Chemical Composition of the Essential Oils of the Iberian Peninsula Endemic Species Eryngium dilatatum Lam.
Abstract
:1. Introduction
Species | Main Components | Yield (%) | Ref. |
---|---|---|---|
E. aquifolium Cav. | Inflorescence oil: germacrene D (30.3%) and sesquicineole (26.7%) | 0.81 | [65] |
Stem and leaf oil: germacrene D (46.0%) and myrcene (13.8%) | 0.41 | ||
Root oil: phyllocladene isomer (63.6%) | 0.18 | ||
E. bourgatii Gouan | Inflorescence oil: phyllocladene (37.6%) and bicyclogermacrene (15.1%) | 0.33 | [73] |
Stem and leaf oil: phyllocladene (20.4%), γ-muurolene (11.8%) and (E)-caryophyllene (10.1%) | 0.11 | ||
Root oil: γ-muurolene (15.4%) and phyllocladene (15.0%) | 0.20 | ||
E. campestre L. | Inflorescence oil: germacrene D (30.3–40.3%), β-curcumene (0.7–22.2%), myrcene (3.0–21.7%), (E)-β-farnesene (0.1–19.0%). | 0.1–0.4 | [69] |
Stem and leaf oil: germacrene D (31.1–42.4%), myrcene (0.5–23.15) | 0.1–0.2 | ||
E. corniculatum Lam. | Inflorescence oil: 2,4,6-trimethylbenzaldehyde (50.8%), α-pinene (4.0%) | 0.82 | [72] |
Stem and leaf oil: 2,4,6-trimethylbenzaldehyde (50.0%), 2,4,5-trimethylbenzaldehyde (3.8%) | 0.49 | ||
Root oil: 2,4,6-trimethylbenzaldehyde (29.8%), phyllocladene isomer (13.0%), (E)-nerolidol (9.4%) | 0.22 | ||
E. duriaei J. Gay ex Boiss. | Populations below 1700 m: α-neocallitropsene (28–53%), β-betulenal (8.5–15.8%) and 14-hydroxy-β-caryophyllene (5.8–13.7%) | 0.2–0.3 | [56] |
Population over 1700 m: caryophyllene oxide (47%) and E-caryophyllene (6%) | |||
E. glaciale Boiss. | Inflorescence oil: phyllocladene isomer (43.5%), (E)-caryophyllene (15.2%) and valencene (11.5%) | 0.16 | [74] |
Stem and leaf oil: phyllocladene isomer (41.3%) | 0.26 | ||
Root oil: phyllocladene isomer (49.4%) and linalool (19.1%). | 0.30 | ||
E. maritimum L. | Aerial parts: germacrene D (43.1–42.4%) and 9-muurolen-15-aldehyde (22.4–16.4%) | -- | [81] |
Roots: γ-guaiene (40.2%), 2,3,4-trimethylbenzaldehyde (24.5%) and germacrene D (10.6%) | -- |
2. Results and Discussion
Compound | I | I 1 | E.d.I | E.d.SL | E.d.R |
---|---|---|---|---|---|
1-(1-methyl-2-cyclopenten-1-yl)-ethanone | 885 | -- | 0.6 | 2.1 | t |
α-Pinene | 932 (1012) | 932 | 2.1 | 0.5 | 0.2 |
Sabinene | 963 (1113) | 969 | t | t | 0.1 |
β-Pinene | 970 (1097) | 974 | t | 1.1 | 0.7 |
Myrcene | 985 (1160) | 988 | t | -- | -- |
Octanal | 993 (1286) | 998 | 3.1 | 8.1 | 1.7 |
n-Decane | 1000 | 1000 | t | 0.2 | 0.4 |
α-Phellandrene | 1005 (1157) | 1002 | t | -- | -- |
Benzene acetaldehyde | 1009 | 1036 | 0.1 | 0.1 | 0.4 |
α-Terpinene | 1015 (1173) | 1014 | t | -- | -- |
o-Cymene | 1019 (1268) | 1022 | t | -- | -- |
Limonene | 1026 (1191) | 1024 | 2.3 | 1.9 | 1.8 |
β-Phellandrene | 1027 (1201) | 1025 | t | -- | -- |
1,8-Cineole | 1029 (1204) | 1026 | t | -- | -- |
γ-Terpinene | 1058 (1240) | 1054 | t | -- | -- |
Acetophenone | 1060 | 1059 | t | t | 0.1 |
Fenchone | 1074 (1392) | 1083 | 0.1 | 0.7 | 0.2 |
2-Nonanone | 1080 | 1087 | t | -- | -- |
Terpinolene | 1085 (1277) | 1086 | t | -- | -- |
Cryptone | 1087 (1669) | 1183 | 0.1 | t | 0.7 |
Nonanal | 1093 | 1100 | t | -- | -- |
Linalool | 1096 (1549) | 1095 | 1.0 | 1.7 | 0.2 |
cis-Thujone | 1117 | 1101 | t | t | 0.3 |
Menthone | 1148 (1468) | 1148 | t | -- | -- |
Terpinen-4-ol | 1175 (1603) | 1174 | t | -- | -- |
α-Terpineol | 1183 (1700) | 1186 | 0.1 | -- | -- |
n-Dodecane | 1200 | 1200 | t | 0.6 | -- |
n.i. 1 | 1235 | -- | 0.1 | 0.4 | -- |
trans-Chrysanthenyl acetate | 1241 | 1235 | t | -- | -- |
Carvacrol | 1298 | 1298 | 0.1 | -- | -- |
(E,Z)-2,4-Decadienal | 1301 (1229) | 1292 | t | -- | -- |
δ-Elemene | 1333 (1468) | 1335 | 0.1 | 0.4 | 0.1 |
α-Cubebene | 1345 (1455) | 1345 | 0.1 | t | 0.2 |
(Z)-β-Damascenone | 1354 | 1361 | 0.1 | 0.3 | t |
α-Copaene | 1366 (1480) | 1374 | 1.0 | 1.9 | 0.6 |
β-Bourbonene | 1376 (1515) | 1387 | 0.7 | 1.2 | 0.5 |
β-Cubebene | 1382 (1535) | 1387 | t | -- | -- |
β-Elemene | 1387 (1587) | 1389 | 0.8 | 2.1 | 0.4 |
α-Cedrene | 1405 (1669) | 1410 | t | t | 0.2 |
α-Gurjunene | 1406 (1528) | 1409 | t | t | 0.2 |
β-Cedrene | 1409 | 1419 | t | t | 0.3 |
(E)-Caryophyllene | 1410 (1594) | 1417 | 1.4 | 2.6 | 0.6 |
β-Gurjunene | 1426 (1595) | 1431 | 0.2 | 0.5 | 0.4 |
α-trans-Bergamotene | 1432 (1583) | 1432 | 0.1 | -- | -- |
Aromadendrene | 1433 (1605) | 1439 | 0.2 | 0.3 | -- |
α-Guaiene | 1434 | 1437 | 0.4 | 0.3 | 0.9 |
α-neo-Clovene | 1445 | 1452 | 0.4 | -- | -- |
α-Humulene | 1447 (1667) | 1452 | 1.6 | 1.8 | 0.8 |
cis-Muurola-4(14)-5-diene | 1454 | 1465 | t | -- | -- |
allo-Aromadendrene | 1466 | 1458 | t | -- | -- |
Germacrene D | 1476 (1713) | 1484 | 46.5 | 38.4 | 9.1 |
α-Selinene | 1492 (1727) | 1498 | 0.4 | 0.2 | 1.4 |
Bicyclogermacrene | 1493 (1750) | 1500 | 3.5 | 2.5 | 0.9 |
α-Muurolene | 1499 (1924) | 1500 | t | -- | -- |
γ-Cadinene | 1508 (1691) | 1513 | 0.4 | 0.7 | 0.9 |
trans-β-Guaiene | 1511 (1611) | 1502 | t | -- | -- |
β-Bisabolene | 1513 (1727) | 1505 | 0.1 | t | 1.6 |
Cubebol | 1515 (2068) | 1514 | t | -- | -- |
δ-Cadinene | 1522 (1760) | 1522 | 1.9 | 3.6 | 2.6 |
trans-Calamenene | 1527 | 1521 | 0.1 | t | 0.4 |
Cadina-1,4-diene | 1528 (1783) | 1533 | 0.2 | 0.5 | 0.6 |
α-Cadinene | 1539 | 1537 | t | -- | -- |
Elemol | 1541 (2085) | 1548 | t | -- | -- |
β-Calacorene | 1553 | 1564 | 0.2 | t | 1.2 |
n.i. 2 | 1557 | -- | 0.7 | 0.4 | -- |
n.i. 3 | 1559 | -- | 3.3 | 3.2 | 4.2 |
Dodecanoic acid | 1568 (2495) | 1565 | 0.3 | 0.4 | 0.8 |
Spathulenol | 1576 (2133) | 1577 | 2.5 | 2.4 | 4.6 |
Caryophyllene oxide | 1580 (1987) | 1582 | 0.3 | -- | -- |
Striatene | 1582 | -- | 0.8 | 0.4 | 1.5 |
cis-Arteannuic alcohol | 1592 | 1593 | 0.1 | -- | -- |
Carotol | 1594 (2026) | 1594 | 0.7 | 1.3 | 2.5 |
β-Oploplenone | 1597 | 1607 | t | -- | -- |
n.i. 4 | 1602 | -- | 1.6 | 0.7 | 2.0 |
n.i. 5 | 1608 | -- | 0.7 | 1.0 | 2.2 |
β-Bazzanene | 1610 (1519) | 1519 | 0.7 | 1.0 | 2.0 |
Cubenol | 1633 | 1645 | t | -- | -- |
β-Eudesmol | 1638 (2239) | 1649 | 0.4 | t | 1.4 |
α-Muurolol | 1650 (2246) | 1644 | 2.5 | 2.1 | 3.1 |
α-Cadinol | 1651 (2243) | 1652 | 3.8 | 3.7 | 4.4 |
Khusinol | 1665 | 1679 | 1.8 | 1.3 | 3.2 |
Khusimol | 1716 | 1741 | 0.4 | t | -- |
14-Oxy-α-Muurolene | 1745 (2016) | 1767 | 2.0 | 0.5 | 2.6 |
14-Hydroxy-α-Muurolene | 1757 (2026) | 1779 | 0.3 | t | 0.1 |
Total | 97.3 | 87.5 | 76.2 |
3. Materials and Methods
3.1. Plant Material
3.2. Isolation of Volatile Oils
3.3. Gas Chromatography (GC)
3.4. Gas Chromatography–Mass Spectrometry (GC-MS)
3.5. Qualitative and Quantitative Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea; Cambridge University Press: Cambridge, UK, 1968; Volume 2. [Google Scholar]
- Al-Khalil, S. Phytochemistry of Eryngium creticum. Alex. J. Pharm. Sci. 1994, 8, 73–75. [Google Scholar]
- Arabpoor, B.; Yousefi, S.; Weisany, W.; Ghasemlou, M. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll. 2021, 111, 106394. [Google Scholar] [CrossRef]
- Sadiq, A.; Rashid, U.; Ahmad, S.; Zahoor, M.; AlAjmi, M.F.; Ullah, R.; Noman, O.M.; Ullah, F.; Ayaz, M.; Khan, I.; et al. Treating hyperglycemia from Eryngium caeruleum M. Bieb: In-vitro alpha-glucosidase, antioxidant, in-vivo antidiabetic and molecular docking-based approaches. Front. Chem. 2020, 8, 558641. [Google Scholar] [CrossRef] [PubMed]
- Beeby, E.; Magalhaes, M.; Pocas, J.; Collins, T.; Lemos, M.F.L.; Barros, L.; Ferreira, I.C.F.R.; Cabral, C.; Pires, I.M. Secondary metabolites (essential oils) from sand-dune plants induce cytotoxic effects in cancer cells. J. Ethnopharmacol. 2020, 258, 112803. [Google Scholar] [CrossRef] [PubMed]
- Minh, P.N. Influence of extraction parameters on total phenolic contents, flavonoids and antioxidant capacity of extract from Eryngium foetidum leaves. Biosci. Res. 2020, 3, 1822–1829. [Google Scholar]
- Rosero-Gomez, C.A.; Lorena Zambrano, M.A.; Garcia, K.E.; Viracocha, L.A. Names and uses of the Culantro de Monte (Erygium foetidum L.) in the San Antonio de Padua community, Los Rios-Ecuador. Bol. Latinoam. Caribe Plantas Med. Aromat. 2020, 19, 334–343. [Google Scholar]
- Landoulsi, A.; Hennebelle, T.; Bero, J.; Riviere, C.; Sahpaz, S.; Quetin-Leclercq, J.; Neut, C.; Benhamida, J.; Roumy, V. Antimicrobial and Light-Enhanced Antimicrobial Activities, Cytotoxicity and Chemical Variability of All Tunisian Eryngium Species. Chem. Biodivers. 2020, 17, e1900543. [Google Scholar] [CrossRef]
- Mirahmadi, S.S.; Aminzare, M.; Azar, H.H.; Kamali, K. Effect of Eryngium caeruleum essential oil on microbial and sensory quality of minced fish and fate of Listeria monocytogenes during the storage at 4 degrees C. J. Food Saf. 2020, 40, e12745. [Google Scholar] [CrossRef]
- Daneshzadeh, M.S.; Abbaspour, H.; Amjad, L.; Nafchi, A.M. An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri F. Delaroche. J. Food Meas. 2020, 14, 708–715. [Google Scholar] [CrossRef]
- de Carvalho Augusto, R.; Merad, N.; Rognon, A.; Gourbal, B.; Bertrand, C.; Djabou, N.; Duval, D. Molluscicidal and parasiticidal activities of Eryngium triquetrum essential oil on Schistosoma mansoni and its intermediate snail host Biomphalaria glabrata, a double impact. Parasites Vectors 2020, 13, 486. [Google Scholar] [CrossRef]
- Vukic, M.D.; Vukovic, N.L.; Djelic, G.T.; Obradovic, A.; Kacaniova, M.M.; Markovic, S.; Popovic, S.; Baskic, D. Phytochemical analysis, antioxidant, antibacterial and cytotoxic activity of different plant organs of Eryngium serbicum L. Ind. Crop. Prod. 2018, 115, 88–97. [Google Scholar] [CrossRef]
- Lajnef, H.B.; Ferioli, F.; Pasini, F.; Politowicz, J.; Khaldi, A.; D’Antuono, F.; Caboni, M.F.; Nasri, N. Chemical composition and antioxidant activity of the volatile fraction extracted from air-dried fruits of Tunisian Eryngium maritimum L. ecotypes. J. Sci. Food Agric. 2017, 98, 635–643. [Google Scholar] [CrossRef]
- Raeisi, S.; Ojagh, S.M.; Sharifi-Rad, M.; Sharifi-Rad, J.; Quek, S.Y. Evaluation of Allium paradoxum (MB) G. Don. and Eryngium caucasicum trauve. Extracts on the shelf-life and quality of silver carp (Hypophthalmichthys molitrix) fillets during refrigerated storage. J. Food Safety 2017, 37, e12321. [Google Scholar] [CrossRef]
- Fallahzadeh, A.R.; Zarei, M.; Mohammadi, S. Preliminary Phytochemical Screening, Analgesic and Anti-inflammatory effect of Eryngium pyramidale Boiss. & Husson Essential Oil in Male Rat. Entomol. Appl. Sci. Lett. 2016, 3, 140–147. [Google Scholar]
- Kikowska, M.; Dworacka, M.; Kedziora, I.; Thiem, B. Eryngium creticum–Ethnopharmacology, phytochemistry and pharmacological activity. A review. Rev. Bras. Farmacogn. 2016, 26, 392–399. [Google Scholar] [CrossRef]
- Erdem, S.A.; Nabavi, S.F.; Orhan, I.E.; Daglia, M.; Izadi, M.; Nabavi, S.M. Blessings in disguise: A review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. DARU J. Pharm. Sci. 2015, 23, 53. [Google Scholar] [CrossRef]
- Ozarowski, M.; Thiem, B.; Mikolajczak, P.L.; Piasecka, A.; Kachlicki, P.; Szulc, M.; Kaminska, E.; Bogacz, A.; Kujawski, R.; Bartkowiak-Wieczorek, J.; et al. Improvement in Long-Term Memory following Chronic Administration of Eryngium planum Root Extract in Scopolamine Model: Behavioral and Molecular Study. Evid.-Based Complement. Altern. Med. 2015, 2015, 145140. [Google Scholar] [CrossRef] [PubMed]
- Rufino, A.T.; Ferreira, I.; Judas, F.; Salgueiro, L.; Celeste Lopes, M.; Cavaleiro, C.; Mendes, A.F. Differential effects of the essential oils of Lavandula luisieri and Eryngium duriaei subsp. juresianum in cell models of two chronic inflammatory diseases. Pharm. Biol. 2015, 53, 1220–1230. [Google Scholar] [CrossRef]
- Sumitha, K.V.; Prajitha, V.; Sandhya, V.N.; Anjana, S.; Thoppil, J.E. Potential Larvicidal Principles in Eryngium foetidum L. (Apiaceae), An Omnipresent Weed, Effective Against Aedes albopictus Skuse. J. Essent. Oil-Bear. Plants 2014, 17, 1279–1286. [Google Scholar] [CrossRef]
- Singh, B.K.; Ramakrishna, Y.; Ngachan, S.V. Spiny coriander (Eryngium foetidum L.): A commonly used, neglected spicing-culinary herb of Mizoram, India. Genet. Resour. Crop. Evol. 2014, 61, 1085–1090. [Google Scholar] [CrossRef]
- Darriet, F.; Znini, M.; Majidi, L.; Muselli, A.; Hammouti, B.; Bouyanzer, A.; Costa, J. Evaluation of Eryngium maritimum Essential Oil as Environmentally Friendly Corrosion Inhibitor for Mild Steel in Hydrochloric Acid Solution. Int. J. Electrochem. Sci. 2013, 8, 4328–4345. [Google Scholar] [CrossRef]
- Promkum, C.; Butryee, C.; Tuntipopipat, S.; Kupradinun, P. Anticlastogenic Effect of Eryngium foetidum L. Assessed by Erythrocyte Micronucleus Assay. Asian Pac. J. Cancer Prev. 2012, 13, 3343–3347. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.H.A.; Seaforth, C.E.; Tikasingh, T. Eryngium foetidum L.: A review. Fitoterapia 2011, 82, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Çelik, A.; Aydınlık, N.; Arslan, I. Phytochemical constituents and inhibitory activity towards methicillin-resistant Staphylococcus aureus strains of Eryngium species (Apiaceae). Chem. Biodivers. 2011, 8, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Khader, M.; Bresgen, N.; Eckl, P.M. Antimutagenic effects of ethanolic extracts from selected Palestinian medicinal plants. J. Ethnopharmacol. 2010, 127, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Morteza-Semnani, K. Penetration-Enhancing Effect of the Essential Oil and Methanolic Extract of Eryngium bungei on Percutaneous Absorption of Piroxicam through Rat Skin. J. Essent. Oil-Bear. Plants 2009, 12, 728–741. [Google Scholar] [CrossRef]
- Alkofahi, A.; Sallal, A.J.; Disi, A.M. Effect of Eryngium creticum on the haemolytic activities of snake and scorpion venoms. Phytother. Res. 2007, 11, 540–542. [Google Scholar] [CrossRef]
- García, M.D.; Saenz, M.T.; Gómez, M.A.; Fernández, M.A. Topical anti-inflamatory activity of phytosterols isolated from Eryngium foetidum on chronic and acute inflammation models. Phytother. Res. 1999, 13, 78–80. [Google Scholar] [CrossRef]
- Saenz, M.T.; Fernández, M.A.; García, M.D. Anti-inflammatory and analgesic properties from leaves of Eryngium foetidum L. (Apiaceae). Phytother. Res. 1998, 11, 380–383. [Google Scholar] [CrossRef]
- Khademi, S.B.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R. Eryngium caeruleum essential oil as a promising natural additive: In vitro antioxidant properties and its effect on lipid oxidation of minced rainbow trout meat during storage at refrigeration temperature. Funct. Foods Health Dis. 2021, 11, 11–23. [Google Scholar] [CrossRef]
- Cárdenas-Valdovinos, J.G.; García-Ruiz, I.; Angoa-Pérez, M.V.; Mena-Violante, H.G. Ethnobotany, Biological Activities and Phytochemical Compounds of Some Species of the Genus Eryngium (Apiaceae), from the Central-Western Region of Mexico. Molecules 2023, 28, 4094. [Google Scholar] [CrossRef] [PubMed]
- Nakurte, I.; Berga, M.; Mežaka, I. Phytochemical Diversity Comparison in Leaves and Roots of Wild and Micropropagated Latvian Sea Holly (Eryngium maritimum L.). Molecules 2023, 28, 3924. [Google Scholar] [CrossRef] [PubMed]
- Kikowska, M.; Chanaj-Kaczmarek, J.; Derda, M.; Budzianowska, A.; Thiem, B.; Ekiert, H.; Szopa, A. The Evaluation of Phenolic Acids and Flavonoids Content and Antiprotozoal Activity of Eryngium Species Biomass Produced by Biotechnological Methods. Molecules 2022, 27, 363. [Google Scholar] [CrossRef]
- Ekhtiyari, M.S.; Moradkhani, S.; Ebadi, A.; Dastan, D. Chemical Composition of the Essential Oils from the Aerial Parts of Eryngium bornmuelleri. Chem. Nat. Compd. 2020, 56, 1154–1155. [Google Scholar] [CrossRef]
- Rodrigues, T.L.M.; Castro, G.L.S.; Viana, R.G.; Gurgel, E.S.C.; Silva, S.G.; de Oliveira, M.S.; de Aguiar Andrade, E.H. Physiological performance and chemical compositions of the Eryngium foetidum L. (Apiaceae) essential oil cultivated with different fertilizer sources. Nat. Prod. Res. 2020, 35, 5544–5548. [Google Scholar] [CrossRef] [PubMed]
- Kikowska, M.; Kalemba, D.; Dlugaszewska, J.; Thiem, B. Chemical Composition of Essential Oils from Rare and Endangered Species-Eryngium maritimum L. and E. alpinum L. Plants 2020, 9, 417. [Google Scholar] [CrossRef] [PubMed]
- Medbouhi, A.; Benbelaïd, F.; Djabou, N.; Beaufay, C.; Bendahou, M.; Quetin-Leclercq, J.; Tintaru, A.; Costa, J.; Muselli, A. Essential Oil of Algerian Eryngium campestre: Chemical Variability and Evaluation of Biological Activities. Molecules 2019, 24, 2575. [Google Scholar] [CrossRef] [PubMed]
- Hamedi, A.; Pasdaran, A.L.; Pasdaran, A. Antimicrobial Activity and Analysis of the Essential Oils of Selected Endemic Edible Apiaceae Plants Root from Caspian Hyrcanian Region (North of Iran). Pharm. Sci. 2019, 5, 138–144. [Google Scholar] [CrossRef]
- Tel-Çayan, G.; Duru, M.E. Chemical characterization and antioxidant activity of Eryngium pseudothoriifolium and E. thorifolium essential oils. J. Res. Pharm. 2019, 23, 1106–1114. [Google Scholar] [CrossRef]
- Matejić, J.S.; Stojanović-Radić, Z.Z.; Ristić, M.S.; Veselinovic, J.B.; Zlatkovic, B.K.; Marin, P.D.; Dzamic, A.M. Chemical characterization, in vitro biological activity of essential oils and extracts of three Eryngium L. species and molecular docking of selected major compounds. J. Food Sci. Technol. 2018, 55, 2910–2925. [Google Scholar] [CrossRef]
- Medbouhi, A.; Merad, N.; Khadir, A.; Bendahou, M.; Djabou, N.; Costa, J.; Muselli, A. Chemical Composition and Biological Investigations of Eryngium triquetrum Essential Oil from Algeria. Chem. Biodivers. 2018, 15, e1700343. [Google Scholar] [CrossRef] [PubMed]
- Sodeifian, G.; Sajadian, S.A.; Ardestani, N.S. Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: Application of simulated annealing (SA) algorithm. J. Supercrit. Fluids 2017, 127, 146–157. [Google Scholar] [CrossRef]
- Cianfaglione, K.; Blomme, E.E.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Dall’Acqua, S.; Maggi, F. Cytotoxic Essential Oils from Eryngium campestre and Eryngium amethystinum (Apiaceae) Growing in Central Italy. Chem. Biodivers. 2017, 14, e1700096. [Google Scholar] [CrossRef] [PubMed]
- Landoulsi, A.; Roumy, V.; Duhal, N.; Skhiri, F.H.; Rivière, C.; Sahpaz, S.; Neut, C.; Benhamida, J.; Hennebelle, T. Chemical Composition and Antimicrobial Activity of the Essential Oil from Aerial Parts and Roots of Eryngium barrelieri Boiss. and Eryngium glomeratum Lam. from Tunisia. Chem. Biodivers. 2016, 13, 1720–1729. [Google Scholar] [CrossRef] [PubMed]
- Casiglia, S.; Bruno, M.; Rosselli, S.; Senatore, F. Chemical Composition and Antimicrobial Activity of the Essential Oil from Flowers of Eryngium triquetrum (Apiaceae) Collected Wild in Sicily. Nat. Prod. Commun. 2016, 11, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Klein-Júnior, L.C.; dos Santos Passos, C.; Tasso de Souza, T.J.; Gobbi de Bitencourt, F.; Salton, J.; de Loreto Bordignon, S.A.; Henriques, A.T. The monoamine oxidase inhibitory activity of essential oils obtained from Eryngium species and their chemical composition. Pharm. Biol. 2016, 54, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Chandrika, R.; Saraswathi, K.J.T.; Mallavarapu, G.R. Constituents of the Essential Oils of the Leaf and Root of Eryngium foetidum L. from Two Locations in India. J. Essent. Oil-Bear. Plants 2015, 18, 349–358. [Google Scholar] [CrossRef]
- Merghache, D.; Boucherit-Otmani, Z.; Merghache, S.; Chikhi, I.; Selles, C.; Boucherit, K. Chemical composition, antibacterial, antifungal and antioxidant activities of Algerian Eryngium tricuspidatum L. essential oil. Nat. Prod. Res. 2014, 28, 795–807. [Google Scholar] [CrossRef]
- Ngang, J.J.E.; Nyegue, M.A.; Ndoye, F.C.; Kamgain, A.D.T.; Kamdem, S.L.S.; Lanciotti, R.; Gardini, F.; Etoa, F.X. Characterization of Mexican Coriander (Eryngium foetidum) Essential Oil and Its Inactivation of Listeria monocytogenes In Vitro and during Mild Thermal Pasteurization of Pineapple Juice. J. Food Prot. 2014, 77, 435–443. [Google Scholar] [CrossRef]
- Dehghanzadeh, N.; Ketabchi, S.; Alizadeh, A. Essential oil composition and antibacterial activity of Eryngium caeruleum grown wild in Iran. J. Essent. Oil-Bear. Plants 2014, 17, 486–492. [Google Scholar] [CrossRef]
- Marcetic, M.; Petrovic, S.; Milenkovic, M.; Vujisic, L.J.; Tesevic, V.; Niketic, M. Composition and antimicrobial activity of root essential oil of Balkan endemic species Eryngium palmatum. Chem. Nat. Compd. 2014, 49, 11401142. [Google Scholar] [CrossRef]
- Darriet, F.; Andreani, S.; De Cian, M.C.; Costa, J.; Muselli, A. Chemical variability and antioxidant activity of Eryngium maritimum L. essential oils from Corsica and Sardinia. Flavour Fragr. J. 2014, 29, 3–13. [Google Scholar] [CrossRef]
- Dunkić, V.; Vuko, E.; Bezić, N.; Kremer, D.; Ruščić, M. Composition and Antiviral Activity of the Essential Oils of Eryngium alpinum and E. amethystinum. Chem. Biodiver. 2013, 10, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Maggio, A.; Bruno, M.; Formisano, C.; Rigano, D.; Senatore, F. Chemical Composition of the Essential Oils of Three Species of Apiaceae Growing Wild in Sicily: Bonannia graeca, Eryngium maritimum and Opopanax chironium. Nat. Prod. Commun. 2013, 8, 841–844. [Google Scholar] [CrossRef]
- Tavares, A.C.; Loureiro, J.; Cavaleiro, C.; Salgueiro, L.; Canhoto, J.M.; Paiva, J. Characterization and distinction of two subspecies of Eryngium duriaei J. Gay ex Boiss., an Iberian endemic Apiaceae, using flow cytometry and essential oils composition. Plant Syst. Evol. 2013, 299, 611–618. [Google Scholar] [CrossRef]
- Mohammadhosseini, M. Hydrodistilled Volatile Oil from Stems of Eryngium creticum Lam. in the Marginal Brackish Regions of Semnan Province by Using Gas Chromatography Combined with Mass Spectrometry. Asian J. Chem. 2013, 25, 390–392. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Mahdavi, B.; Akhlaghi, H. Characterization and Chemical Composition of the Volatile Oils from Aerial Parts of Eryngium bungei Bioss. (Apiaceae) by Using Traditional Hydrodistillation, Microwave Assisted Hydrodistillation and Head Space Solid Phase Microextraction Methods Prior to GC and GC/MS Analyses: A Comparative Approach. J. Essent. Oil-Bear. Plants 2013, 16, 613–623. [Google Scholar] [CrossRef]
- Darriet, F.; Bendahou, M.; Desjobert, J.M.; Costa, J.; Muselli, A. Bicyclo[4.4.0]decane Oxygenated Sesquiterpenes from Eryngium maritimum Essential Oil. Planta Med. 2012, 78, 386–389. [Google Scholar] [CrossRef]
- Thiem, B.; Kikowska, M.; Kurowska, A.; Kalemba, D. Essential Oil Composition of the Different Parts and In Vitro Shoot Culture of Eryngium planum L. Molecules 2011, 16, 7115–7124. [Google Scholar] [CrossRef]
- Cavaleiro, C.; Gonçalves, M.J.; Serra, D.; Santoro, G.; Tomi, F.; Bighelli, A.; Salgueiro, L.; Casanova, J. Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. Laínz) M. Laínz, signalised by the antifungal activity. J. Pharm. Biomed. Anal. 2011, 54, 619–622. [Google Scholar] [CrossRef]
- Hashemabadi, D.; Kaviani, B. Chemical Constituents of Essential Oils Extracted from the Leaves and Stems of Eryngium caucasicum Trautv. from Iran. J. Essent. Oil-Bear. Plants 2011, 14, 693–698. [Google Scholar] [CrossRef]
- Hashemabadi, D.; Kaviani, B.; Erfatpour, M.; Larijani, K. Comparison of essential oils compositions of eryngo (Eryngium caucasicum Trautv.) at different growth phases by hydrodistillation method. Plant Omics 2010, 3, 135–139. [Google Scholar]
- Banout, J.; Havlik, J.; Kulik, M.; Kloucek, P.; Lojka, B.; Valterova, I. Effect of Solar Drying on The Composition of Essential Oil of Sacha Culantro (Eryngium Foetidum L.) Grown in The Peruvian Amazon. J. Food Process. Eng. 2010, 33, 83–103. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Usano-Alemany, J.; Brophy, J.J.; Pérez-Alonso, M.J.; Soria, A.C. Essential oil composition of the different parts of Eryngium aquifolium from Spain. Nat. Prod. Commun. 2010, 5, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Majid, S.; Katayoun, M.S. Effect of the Essential Oil of Eryngium caeruleum on Percutaneous Absorption of Piroxicam through Rat Skin. J. Essent. Oil-Bear. Plants 2008, 11, 485–495. [Google Scholar] [CrossRef]
- Flamini, G.; Tebano, M.; Cioni, P.L. Composition of the essential oils from leafy parts of the shoots, flowers and fruits of Eryngium amethystinum from Amiata Mount (Tuscany, Italy). Food Chem. 2008, 107, 671–674. [Google Scholar] [CrossRef]
- Thi, N.D.T.; Anh, T.H.; Thach, L.N. The Essential Oil Composition of Eryngium foetidum L. in South Vietnam Extracted by Hydro distillation under Conventional Heating and Microwave Irradiation. J. Essent. Oil-Bear. Plants 2008, 11, 154–161. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Usano, J.; Soria, A.C.; Pérez-Alonso, M.J.; Brophy, J.J. Essential oil composition of Eryngium campestre L. growing in different soild types. A preliminary study. Nat. Prod. Commun. 2008, 3, 1121–1126. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Copeland, L.M.; Brophy, J.J.; Goldsack, R.J. Analysis by Gas Chromatography-Mass Spectrometry of the essential oil composition of Eryngium paludosum (Moore & Betche) P.W. Michael: An endemic species from eastern Australia. J. Essent. Oil Res. 2008, 20, 416–419. [Google Scholar] [CrossRef]
- Capetanos, C.; Saroglour, V.; Marinz, P.; Simic, A.; Skaltsa, H.D. Essential oil analysis of two endemic Eryngium species from Serbia. J. Serb. Chem. Soc. 2007, 72, 961–965. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Brophy, J.J.; Pérez-Alonso, M.J.; Usano, J.; Soria, A.C. Essential oil composition of the different parts of Eryngium corniculatum Lam. (Apiaceae) from Spain. J. Chromatogr. A 2007, 1175, 289–293. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Pérez-Alonso, M.J.; Velasco-Negueruela, A.; Varadé, J.; Villa, A.M.; Sanz, J.; Brophy, J.J. Essential oil composition of the different parts of Eryngium bourgatii Gouan from Spain. J. Chromatogr. A 2005, 1074, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Palá-Paúl, J.; Pérez-Alonso, M.J.; Velasco-Negueruela, A.; Varadé, J.; Villa, M.A.; Sanz, J.; Brophy, J.J. Analysis of the essential oil composition of the different parts of Eryngium glaciale Boiss. from Spain. J. Chromatogr. A 2005, 1094, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Sefidkon, F.; Dabiri, M.; Alamshahi, A. Chemical composition of the essential oil of Eryngium billardieri F. Delaroche from Iran. J. Essent. Oil Res. 2004, 16, 42–43. [Google Scholar] [CrossRef]
- Brophy, J.J.; Goldsack, R.J.; Copeland, L.M.; Palá-Paúl, J. Essential oil of Eryngium L. species from New South Wales (Australia). J. Essent. Oil Res. 2003, 15, 392–397. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Brophy, J.J.; Goldsack, R.J.; Copeland, L.M.; Pérez-Alonso, M.J.; Velasco-Negueruela, A. Essential oil composition of the seasonal heterophyllous leaves of Eryngium vesiculosum from Australia. Aust. J. Bot. 2003, 51, 497–501. [Google Scholar] [CrossRef]
- Martins, A.P.; Salgueiro, L.R.; Proença da Cunha, A.; Vila, R.; Cañigueral, S.; Tomi, F.; Casanova, J. Essential oil composition of Eryngium foetidum from S. Tomé e Príncipe. J. Essent. Oil Res. 2003, 15, 93–95. [Google Scholar] [CrossRef]
- Ayoub, N.A.; Nawwar, M.A.M.; Kubeczka, K.H. An unique n-propyl sesquiterpene from Eryngium creticum L. (Apiaceae). Pharmazie 2003, 58, 674–676. [Google Scholar] [CrossRef]
- Cobos, M.I.; Rodríguez, J.L.; de Petre, A.; Spahn, E.; Casemeiro, J.; López, A.G.; Zygadlo, J.A. Composition of the essential oil of Eryngium paniculatum Cav. J. Essent. Oil Res. 2002, 14, 82–83. [Google Scholar] [CrossRef]
- Kubeczka, K.H.; Ayoulo, N.; Grande, M.; Torres, P. Composition of the essential oils from different parts of Eryngium maritimum L. (Apiaceae). In Proceedings of the Poster at the 29th International Symposium on Essential Oils, Frankfurt, Germany, 6–9 September 1998. [Google Scholar]
- Pino, J.A.; Rosado, A.; Fuentes, V. Chemical composition of the seed oil of Eryngium foetidum L. from Cuba. J. Essent. Oil Res. 1997, 9, 123–124. [Google Scholar] [CrossRef]
- Pino, J.A.; Rosado, A.; Fuentes, V. Composition of the leaf oil of Eryngium foetidum L. from Cuba. J. Essent. Oil Res. 1997, 9, 467–468. [Google Scholar] [CrossRef]
- Wong, K.C.; Feng, M.C.; Sam, T.W.; Tan, G.L. Composition of the leaf and root oils of Eryngium foetidum L. J. Essent. Oil Res. 1994, 6, 369–374. [Google Scholar] [CrossRef]
- Leclercq, P.A.; Duñg, N.X.; Lô, V.N.; Toanh, N.V. Composition of the essential oil of Eryngium foetidum L. from Vietnam. J. Essent. Oil Res. 1992, 4, 423–424. [Google Scholar] [CrossRef]
- Simon, O.R.; Singh, N. Demonstration of anticonvulsant properties of an aqueous extract of Spirit Weed (Eryngium foetidum L.). West Indian Med. J. 1986, 35, 121–125. [Google Scholar] [PubMed]
- Demirpolat, A.; Dogan, G.; Bagci, E. Chemical composition of Essential Oils of Four Scandix Species from Different Parts: A Chemotaxonomic Approach. J. Essent. Oil-Bear. Plants 2018, 21, 1660–1668. [Google Scholar] [CrossRef]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Tiwari, A.; Joshi, N. Variability in essential oil composition of different plant parts of Heracleum candicans Wall. Ex DC from North India. J. Essent. Oil Res. 2018, 30, 293–301. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Z.; Li, H.; Meng, X.; Bao, Y.; Li, Y.X. Components of Essential Oils in Different Parts of Daucus carota L. var. sativa Hoffm1. Chem. Res. Chin. Univ. 2006, 22, 328–334. [Google Scholar] [CrossRef]
- Bettaieb, I.; Bourgou, S.; Wannes, W.A.; Hamrouni, I.; Limam, F.; Marzouk, B. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J. Agric. Food Chem. 2010, 58, 10410–10418. [Google Scholar] [CrossRef]
- Saraccedil, H.T.; Akin, M.; Demirci, B.; Başer, K.H.C. Chemical composition and antibacterial activity of essential oils from different parts of some Bupleurum L. species. Afr. J. Microbiol. Res. 2012, 6, 2899–2908. [Google Scholar] [CrossRef]
- Akιn, M.; Taner Saraçoğlu, H.; Demirci, B.; Başer, K.H.C.; Küçüködük, M. Chemical composition and antibacterial activity of essential oils from different parts of Bupleurum rotundifolium L. Rec. Nat. Prod. 2012, 6, 316–320. [Google Scholar]
- Marcetić, M.; Bozić, D.; Milenković, M.; Lakusić, B.; Kovacević, N. Chemical composition and antimicrobial activity of essential oil of different parts of Seseli rigidum. Nat Prod. Commun. 2012, 7, 1091–1094. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, N.N.; Marcetic, M.D.; Lakusic, D.V.; Lakusic, B.S. Composition of the Essential Oils of Different Parts of Seseli annuum L. (Apiaceae). J. Essent. Oil-Bear. Plants 2016, 19, 671–677. [Google Scholar] [CrossRef]
- Maggi, F.; Papa, F.; Dall’Acqua, S.; Nicoletti, M. Chemical analysis of essential oils from different parts of Ferula communis L. growing in central Italy. Nat. Prod. Res. 2016, 30, 806–813. [Google Scholar] [CrossRef]
- Rahali, F.; Lamine, M.; Rebey, I.; Aidi Wannes, W.; Hammami, M.; Selmi, S.; Mliki, A.; Sellami, I. Biochemical characterization of fennel (Ferula communis L.) different parts through their essential oils, fatty acids and phenolics. Acta Sci. Pol.-Hortorum Cultus 2021, 20, 3–14. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Kirpotina, L.N.; Schepetkin, I.A.; Khlebnikov, A.I.; Lisonbee, B.L.; Black, J.L.; Woolf, H.; Thurgood, T.L.; Graf, B.L.; Satyal, P.; et al. Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils. Molecules 2023, 28, 7330. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, S.B.; Sierra, L.J.; Fernández-Alonso, J.L.; Romero, A.K.; Martínez, J.R.; Stashenko, E.E. Antioxidant Properties and Secondary Metabolites Profile of Hyptis colombiana at Various Phenological Stages. Molecules 2023, 28, 6767. [Google Scholar] [CrossRef] [PubMed]
- Rungqu, P.; Oyedeji, O.; Gondwe, M.; Oyedeji, A. Chemical Composition, Analgesic and Anti-Inflammatory Activity of Pelargonium peltatum Essential Oils from Eastern Cape, South Africa. Molecules 2023, 28, 5294. [Google Scholar] [CrossRef]
- Pérez Zamora, C.M.; Torres, C.A.; Nuñez, M.B. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules 2018, 23, 544. [Google Scholar] [CrossRef]
- Real Farmacopea Española, 3rd ed.; Ministerio de Sanidad y Consumo: Madrid, Spain, 2005.
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy, 2nd ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 3rd ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2001. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography—Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Heller, S.R.; Milne, G.W.A. EPA/NIH Mass Spectral Data Base; US Government Printing Office: Washington, DC, USA, 1978.
- Swigar, A.A.; Silverstein, R.M. Monoterpenes; Aldrich: Milwaukee, WI, USA, 1981. [Google Scholar]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E. B.-Verlag: Hamburg, Germany, 1998. [Google Scholar]
Sample | Voucher Details | Yield (%) |
---|---|---|
E.d.I | MACB-73213. Road from Grazalema to Zahara (Km 1), Cádiz province (Spain). All the specimens were gathered during the summer season in flowering period. 15-VII-1999. 30STF7871. | 0.29 |
E.d.SL | 0.33 | |
E.d.R | 0.14 |
Terpenoid/Sample | E.d.I | E.d.SL | E.d.R |
---|---|---|---|
Monoterpene hydrocarbons | 4.4 | 3.5 | 3.1 |
Oxygenated monoterpenes | 1.3 | 2.4 | 0.5 |
Sesquiterpene hydrocarbons | 61.8 | 58.4 | 27.4 |
Oxygenated sesquiterpenes | 29.8 | 23.2 | 45.2 |
Total | 97.3 | 87.5 | 76.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palá-Paúl, J.; Pérez-Alonso, M.J.; Soria, A.C.; Brophy, J.J. Chemical Composition of the Essential Oils of the Iberian Peninsula Endemic Species Eryngium dilatatum Lam. Molecules 2024, 29, 562. https://doi.org/10.3390/molecules29030562
Palá-Paúl J, Pérez-Alonso MJ, Soria AC, Brophy JJ. Chemical Composition of the Essential Oils of the Iberian Peninsula Endemic Species Eryngium dilatatum Lam. Molecules. 2024; 29(3):562. https://doi.org/10.3390/molecules29030562
Chicago/Turabian StylePalá-Paúl, Jesús, María José Pérez-Alonso, Ana C. Soria, and Joseph J. Brophy. 2024. "Chemical Composition of the Essential Oils of the Iberian Peninsula Endemic Species Eryngium dilatatum Lam." Molecules 29, no. 3: 562. https://doi.org/10.3390/molecules29030562
APA StylePalá-Paúl, J., Pérez-Alonso, M. J., Soria, A. C., & Brophy, J. J. (2024). Chemical Composition of the Essential Oils of the Iberian Peninsula Endemic Species Eryngium dilatatum Lam. Molecules, 29(3), 562. https://doi.org/10.3390/molecules29030562