Enhancing the Luminescence of La3Mg2NbO9:Mn4+ Phosphor through H3BO3 and Charge Compensator Co-Doping for Use in Plant Growth Lamps
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Property Analysis
2.2. Electronic Properties
2.3. Optical Luminescence Properties of Samples
2.4. Thermal Stability Analysis of Phosphors
2.5. Potential Applications
3. Materials and Methods
3.1. Preparation of Materials and LEDs
3.2. Characterization of Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosemann, N.W.; Eußner, J.P.; Beyer, A.; Koch, S.W.; Volz, K.; Dehnen, S.; Chatterjee, S. A highly efficient directional molecular white-light emitter driven by a continuous-wave laser diode. Science 2016, 352, 1301–1304. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Feng, L.; Wang, L.; Zheng, J.; Ren, F.; Liu, S.; Ning, Z.; Zhou, T.; Wu, X.; Lai, X.; et al. Novel Mn4+-Activated K2Nb1−xMoxF7 (0 ≤ x ≤ 0.15) Solid Solution Red Phosphors with Superior Moisture Resistance and Good Thermal Stability. Molecules 2023, 28, 4566. [Google Scholar] [CrossRef]
- Li, Z.F.; Chen, Z.H.; Zhang, W.J.; Xin, C.Y.; Wen, X.; Ding, C. Synthesis and characterization of a far-red-emitting Sr2ScNbO6: Mn4+ phosphor for short-day plant cultivation. J. Alloys Compd. 2023, 964, 171333. [Google Scholar] [CrossRef]
- Liu, G.F.; Wang, Z.X.; Sun, W.; Lin, X.H.; Wang, R.; Li, C.H.; Zong, L.; Fu, Z.L.; Liu, H.P.; Xu, S.C. Robust emission in near-infrared II of lanthanide nanoprobes conjugated with Au (LNPs-Au) for temperature sensing and controlled photothermal therapy. Chem. Eng. J. 2023, 452, 139504. [Google Scholar] [CrossRef]
- Geng, X.; Xie, Y.; Hu, X.; Ouyang, X.; Chen, S.; Yao, X.; Kong, J.; Chen, J.; Guo, J.; Wang, H.; et al. Greatly enhanced deep-red luminescence performance of Ca2InSbO6:Mn4+ phosphor via multiple optimization strategies. Mater. Today Chem. 2022, 26, 101006. [Google Scholar] [CrossRef]
- Zhao, M.; Liao, H.X.; Molokeev, M.S.; Zhou, Y.Y.; Zhang, Q.Y.; Liu, Q.L.; Xia, Z.G. Emerging ultranarrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition. Light Sci. Appl. 2019, 8, 38. [Google Scholar] [CrossRef]
- Huang, J.M.; Jiang, P.F.; Cheng, Z.; Wang, R.; Cong, R.H.; Yang, T. Structural confinement-induced highly efficient deep-red emission and negative thermal quenching performance in Mn4+-activated Ca7Mg2Ga6−yAlyO18:Mn4+ phosphors. Inorg. Chem. Front. 2023, 10, 2776. [Google Scholar] [CrossRef]
- Hou, Z.; Tang, X.; Luo, X.; Zhou, T.; Zhang, L.; Xie, R.J. A green synthetic route to the highly efficient K2SiF6:Mn4+ narrow-band red phosphor for warm white light-emitting diodes. J. Mater. Chem. C 2018, 6, 2741–2746. [Google Scholar] [CrossRef]
- Ma, N.; Li, W.; Devakumar, B.; Wang, S.; Sun, L.; Zhang, Z.; Huang, X. Bright red luminescence from Mn4+ ions doped Sr2LuTaO6 double-perovskite phosphors. J. Lumin. 2021, 233, 117901. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, D.; Yadav, R.S.; Singh, A.K. Recent progress on optical properties of double perovskite phosphors. Prog. Solid State Chem. 2023, 69, 100391. [Google Scholar] [CrossRef]
- Cui, W.L.; Hu, G.D.; Lv, E.; Li, C.H.; Wang, Z.X.; Li, Q.; Qian, Z.H.; Wang, J.H.; Xu, S.C.; Wang, R. A label-free and enzyme-free fluorescent aptasensor for amplified detection of kanamycin in milk sample based on target-triggered catalytic hairpin assembly. Food Control 2022, 133, 108654. [Google Scholar] [CrossRef]
- Sun, Y.X.; Shang, M.M.; Wang, Y.N.; Zhu, Y.Y.; Xing, X.L.; Dang, P.P.; Lin, J. The ultra-wideband near-infrared luminescence properties and applications of K2SrGe8O18:Cr3+ phosphor. Ceram. Int. 2023, 49, 32619–32627. [Google Scholar] [CrossRef]
- Liu, G.F.; Wei, J.S.; Li, X.Y.; Tian, M.; Wang, Z.X.; Shen, C.C.; Sun, W.; Li, C.H.; Li, X.W.; Lv, E.G.; et al. Near-Infrared-Responded High Sensitivity Nanoprobe for Steady and Visualized Detection of Albumin in Hepatic Organoids and Mouse Liver. Adv. Sci. 2022, 9, 2202505. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Sun, D.; Lyu, Z.; Shen, S.; Wang, J.; Zhao, H.; Wang, L.; You, H. Double Perovskite Mn4+-Doped La2CaSnO6/La2MgSnO6 Phosphor for Near-Ultraviolet Light Excited W-LEDs and Plant Growth. Molecules 2022, 27, 7697. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.B.; Swart, H.C.; Dhoble, S.J. A review on the advancements in phosphor converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Gu, S.; Xia, M.; Zhou, C.; Kong, Z.; Molokeev, M.S.; Liu, L.; Wong, W.Y.; Zhou, Z. Red shift properties, crystal field theory and nephelauxetic effect on Mn4+-doped SrMgAl10-yGayO17 red phosphor for plant growth LED light. Chem. Eng. J. 2020, 396, 125208. [Google Scholar] [CrossRef]
- Yang, Z.F.; Yang, L.L.; Ji, C.J.; Xu, D.H.; Zhang, C.Q.; Bu, H.X.; Tan, X.; Yun, X.Y.; Sun, J.Y. Studies on luminescence properties of double perovskite deep red phosphor La2ZnTiO6:Mn4+ for indoor plant growth LED applications. J. Alloys Compd. 2019, 802, 628–635. [Google Scholar] [CrossRef]
- Kim, J.S.; Cheon, C.I.; Kang, H.J.; Shim, H.S.; Lee, C.H.; Nam, S.; Byun, J.D. Crystal structure of La(Mg2/3M1/3)O3 (M = Nb,Ta) microwave dielectric ceramics. Mater. Lett. 1999, 38, 294–299. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Du, M.H. Chemical trends of Mn4+ emission in solids. J. Mater. Chem. C 2014, 2, 2475–2481. [Google Scholar] [CrossRef]
- Cao, R.P.; Chen, G.; Yu, X.G.; Tang, P.J.; Luo, Z.Y.; Guo, S.L.; Zheng, G.T. Enhanced photoluminescence of CaTiO3:Sm3+ red phosphors by Na+, H3BO3 added. Mater. Chem. Phys. 2016, 171, 222–226. [Google Scholar] [CrossRef]
- Li, D.R.; Wang, Y.H.; Xu, K.; Zhao, H.; Hu, Z.F. Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors. Opt. Mater. 2014, 36, 1836–1840. [Google Scholar] [CrossRef]
- Zhou, C.P.; Zhan, Y.; Zhu, J.J.; Ren, X.F.; Zhu, Y.J.; Yin, P.F.; Zhao, L.; Wang, J.; Feng, X. Enhanced luminescence performances of BaLaMgTaO6:Mn4+ red phosphor by Bi3+, Ca2+ doping for indoor plant lighting supplementary LED. Spectrochim. Acta Part A Mol. Biomol. Spectrosc 2022, 268, 120655. [Google Scholar] [CrossRef]
- Cao, Z.; Dong, S.; Shi, S.; Wang, J.; Fu, L. Solid state reaction preparation of an efficient rare-earth free deep-red Ca2YNbO6:Mn4+ phosphor. J. Solid State Chem. 2022, 307, 122840. [Google Scholar] [CrossRef]
- Lu, Z.Z.; Huang, T.J.; Deng, R.P.; Wang, H.; Wen, L.L.; Huang, M.X.; Zhou, L.Y.; Yao, C.Y. Double perovskite Ca2GdNbO6: Mn4+ deep red phosphor: Potential application for warm w-LEDs. Superlattices Microstruct. 2018, 117, 476–487. [Google Scholar] [CrossRef]
- Li, W.; Sun, L.; Devakumar, B.; Ma, N.; Zhang, Z.; Huang, X. Synthesis, crystal structure and photoluminescence properties of novel far-red-emitting SrLaZnSbO6: Mn4+ double-perovskite phosphors for plant cultivation LEDs. J. Photochem. Photobiol. A 2021, 410, 113166. [Google Scholar] [CrossRef]
- Yang, Z.F.; Ye, M.J.; Sun, C.H.; Yang, S.Y.; Zheng, Y.; Xu, D.H.; Sun, J.Y. Structural and luminescence characterization of red-emitting Li6SrLa2Nb2O12:Eu3+ phosphors with excellent thermal stability. J. Mol. Struct. 2023, 1292, 136071. [Google Scholar] [CrossRef]
- Huang, S.; Shang, M.M.; Deng, M.L.; Yan, Y.; Dang, P.P.; Lin, J. Tunable concentration/excitation-dependent deep-red and white light emission in single-phase Eu2+-activated Sc-based oxide phosphors for blue/UV-LEDs. J. Mater. Chem. C 2022, 10, 14971–14981. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, Y.; Wu, H.; Duan, H.; Chen, L.; Fu, Y.; Ju, G.; Mu, Z.; He, M. A deep red phosphor Li2MgTiO4:Mn4+ exhibiting abnormal emission: Potential application as color converter for warm w-LEDs. Chem. Eng. J. 2016, 288, 596–607. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, D.; Yadav, R.S.; Rai, S.B.; Singh, A.K. Structural and wavelength dependent optical properties of La1−xEuxCoO3 perovskite phosphor. Ceram. Int. 2022, 48, 30754–30766. [Google Scholar] [CrossRef]
- Zhang, H.M.; Zhang, H.R.; Zhuang, J.L.; Dong, H.W.; Zhu, Y.; Ye, X.Y.; Liu, Y.L.; Lei, B.F. Effect of H3BO3 flux on the morphology and optical properties of Sr2MgAl22O36:Mn4+ red phosphors for agricultural light conversion films. Ceram. Int. 2016, 42, 13011–13017. [Google Scholar] [CrossRef]
- Yang, Z.F.; Bu, H.X.; Zhang, F.H.; Fang, C.; Zhao, J.F.; Xu, D.H.; Ming, J.; Zhang, X.Y.; Sun, J.Y. Enhanced luminescence performances of Sr2YTaO6:Mn4+ narrow red phosphor by Rn+ (Li+,Na+,Ca2+,Mg2+) ions. J. Lumin. 2021, 235, 118030. [Google Scholar] [CrossRef]
- Tanabe, Y.; Sugano, S. On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779. [Google Scholar] [CrossRef]
- Zou, W.F.; Nie, W.D.; Wu, D.; Wu, S.H.; Wang, W.; Peng, J.Q.; Ye, X.Y. Synthesis, luminescence properties and potential applications for plant growth: A novel Mn4+-activated SrLa2Al2O7 phosphor with far-red emission. J. Lumin. 2023, 257, 119759. [Google Scholar] [CrossRef]
- Rai, E.; Yadav, R.S.; Kumar, D.; Singh, A.K.; Fulari, V.J.; Rai, S.B. Influence of Bi3+ ion on structural, optical, dielectric and magnetic properties of Eu3+ doped LaVO4 phosphor. Spectrochim. Acta A 2020, 243, 118787. [Google Scholar] [CrossRef]
- Yu, Y.P.; Wang, H.H.; Li, L.K.; Chen, Y.B.; Zeng, R.J. Effects of various fluxes on the morphology and optical properties of Lu3−xAl5O12:xCe3+ green phosphors. Ceram. Int. 2014, 40, 14171–14175. [Google Scholar] [CrossRef]
- Dang, P.P.; Li, G.G.; Yun, X.H.; Zhang, Q.Q.; Liu, D.J.; Lian, H.Z.; Shang, M.M.; Lin, J. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: Non-concentration quenching and negative thermal expansion. Light Sci. Appl. 2021, 10, 29. [Google Scholar] [CrossRef]
- Shi, L.; Li, J.X.; Han, Y.J.; Li, W.L.; Zhang, Z.W. Highly efficient and thermally stable of a novel red phosphor Sr3NaSbO6:Mn4+ for indoor plant growth. J. Lumin. 2019, 208, 201–207. [Google Scholar] [CrossRef]
- Shi, L.; Han, Y.J.; Zhao, Y.; Li, M.; Geng, X.Y.; Zhang, Z.W.; Wang, L.J. Synthesis and photoluminescence properties of novel Sr3LiSbO6:Mn4+ red phosphor for indoor plant growth. Opt. Mater. 2019, 89, 609–614. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhou, N.; Xia, M.; Zhou, Y.; Chen, H.; Zhou, Z. Synthesis and photoluminescence properties of novel red-emitting phosphor SrAl3BO7:Mn4+ with enhanced emission by Mg2+/Zn2+/Ca2+ incorporation for plant growth LED lighting. Ceram. Int. 2019, 45, 23528–23539. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, C.P.; Li, J.W.; Dong, J.; Weng, S.; Yin, P.F.; Sun, X.Y.; Wang, J.; Lu, Z.W.; Rao, H.B. Realization of highly efficient Ba2SrWO6:Mn4+ phosphor via La addition strategy and application for plant cultivation LED. J. Alloys Compd. 2023, 937, 168418. [Google Scholar] [CrossRef]
- Cao, R.P.; Zhong, B.H.; Nie, J.H.; Zhang, L.; Chen, Y.Y.; Li, L.; Chen, T.; Wang, J. Synthesis, spectral characteristics and energy transfer of SrLa2Al2O7:Mn4+, Dy3+. J. Lumin. 2023, 246, 120163. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.H.; Liu, B.T.; Lu, Y.H. Effect of H3BO3 on structure and photoluminescence of BaAl12O19:Mn2+ phosphor under VUV excitation. J. Alloys Compd. 2009, 484, 439–443. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, Y.; Liu, Y.Y.; Chen, S.S.; Luo, J.M.; Wang, J.X.; Wang, T.; Zhao, J.; Deng, B.; Yu, R.J. A new double perovskite CaY0.5Ta0.5O3:Mn4+ deep-red phosphor: Synthesis, optical properties, and potential applications in plant-growth LEDs. J. Alloys Compd. 2021, 851, 156875. [Google Scholar] [CrossRef]
- Su, S.K.; Ma, J.K.; Hu, C.; Zhao, J.Q.; Liu, R.H.; Dong, H.H.; Sun, L.J.; Zou, Y.F.; Lei, Z.H.; Teng, B.; et al. An efficient double-perovskite CaLaLiTeO6:Mn4+ far-red phosphor towards indoor plant lighting application. J. Alloys Compd. 2023, 946, 169436. [Google Scholar] [CrossRef]
- Zhu, Q.; Huo, J.; Lin, Y.; Li, M.; Liu, W.; Gao, J.; Wang, Q. A new co-substitution strategy as a model to study a rare-earth-free spinel-type phosphor with red emissions and its application in light-emitting diodes. Inorg. Chem. 2020, 59, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Ming, H.; Zhang, J.; Liu, L. A novel Cs2NbOF5:Mn4+ oxyfluoride red phosphor for light-emitting diode devices. Dalton Trans. 2018, 47, 16048–16056. [Google Scholar] [CrossRef]
- Yan, Z.W.; Yang, X.L.; Xiao, S.G. Far-red-emitting Li6SrLa2Sb2O12: Mn4+ phosphor for plant growth LEDs application. Mater. Res. Bull. 2021, 133, 111040. [Google Scholar] [CrossRef]
- Cao, R.P.; Zhang, W.J.; Chen, T.; Zheng, Y.F.; Ao, H.; Luo, Z.Y.; Xie, S.K.; Wan, H.J. Perovskite tungstate Ba2La2ZnW2O12:Mn4+ phosphor: Synthesis, energy transfer and tunable emission. Mater. Res. Bull. 2021, 137, 111200. [Google Scholar] [CrossRef]
- Li, G.; Liu, G.G.; Mao, Q.N.; Du, G.; Li, X.Y.; Zhu, Y.W.; Yang, T.; Yu, H.; Ji, Z.G.; Zhong, J.S. Novel non-rare-earth red-emitting phosphor Li4AlSbO6:Mn4+ for plant growth: Crystal structure, luminescence properties and its LED device. Ceram. Int. 2021, 47, 27609–27616. [Google Scholar] [CrossRef]
- Bhushan, S.; Chukichev, M.V. Temperature dependent studies of cathodoluminescence of green band of ZnO crystals. J. Mater. Sci. Lett. 1988, 9, 319–321. [Google Scholar] [CrossRef]
- Pattison, P.; Tsao, J.; Brainard, G.; Bugbee, B.J.N. LEDs for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef] [PubMed]
Sample | LMN | LMN:Mn4+ | LMN:Mn4+,B | LMN:Mn4+,B,Li+ |
---|---|---|---|---|
Space group | P21/n | P21/n | P21/n | P21/n |
Symmetry | monoclinic | monoclinic | monoclinic | monoclinic |
a, Å | 7.960988 | 7.957217 | 7.953043 | 7.958700 |
b, Å | 5.663982 | 5.658432 | 5.659001 | 5.655400 |
c, Å | 5.618457 | 5.615722 | 5.617241 | 5.616400 |
V, Å3 | 252.93 | 252.85 | 253.03 | 252.88 |
Z | 4 | 4 | 4 | 4 |
α = γ ° | 90 | 90 | 90 | 90 |
β ° | 89.95 | 89.98 | 89.92 | 89.96 |
Rwp | 14.6 | 12.6 | 12.1 | 11.3 |
Rp | 11.8 | 10.3 | 11.2 | 9.2 |
χ2 | 2.67 | 1.83 | 2.01 | 1.93 |
Sample | Lifetime (ms) | α abs (%) | IQE (%) |
---|---|---|---|
LMN:Mn4+ | 0.847 | 44.2 | 43.3 |
LMN:Mn4+,B | 0.863 | 58.5 | 50.2 |
LMN:Mn4+,B,Li+ | 0.975 | 67.3 | 61.7 |
LMN:Mn4+,B,Na+ | 0.883 | 60.0 | 52.1 |
LMN:Mn4+,B,K+ | 0.901 | 62.2 | 55.6 |
Sample | Thermal Stability at 423 K | Ea (eV) | Ref |
---|---|---|---|
Sr2LuTaO6:Mn4+ | 25% | 0.29 | [8] |
SrLa2Al2O7:Mn4+ | 43% | 0.27 | [34] |
CaY0.5Ta0.5O3:Mn4+ | 50% | 0.138 | [44] |
CaLaLiTeO6:Mn4+ | 63% | 0.219 | [45] |
Mg3Ga2SnO8:Mn4+ | 50% | 0.255 | [46] |
Cs2NbOF5:Mn4+ | 61% | 0.261 | [47] |
Li6SrLa2Sb2O12:Mn4+ | 50% | 0.307 | [48] |
LMN:Mn4+ | 47.3% | 0.149 | This work |
LMN:Mn4+,B | 66.7% | 0.198 | This work |
LMN:Mn4+,B,Li+ | 68.9% | 0.223 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wang, R.; Yang, S.; Bu, H.; Zhao, J. Enhancing the Luminescence of La3Mg2NbO9:Mn4+ Phosphor through H3BO3 and Charge Compensator Co-Doping for Use in Plant Growth Lamps. Molecules 2024, 29, 1402. https://doi.org/10.3390/molecules29061402
Yang Z, Wang R, Yang S, Bu H, Zhao J. Enhancing the Luminescence of La3Mg2NbO9:Mn4+ Phosphor through H3BO3 and Charge Compensator Co-Doping for Use in Plant Growth Lamps. Molecules. 2024; 29(6):1402. https://doi.org/10.3390/molecules29061402
Chicago/Turabian StyleYang, Zaifa, Ruoxuan Wang, Shuyu Yang, Hongxia Bu, and Jingfen Zhao. 2024. "Enhancing the Luminescence of La3Mg2NbO9:Mn4+ Phosphor through H3BO3 and Charge Compensator Co-Doping for Use in Plant Growth Lamps" Molecules 29, no. 6: 1402. https://doi.org/10.3390/molecules29061402
APA StyleYang, Z., Wang, R., Yang, S., Bu, H., & Zhao, J. (2024). Enhancing the Luminescence of La3Mg2NbO9:Mn4+ Phosphor through H3BO3 and Charge Compensator Co-Doping for Use in Plant Growth Lamps. Molecules, 29(6), 1402. https://doi.org/10.3390/molecules29061402