrathok, P.; Kukic, P.; Nielsen, J.E.; Suginta, W. Investigation of Ionization Pattern of the Adjacent Acidic Residues in the DXDXE Motif of GH-18 Chitinases Using Theoretical pKa Calculations. J. Chem. Inf. Model. 2017, 57, 572–583. [Google Scholar] [CrossRef]
- van Aalten, D.M.F.; Komander, D.; Synstad, B.; Gaseidnes, S.; Peter, M.G.; Eijsink, V.G.H. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc. Natl. Acad. Sci. USA 2001, 98, 8979–8984. [Google Scholar] [CrossRef]
- Emruzi, Z.; Keshavarz, M.; Gholami, D.; Aminzadeh, S.; Noori, A.R. Kinetic and Thermo-Inactivation Thermodynamic Parameters of a Novel Isolated Serratia Marcescens B4A Chitinase. Biomacromol. J. 2020, 6, 46–55. [Google Scholar]
- Gal, S.W.; Choi, J.Y.; Kim, C.Y.; Cheong, Y.H.; Choi, Y.J.; Bahk, J.D.; Lee, S.Y.; Cho, M.J. Isolation and characterization of the 54-kDa and 22-kDa chitinase genes of Serratia marcescens KCTC21721. FEMS Microbiol. Lett. 1997, 151, 197–204. [Google Scholar] [CrossRef]
- Liu, X.; Cooper, A.M.; Yu, Z.; Silver, K.; Zhang, J.; Zhu, K.Y. Progress and prospects of arthropod chitin pathways and structures as targets for pest management. Pestic. Biochem. Physiol. 2019, 161, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Pan, P.; Ye, Y.; Yu, B.; Xu, H.; Zhang, C. Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 2014, 24, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Wang, S.-S.; Zhong, F.; Zhou, M.; Jiang, X.-Y.; Cheng, Y.-S.; Dan, Y.-H.; Hu, G.; Li, C.; Tang, B.; et al. Chitinase (CHI) of Spodoptera frugiperda affects molting development by regulating the metabolism of chitin and trehalose. Front. Physiol. 2022, 13, 1034926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, Z.-J.; Chen, Z.-S.; Wang, X.-X.; Cong, H.-S.; Fan, Y.-L.; Liu, T.-X. Connection between cuticular hydrocarbons and melanization in Harmonia axyridis revealed by RNAi-mediated silencing of the CYP4G79. Entomol. Gen. 2021, 41, 83–96. [Google Scholar] [CrossRef]
- Suganthi, M.; Senthilkumar, P.; Arvinth, S.; Chandrashekara, K.N. Chitinase from Pseudomonas fluorescens and its insecticidal activity against Helopeltis theivora. J. Gen. Appl. Microbiol. 2017, 63, 222–227. [Google Scholar] [CrossRef]
- Kshetri, L.; Naseem, F.; Pandey, P. Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant; Springer: Berlin/Heidelberg, Germany, 2019; pp. 169–200. [Google Scholar] [CrossRef]
- Aggarwal, C.; Paul, S.; Tripathi, V.; Paul, B.; Khan, A. Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura. J. Invertebr. Pathol. 2017, 143, 115–123. [Google Scholar] [CrossRef]
- Downing, K.J.; Leslie, G.; Thomson, J.A. Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genes in Sugarcane-Associated Bacteria. Appl. Environ. Microbiol. 2000, 66, 2804–2810. [Google Scholar] [CrossRef]
- Son, D.-J.; Kim, G.-G.; Choo, H.-Y.; Chung, N.-J.; Choo, Y.-M. Functional Comparison of Three Chitinases from Symbiotic Bacteria of Entomopathogenic Nematodes. Toxins 2024, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Kramer, K.J.; Muthukrishnan, S. Insect Chitinases: Molecular Biology and Potential Use as Biopesticides. Insect Biochem. Mol. Biol. 1997, 27, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, K.; Wu, Y.; Gao, Y.; Ning, C.; Oppert, B. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. J. Insect Physiol. 2009, 55, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Ding, S.; Guo, H. The chitinase C gene PsChiC from Pseudomonas sp. and its synergistic effects on larvicidal activity. Genet. Mol. Biol. 2015, 38, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.R.; Adang, M.J.; Spence, K.D. The peritrophic membrane: Ultrastructural analysis and function as a mechanical barrier to microbial infection in Orgyia pseudotsugata. J. Invertebr. Pathol. 1978, 32, 12–24. [Google Scholar] [CrossRef]
- Regev, A.; Keller, M.; Strizhov, N.; Sneh, B.; Prudovsky, E.; Chet, I.; Ginzberg, I.; Koncz-Kalman, Z.; Koncz, C.; Schell, J.; et al. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl. Environ. Microbiol. 1996, 62, 3581–3586. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.J.; Jung, S.J.; An, K.N.; Jin, Y.L.; Park, R.D.; Kim, K.Y.; Shon, B.K.; Kim, T.H. Effect of Chitinase-Producing Paenibacillus illinoisensis KJA-424 on Egg Hatching of Root-Knot Nematode (Meloidogyne incognita). J. Microbiol. Biotechnol. 2002, 12, 865–871. [Google Scholar]
- Edreva, A. Pathogenesis-related proteins: Research progress in the last 15 years. Gen. Appl. Plant Physiol. 2005, 31, 105–124. [Google Scholar]
- Sehar, U.; Mehmood, M.A.; Nawaz, S.; Nadeem, S.; Hussain, K.; Sohail, I.; Tabassum, M.R.; Gill, S.S.; Saqib, A. Three dimensional (3D) structure prediction and substrate-protein interaction study of the chitin binding protein CBP24 from B. thuringiensis. Bioinformation 2013, 9, 725–729. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Rishad, K.S.; Varghese, S.; Jisha, M.S. Sequence analysis and docking performance of extracellular chitinase from Bacillus pumilus MCB-7, a novel mangrove isolate. Enzym. Microb. Technol. 2020, 140, 109624. [Google Scholar] [CrossRef]
- Oduselu, G.; O Ajani, O.; Ajamma, Y.U.; Brors, B.; Adebiyi, E. Homology Modelling and Molecular Docking Studies of Selected Substituted Benzo[d]imidazol-1-yl)methyl)benzimidamide Scaffolds on Plasmodium falciparum Adenylosuccinate Lyase Receptor. Bioinform. Biol. Insights 2019, 13, 1177932219865533. [Google Scholar] [CrossRef]
- Mena-Ulecia, K.; Tiznado, W.; Caballero, J. Study of the Differential Activity of Thrombin Inhibitors Using Docking, QSAR, Molecular Dynamics, and MM-GBSA. PLoS ONE 2015, 10, e0142774. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, D.; Caballero, J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef] [PubMed]
- Benoit, T.; Wilson, G.; Pryor, N.; Bull, D. Isolation and pathogenicity of Serratia marcescens from adult house flies infected with Entomophthora muscae. J. Invertebr. Pathol. 1990, 55, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Rustiguel, C.B.; Jorge, J.A.; Guimarães, L.H.S. Optimization of the Chitinase Production by Different Metarhizium anisopliae Strains under Solid-State Fermentation with Silkworm Chrysalis as Substrate Using CCRD. Adv. Microbiol. 2012, 2, 268–276. [Google Scholar] [CrossRef]
- Wang, K.; Yan, P.-S.; Cao, L.-X. Chitinase from a Novel Strain of Serratia marcescens JPP1 for Biocontrol of Aflatoxin: Molecular Characterization and Production Optimization Using Response Surface Methodology. BioMed Res. Int. 2014, 2014, 482623. [Google Scholar] [CrossRef]
- Monreal, J.; Reese, E.T. The chitinase of Serratia marcescens. Can. J. Microbiol. 1969, 15, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. In Mammalian Protein Metabolism; Munro, H., Ed.; Elsevier: Amsterdam, The Netherlands, 1969; pp. 21–132. [Google Scholar] [CrossRef]
- Duarte, L.S.; Barsé, L.Q.; Dalberto, P.F.; da Silva, W.T.S.; Rodrigues, R.C.; Machado, P.; Basso, L.A.; Bizarro, C.V.; Ayub, M.A.Z. Cloning and expression of the Bacillus amyloliquefaciens transglutaminase gene in E. coli using a bicistronic vector construction. Enzym. Microb. Technol. 2019, 134, 109468. [Google Scholar] [CrossRef]
- Preparation of Calcium Competent Escherichia coli and Heat-Shock Transformation|jemi.microbiology.ubc.ca. Available online: https://ujemi.microbiology.ubc.ca/node/127 (accessed on 10 January 2024).
- Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2024; Available online: https://ci.nii.ac.jp/ncid/BA49507033 (accessed on 10 January 2024).
- Tham, H.Y.; Song, A.A.-L.; Yusoff, K.; Tan, G.H. Effect of different cloning strategies in pET-28a on solubility and functionality of a staphylococcal phage endolysin. BioTechniques 2020, 69, 161–170. [Google Scholar] [CrossRef]
- Farag, A.; Abdel-Naby, M.; Ibrahim, H.; El-Shenawy, M. Purification, Characterization and Antimicrobial Activity of Chitinase from Marine-Derived Aspergillus terreus. Egypt. J. Aquat. Res. 2016, 42, 2. [Google Scholar] [CrossRef]
- Elgammal, E.W.; Ahmed, E.F.; Kamel, O.M.; Yehia, H. Submerged production, partial purification and characterization of extracellular chitinase from local endophytic fungus for Culex pipiens biocontrol: Strategy for protein stabilization. Egypt. J. Chem. 2022, 65, 657–669. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef] [PubMed]
- Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006, 22, 195–201. [Google Scholar] [CrossRef]
- Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 2009, 37, D387–D392. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, S162–S173. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Herlinda, S.; Noni, O.; Suwandi, S.; Hasbi, H. Exploring entomopathogenic fungi from South Sumatra (Indonesia) soil and their pathogenicity against a new invasive maize pest, Spodoptera frugiperda. Biodivers. J. Biol. Divers. 2020, 21. [Google Scholar] [CrossRef]
- Ayudya, D.R.; Herlinda, S.; Suwandi, S. Insecticidal activity of culture filtrates from liquid medium of Beauveria bassiana isolates from South Sumatra (Indonesia) wetland soil against larvae of Spodoptera litura. Biodivers. J. Biol. Divers. 2019, 20. [Google Scholar] [CrossRef]
- Liu, Z.-K.; Li, X.-L.; Tan, X.-F.; Yang, M.-F.; Idrees, A.; Liu, J.-F.; Song, S.-J.; Shen, J. Sublethal Effects of Emamectin Benzoate on Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Agriculture 2022, 12, 959. [Google Scholar] [CrossRef]
- Ramanujam, B.; Poornesha, B.; Shylesha, A.N. Effect of entomopathogenic fungi against invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize. Egypt. J. Biol. Pest Control 2020, 30, 100. [Google Scholar] [CrossRef]
- Henderson, C.F.; Tilton, E.W. Tests with Acaricides against the Brown Wheat Mite12. J. Econ. Entomol. 1955, 48, 157–161. [Google Scholar] [CrossRef]
Ethanol Conc. (%) | Total Protein Content (mg) | Total Chitinase Activity (U) | Chitinase Specific Activity (U/mg) |
---|---|---|---|
Crude extract | 20.2 ± 0.9 | 204 ± 1.2 | 10.09 ± 1.1 |
0–20 | 16.4 ± 0.6 | 322 ± 0.9 | 19.6 ± 0.6 |
20–40 | 12.4 ± 0.7 | 551 ± 0.9 | 44.4 ± 0.5 |
40–60 | 9.9 ± 0.4 | 905 ± 1.2 | 91.4 ± 0.9 |
60–70 | 4.1 ± 0.03 | 2581 ± 2.1 | 629.5 ± 1.1 |
70–90 | 3.6 ± 0.5 | 706 ± 1.2 | 196.1 ± 0.6 |
3D Representation and Energy-Minimized Structures of Chitin | 2D Docking | 3D Docking |
---|---|---|
Molecular Target | Ligand | Hydrogen Bond Analysis | ||
---|---|---|---|---|
Number | Hydrogen Bond Ligand/Receptor | Distance (Å) | ||
Chitinase B | Chitin (compound CID:6857375) | 2 | 2.1 2.0 |
Biological Aspects | Control | Emamectin Benzoate | Chitinase B |
---|---|---|---|
Larval mortality (%) | 8 ± 0.14 a | 98.31 ± 0.28 b | 92.75 ± 0.17 c |
Larval weight (mg) | 402 ± 0.19 a | 278.22 ± 0.55 b | 296.51 ± 0.31 c |
Percent pupation (%) | 90.83 ± 0.23 a | 42.9 ± 0.11 b | 48.92 ± 0.06 c |
Pupal period (days) | 11.35 ± 0.36 a | 13.45 ± 0.09 b | 16.31 ± 0.25 c |
Pupal weight (mg) | 150.02 ± 0.09 a | 122.14 ± 0.15 b | 130.23 ± 0.87 c |
Eclosion rate (%) | 88.16 ± 0.41 a | 62.52 ± 0.27 b | 68.41 ± 0.19 c |
Adult longevity (days) | 10.71 ± 0.015 a | 13.21 ± 0.03 b | 16.37 ± 0.72 c |
Hatching rate (%) | 93.01 ± 0.62 a | 55.81 ± 0.42 b | 58.14 ± 0.64 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, G.M.; Emam, M.T.H.; Hammad, M.A.; Mahmoud, S.H. Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from Serratia marcescens for Biocontrol of Spodoptera frugiperda Larvae Infesting Maize Crops. Molecules 2024, 29, 1466. https://doi.org/10.3390/molecules29071466
El-Sayed GM, Emam MTH, Hammad MA, Mahmoud SH. Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from Serratia marcescens for Biocontrol of Spodoptera frugiperda Larvae Infesting Maize Crops. Molecules. 2024; 29(7):1466. https://doi.org/10.3390/molecules29071466
Chicago/Turabian StyleEl-Sayed, Ghada M., Maha T. H. Emam, Maher A. Hammad, and Shaymaa H. Mahmoud. 2024. "Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from Serratia marcescens for Biocontrol of Spodoptera frugiperda Larvae Infesting Maize Crops" Molecules 29, no. 7: 1466. https://doi.org/10.3390/molecules29071466
APA StyleEl-Sayed, G. M., Emam, M. T. H., Hammad, M. A., & Mahmoud, S. H. (2024). Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from Serratia marcescens for Biocontrol of Spodoptera frugiperda Larvae Infesting Maize Crops. Molecules, 29(7), 1466. https://doi.org/10.3390/molecules29071466