Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Model
2.2. Numerical Calculations
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.; Zhu, Y.; Liu, Z.; Xue, D. State of the Art in Crystallization of LiNbO3 and Their Applications. Molecules 2021, 26, 7044. [Google Scholar] [CrossRef]
- Tiwari, R.P.; Birajdar, B.; Ghosh, R.K. Strain engineering of ferroelectric KNbO3 for bulk photovoltaic applications: An insight from density functional theory calculations. J. Phys. Condens. Matter 2019, 31, 505502. [Google Scholar] [CrossRef]
- Zhang, F.; Kang, H.; Lin, Y.; Guan, L.; Aslan, H.; Zhang, M.; Niu, L.; Dong, M. Studying the Pyroelectric Effects of LiNbO3 Modified Composites. Nanoscale Res. Lett. 2020, 15, 106. [Google Scholar] [CrossRef]
- Min, K.; Huang, F.; Lu, X.; Kan, Y.; Zhang, J.; Peng, S.; Liu, Y.; Su, J.; Zhang, C.; Liu, Z.; et al. Room-temperature multiferroic properties of Co-doped KNbO3 ceramics. Solid State Commun. 2012, 152, 304–306. [Google Scholar] [CrossRef]
- Golovina, I.S.; Shanina, B.D.; Kolesnik, S.P.; Geifman, I.N.; Andriiko, A.A. Magnetic properties of nanocrystalline KNbO3. J. Appl. Phys. 2013, 114, 174106. [Google Scholar] [CrossRef]
- Diaz-Moreno, C.A.; Farias-Mancilla, R.; Elizalde-Galindo, J.T.; Gonzalez-Hernandez, J.; Hurtado-Macias, A.; Bahena, D.; Jose-Yacaman, M.; Ramos, M. Structural Aspects LiNbO3 Nanoparticles and Their Ferromagnetic Properties. Materials 2014, 7, 7217–7225. [Google Scholar] [CrossRef]
- Zamarron-Montes, L.; Espinosa-Gonzalez, D.; Espinosa-Magana, F. Study of electronic and magnetic properties of Mn-doped KNbO3: A first-principles approach. Solid State Commun. 2024, 377, 115394. [Google Scholar] [CrossRef]
- Lin, L.; Hu, C.; Huang, J.; Yan, L.; Zhang, M.; Chen, R.; Tao, K.; Zhang, Z. Magnetism and optical properties of LiNbO3 doped with (Fe,Ni,Ga): First-principles calculations. J. Appl. Phys. 2021, 130, 053901. [Google Scholar] [CrossRef]
- Diao, C.L.; Zheng, H.W. The preparation and surface photovoltage characterization of KNbO3 powder. J. Mater. Sci. Mater. Electr. 2015, 26, 3108–3111. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ramraj, R.B.; Ramamurthi, K.; Raman, S. Influence of Cr-doping on structural, morphological, optical, dielectric and magnetic properties of KNbO3 ceramics. Mater. Chem. Phys. 2018, 213, 130–139. [Google Scholar]
- Zhang, X.; Qi, R.; Dong, S.; Yang, S.; Jing, C.; Sun, L.; Chen, Y.; Hong, X.; Yang, P.; Yue, F.; et al. Modulation of Ferroelectric and Optical Properties of La-Co-Doped KNbO3 Ceramics. Nanomaterials 2021, 11, 2273. [Google Scholar] [CrossRef]
- Maarouf, A.A.; Gogova, D.; Fadlallah, M.M. Metal Doped KNbO3 for Visible Light Photocatalytic Water Splitting: A First Principles Investigation. Appl. Phys. Lett. 2021, 119, 063901. [Google Scholar] [CrossRef]
- Raturi, A.; Mittal, P.; Choudhary, S. Electronic and optical properties of lithium niobate ( LiNbO3) under tensile and compressive strain for optoelectronic applications: Insights from DFT-computations. Mater. Sci. Semicond. Proc. 2022, 144, 106606. [Google Scholar] [CrossRef]
- Liang, Y.; Shao, G. First principles study for band engineering of KNbO3 with 3d transition metal substitution. RSC Adv. 2019, 9, 7551. [Google Scholar] [CrossRef]
- Zainuddin, L.W.; Samat, M.H.; Zaki, N.H.M.; Badrudin, F.W.; Osman, N.; Jani, A.M.M.; Hassan, O.H.; Taib, M.F.M. Electronic and optical properties of Au and Ag doped LiNbO3 from first principles study. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Jameel, M.H.; Rehman, A.; Roslan, M.S.; Agam, M.A. To investigate the structural, electronic, optical and magnetic properties of Sr-doped KNbO3 for perovskite solar cell applications: A DFT study. Phys. Scr. 2023, 98, 055802. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, D.; Hu, M.; Saeed, S.; Liu, H.; Kong, Y.; Zhang, L.; Xu, J. Effect of Defects on Spontaneous Polarization in Pure and Doped LiNbO3: First-Principles Calculations. Materials 2019, 12, 100. [Google Scholar] [CrossRef]
- Zanatta, A.R. The optical bandgap of lithium niobate ( LiNbO3) and its dependence with temperature. Results Phys. 2022, 39, 105736. [Google Scholar] [CrossRef]
- Guithi, K.; Sekrafi, H.E.; Kharrat, A.B.J.; Khirouni, K.; Boujelben, W. Synthesis, structural and optical characterization of LiNbO3 material for optical applications. J. Opt. 2023, 52, 1494–1506. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Palatnikov, M.N.; Teplyakova, N.A.; Syuy, A.V.; Kile, E.O.; Shtarev, D.S. Photoelectric Fields and Band Gap in Doped Lithium Niobate Crystals. Inorg. Mater. 2018, 54, 581–584. [Google Scholar] [CrossRef]
- Mazkad, D.; Lazar, N.; Benzaouak, A.; Moussadik, A.; Hitar, M.E.H.; Touach, N.; Mahi, M.E.; Lotfi, E.M. Photocatalytic properties insight of Sm-doped LiNbO3 in ferroelectric Li1-xNbSm0.3xO3 system. J. Environ. Chem. Eng. 2023, 11, 109732. [Google Scholar] [CrossRef]
- Hossain, M.M. First-principles study on the structural, elastic, electronic and optical properties of LiNbO3. Heliyon 2019, 5, e01436. [Google Scholar] [CrossRef] [PubMed]
- Thiel, C.W.; Sun, Y.; Macfarlane, R.M.; Boettger, T.; Cone, R.L. Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories. J. Phys. B 2012, 45, 124013. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.; Lin, Z.; He, X.; Cai, J.; Gong, X.; Gu, Y.; Zhang, R.; Cheng, H.; Zhang, B. (K,Na)NbO3 lead-free piezoceramics prepared by microwave sintering and solvothermal powder synthesis. Solid State Commun. 2022, 353, 114871. [Google Scholar] [CrossRef]
- Huang, D.H.; Yang, J.S.; Cao, Q.L.; Wan, M.J.; Li, Q.; Sun, L.; Wang, F.H. Effect of Mg and Fe Doping on Optical Absorption of LiNbO3 Crystal through First Principles Calculations. Chin. Phys. Lett. 2014, 31, 037103. [Google Scholar] [CrossRef]
- Kruczek, M.; Talik, E.; Kania, A. Electronic structure of AgNbO3 and NaNbO3 studied by X-ray photoelectron spectroscopy. Solid State Commun. 2006, 137, 469–473. [Google Scholar] [CrossRef]
- Fu, D.; Endo, M.; Taniguchi, H.; Taniyama, T.; Itoh, M. AgNbO3: A lead-free material with large polarization and electromechanical response. Appl. Phys. Lett. 2007, 90, 252907. [Google Scholar] [CrossRef]
- Kuganathan, N.; Chroneos, A. Structural, defect, transport and dopant properties of AgNbO3. ChemNanoMat 2020, 6, 1337–1345. [Google Scholar] [CrossRef]
- Khor, C.M.; Khan, M.M.; Khan, A.; Khan, M.Y.; Harunsani, M.H. La-substituted AgNbO3 for photocatalytic degradation of Rhodamine B and methylene blue dyes. React. Kinet. Mech. Catal. 2022, 135, 1687–1701. [Google Scholar] [CrossRef]
- Han, K.; Luo, N.; Jing, Y.; Wang, X.; Peng, B.; Liu, L.; Hu, C.; Zhou, H.; Wei, Y.; Chen, X.; et al. Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics. Ceram. Int. 2019, 45, 5559–5565. [Google Scholar] [CrossRef]
- Vig, A.S.; Rani, N.; Gupta, A.; Pandey, O.P. Influence of Ca-doped NaNbO3 and its heterojunction with g-C3N4 on the photoredox performance. Sol. Energy 2019, 185, 469–479. [Google Scholar]
- Gillani, S.S.A.; Ali, M.N.; Hussain, T.; Shakil, M.; Ahmad, R.; Shuaib, U.; Zia, A. Cubic to tetragonal structural phase transformation in NaNbO3 with peculiar Mg and Ca doping and its repercussions on optoelectronic properties. Optik 2021, 247, 168017. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Zhao, L.; Lee, K.-Y.; Liu, Q.; Studer, A.; Hinterstein, M.; Zhang, S.; Li, J.-F. Enhanced antiferroelectric phase stability in La-doped AgNbO3: Perspectives from the microstructure to energy storage properties. J. Mater. Chem. A 2019, 7, 2225–2232. [Google Scholar] [CrossRef]
- Nain, R.; Dwivedi, R.K. Effect of tuning of charge defects by K, Ba, La doping on structural and electrical behaviour of NaNbO3. Mater. Chem. Phys. 2023, 306, 127999. [Google Scholar] [CrossRef]
- Wang, Q.; Go, S.-X.; Liu, C.; Li, M.; Zhu, Y.; Li, L.; Lee, J.K.; Loke, D.K. Understanding Distortions and Vacancies in Wurtzite AlScN Ferroelectric Memory Materials. AIP Adv. 2022, 12, 125303. [Google Scholar]
- Eklund, K.; Karttunen, A.J. Pyroelectric Effect in Tetragonal Ferroelectrics BaTiO3 and KNbO3 Studied with Density Functional Theory. J. Phys. Chem. C 2023, 127, 21806–21815. [Google Scholar] [CrossRef]
- Fuchikami, N. Magnetic Anisotropy of Magnetoplumbite BaFe12O19. J. Phys. Soc. Jpn. 1965, 20, 760. [Google Scholar] [CrossRef]
- Zeng, F.; Sheng, P.; Tang, G.S.; Pan, F.; Yan, W.S.; Hu, F.C.; Zou, Y.; Huang, Y.Y.; Jiang, Z.; Guo, D. Electronic structure and magnetism of Fe-doped LiNbO3. Mater. Chem. Phys. 2012, 136, 783–788. [Google Scholar] [CrossRef]
- Ait brahim, I.; Bekkioui, N.; Lamouri, R.; Tahiri, M.; Ez-Zahraouy, H. Ab initio Calculations on the Electronic Properties of Fe-doped LiNbO3 Through Modified Becke-Johnson Exchange Potential. J. Supercond. Novel Magn. 2021, 34, 1933–1939. [Google Scholar] [CrossRef]
- Mamoun, S.; Merad, A.E.; Guilbert, L. Energy band gap and optical properties of Lithium Niobate from ab initio calculations. Comp. Mater. Sci. 2013, 79, 125. [Google Scholar] [CrossRef]
- Zainuddin, L.W.; Samat, M.H.; Badrudin, F.W.; Hassan, O.H.; Taib, M.F.M. Effect of Mn Incorporated into LiNbO3 Crystal Structure on the Electronic and Optical Properties Using First-Principles Study. Defect Diffus. Forum 2023, 425, 15–20. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Y.; Yan, J.; Chen, Y. Effect of doping Zn on the optical and electrical properties of LiNbO3 films. Phys. B 2021, 611, 412981. [Google Scholar] [CrossRef]
- Wang, J.; Peng, Z.; Wang, J.; Wu, D.; Yang, Z.; Chao, X. Band gap tunning to enhance photovoltaic response in NaNbO3-based bulk ferroelectrics. Scr. Mater. 2022, 221, 114976. [Google Scholar] [CrossRef]
- Song, B.; Wang, X.; Xin, C.; Zhang, L.; Song, B.; Zhang, Y.; Wang, Y.; Wang, J.; Liu, Z.; Sui, Y.; et al. Multiferroic properties of Ba/Ni co-doped KNbO3 with narrow band-gap. J. Alloys Comp. 2017, 703, 67–72. [Google Scholar] [CrossRef]
- Ye, J.; Sun, X.; Wu, Z.; Liu, J.; An, Y. Evidence of the oxygen vacancies-induced room temperature ferromagnetism in multiferroic Co-doped LiNbO3 films. J. Alloys Comp. 2018, 768, 750–755. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolova, I.N.; Apostolov, A.T.; Wesselinowa, J.M. Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications. Molecules 2024, 29, 1011. https://doi.org/10.3390/molecules29051011
Apostolova IN, Apostolov AT, Wesselinowa JM. Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications. Molecules. 2024; 29(5):1011. https://doi.org/10.3390/molecules29051011
Chicago/Turabian StyleApostolova, Iliana N., Angel T. Apostolov, and Julia M. Wesselinowa. 2024. "Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications" Molecules 29, no. 5: 1011. https://doi.org/10.3390/molecules29051011
APA StyleApostolova, I. N., Apostolov, A. T., & Wesselinowa, J. M. (2024). Band Gap and Polarization Tuning of Ion-Doped XNbO3 (X = Li, K, Na, Ag) for Photovoltaic and Energy Storage Applications. Molecules, 29(5), 1011. https://doi.org/10.3390/molecules29051011