Molybdenum-Catalyzed (E)-Selective Anti-Markovnikov Hydrosilylation of Alkynes
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. General Methods for the Preparation of (E)-Vinylsilanes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langkopf, E.; Schinzer, D. Uses of Silicon-Containing Compounds in the Synthesis of Natural Products. Chem. Rev. 1995, 95, 1375–1408. [Google Scholar] [CrossRef]
- Bracegirdle, S.; Anderson, E.A. Recent advances in the use of temporary silicon tethers in metal-mediated reactions. Chem. Soc. Rev. 2010, 39, 4114–4129. [Google Scholar] [CrossRef] [PubMed]
- Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Siliconcontaining amino acids: Synthetic aspects, conformational studies, and applications to bioactive peptides. Chem. Rev. 2016, 116, 11654–11684. [Google Scholar] [CrossRef] [PubMed]
- Blumenkopf, T.A.; Overman, L.E. Vinylsilane- and Alkynylsilane-Terminated Cyclization Reactions. Chem. Rev. 1986, 86, 857. [Google Scholar] [CrossRef]
- Komiyama, T.; Minami, Y.; Hiyama, T. Recent Advances in Transition-Metal-Catalyzed Synthetic Transformations of Organosilicon Reagents. ACS Catal. 2017, 7, 631–651. [Google Scholar] [CrossRef]
- Roy, A.K. A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv. Organomet. Chem. 2007, 55, 1–59. [Google Scholar]
- Anderson, E.; Lim, D. Synthesis of Vinylsilanes. Synthesis 2012, 44, 983–1010. [Google Scholar] [CrossRef]
- Shvydkiy, N.V.; Rimskiy, K.V.; Perekalin, D.S. Cyclobutadiene platinum complex as a new type of precatalyst for hydrosilylation of alkenes and alkynes. Appl. Organomet. Chem. 2023, 33, e7008. [Google Scholar] [CrossRef]
- Ibáñez-Ibáñez, K.; Lázaro, A.; Mejuto, C.; Crespo, M.; Vicent, C.; Rodríguez, L.; Mata, J.A. Visible light harvesting alkyne hydrosilylation mediated by pincer platinum complexes. J. Catal. 2023, 428, 115155. [Google Scholar] [CrossRef]
- Puerta-Oteo, R.; Munarriz, J.; Polo, V.; Jiménez, M.V.; Pérez-Torrente, J.J. Carboxylate-Assisted β-(Z) Stereoselective Hydrosilylation of Terminal Alkynes Catalyzed by a Zwitterionic Bis-NHC Rhodium(III) Complex. ACS Catal. 2020, 10, 7367–7380. [Google Scholar] [CrossRef]
- Sánchez-Page, B.; Munarriz, J.; Jiménez, M.V.; Pérez-Torrente, J.J.; Blasco, J.; Subias, G.; Passarelli, V.; Álvarez, P. β-(Z) Selectivity Control by Cyclometalated Rhodium(III)-Triazolylidene Homogeneous and Heterogeneous Terminal Alkyne Hydrosilylation Catalysts. ACS Catal. 2020, 10, 13334–13351. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, L.; Yi, M.; Wu, X.; Lu, Y. Dirhodium(II)/XantPhos Catalyzed Synthesis of β-(E)-Vinylsilanes via Hydrosilylation and Isomerization from Alkynes. Chem. Eur. J. 2024, 30, e202402406. [Google Scholar]
- Ren, S.; Ye, B.; Li, S.; Pang, L.; Pan, Y.; Tang, H. Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Res. 2022, 15, 1500–1508. [Google Scholar] [CrossRef]
- Roemer, M.; Gonçales, V.R.; Keaveney, S.T.; Pernik, I.; Lian, J.; Downes, J.; Gooding, J.J.; Messerle, B.A. Carbon supported hybrid catalysts for controlled product selectivity in the hydrosilylation of alkynes. Catal. Sci. Technol. 2021, 11, 1888–1898. [Google Scholar] [CrossRef]
- Li, Q.; Gu, D.; Yu, D.; Liu, Y. Caged Iridium Catalyst for Hydrosilylation of Alkynes with High Site Selectivity. ChemCatChem 2022, 14, e202101727. [Google Scholar] [CrossRef]
- Dai, W.; Wu, X.; Li, C.; Zhang, R.; Wang, J.; Liu, H. Regio-selective and stereo-selective hydrosilylation of internal alkynes catalyzed by ruthenium complexes. RSC Adv. 2018, 8, 28261–28265. [Google Scholar] [CrossRef]
- Kanno, K.; Noguchi, S.; Ono, Y.; Egawa, S.; Otsuka, N.; Mita, M.; Kyushin, S. Ruthenium-catalyzed hydrosilylation of alkynes with preservation of the Si–Si bond of hydrooligosilanes: Regio- and stereoselective synthesis of (Z)-alkenyloligosilanes and carbonyl-functionalized alkenyldisilanes. J. Organomet. Chem. 2022, 961, 122234. [Google Scholar] [CrossRef]
- Saridakis, I.; Kidonakis, M.; Stratakis, M. Unique Reactivity of Dihydrosilanes under Catalysis by Supported Gold Nanoparticles: cis-1,2-Dehydrogenative Disilylation of Alkynes. ChemCatChem 2018, 10, 980–983. [Google Scholar] [CrossRef]
- Feng, X.; Guo, J.; Wang, S.; Wu, Q.; Chen, Z. Atomically dispersed gold anchored on carbon nitride nanosheets as effective catalyst for regioselective hydrosilylation of alkynes. J. Mater. Chem. A 2021, 9, 17885–17892. [Google Scholar] [CrossRef]
- Lu, Z.; Guo, J. Highly Chemo-, Regio-, and Stereoselective Cobalt-Catalyzed Markovnikov Hydrosilylation of Alkynes. Angew. Chem. Int. Ed. 2016, 55, 10835–10838. [Google Scholar]
- Teo, W.; Wang, C.; Tan, Y.; Ge, S. Cobalt-Catalyzed Z-Selective Hydrosilylation of Terminal Alkynes. Angew. Chem. Int. Ed. 2017, 56, 4328–4332. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Hou, W.; Zhang, Y.; Huang, Z. Pincer cobalt complex-catalyzed Z-selective hydrosilylation of terminal alkyne. Org. Chem. Front. 2017, 4, 1517–1521. [Google Scholar] [CrossRef]
- Wu, G.; Chakraborty, U.; Wangelin, A.J. Regiocontrol in the cobalt-catalyzed hydrosilylation of alkynes. Chem. Commun. 2018, 54, 12322–12325. [Google Scholar] [CrossRef] [PubMed]
- Li, R.-H.; An, X.-M.; Yang, M.; Li, D.-C.; Hu, Z.-L.; Zhan, Z.-P. Highly Regio- and Stereoselective Heterogeneous Hydrosilylation of Terminal Alkynes over Cobalt-Metalated Porous Organic Polymer. Org. Lett. 2018, 20, 5023–5026. [Google Scholar] [CrossRef]
- Skrodzki, M.; Patroniak, V.; Pawluć, P. Schiff Base Cobalt(II) Complex-Catalyzed Highly Markovnikov-Selective Hydrosilylation of Alkynes. Org. Lett. 2021, 23, 663–667. [Google Scholar] [CrossRef]
- Wang, D.; Lai, Y.; Wang, P.; Leng, X.; Xiao, J.; Deng, L. Markovnikov Hydrosilylation of Alkynes with Tertiary Silanes Catalyzed by Dinuclear Cobalt Carbonyl Complexes with NHC Ligation. J. Am. Chem. Soc. 2021, 143, 12847–12856. [Google Scholar] [CrossRef]
- Park, J.-W. Cobalt-catalyzed alkyne hydrosilylation as a new frontier to selectively access silyl-hydrocarbons. Chem. Commun. 2022, 58, 491–504. [Google Scholar] [CrossRef]
- Stachowiak-Dłużyńska, H.; Kuciński, K.; Wyrzykiewicz, B.; Kempe, R.; Hreczycho, G. Co-catalyzed Selective syn-Hydrosilylation of Internal Alkynes. ChemCatChem 2023, 15, e202300592. [Google Scholar] [CrossRef]
- Liu, Z.-K.; Zhang, G.-L.; Li, D.-C.; Yang, Y.; Chen, L.; Zhan, Z.-P. Iron-Catalyzed Synthesis of (E)-β-Vinylsilanes via a Regio- and Stereoselective Hydrosilylation from Terminal Alkynes. Synlett 2019, 30, 235–239. [Google Scholar]
- Guo, Z.; Wen, H.; Liu, G.; Huang, Z. Iron-Catalyzed Regio- and Stereoselective Hydrosilylation of 1,3-Enynes To Access 1,3-Dienylsilanes. Org. Lett. 2021, 23, 2375–2379. [Google Scholar] [CrossRef]
- Hu, W.-Y.; He, P.; Qiao, T.-Z.; Sun, W.; Li, W.-T.; Lian, J.; Li, J.-H.; Zhu, S.-F. Iron-Catalyzed Regiodivergent Alkyne Hydrosilylation. J. Am. Chem. Soc. 2020, 142, 16894–16902. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Sen, T.; Kumar, R.; Kumar, C.P.; Kumar, H.; Kumar, K.; Kumar, S.H. Iron-catalyzed (E)-selective hydrosilylation of alkynes: Scope and mechanistic insights. Catal. Sci. Technol. 2024, 14, 2752–2760. [Google Scholar] [CrossRef]
- Behera, R.R.; Saha, R.; Kumar, A.A.; Sethi, S.; Jana, N.C.; Bagh, B. Hydrosilylation of Terminal Alkynes Catalyzed by an Air-Stable Manganese-NHC Complex. J. Org. Chem. 2023, 88, 8133–8149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-L.; Zhang, F.-L.; Xu, J.-L.; Shan, C.-C.; Zhao, M.; Xu, Y.-H. Copper-Catalyzed Anti-Markovnikov Hydrosilylation of Terminal Alkynes. Org. Lett. 2020, 22, 7735–7742. [Google Scholar] [CrossRef]
- Xu, J.-L.; Wang, Z.-L.; Zhao, J.-B.; Xu, Y.-H. Enantioselective construction of Si-stereogenic linear alkenylhydrosilanes via copper-catalyzed hydrosilylation of alkynes. Chem Catal. 2024, 4, 100887. [Google Scholar] [CrossRef]
- Bai, D.; Cheng, R.; Yang, J.; Xu, W.; Chen, X.; Chang, J. Regiodivergent hydrosilylation in the nickel(0)-catalyzed cyclization of 1,6-enynes. Org. Chem. Front. 2022, 9, 5285–5291. [Google Scholar] [CrossRef]
- Docherty, J.H.; Peng, J.; Dominey, A.P.; Thomas, S.P. Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nat. Chem. 2017, 9, 595–600. [Google Scholar] [CrossRef]
- Wu, C.; Teo, W.; Ge, S. Cobalt-Catalyzed (E)-Selective anti-Markovnikov Hydrosilylation of Terminal Alkynes. ACS Catal. 2018, 8, 5896–5900. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Tan, C.; Wu, W.; Jiang, H. DDQ-mediated regioselective C-S bond formation: Efficient access to allylic sulfides. Org. Chem. Front. 2018, 5, 3158–3162. [Google Scholar] [CrossRef]
- Li, C.; Li, M.; Zhong, W.; Jin, Y.; Li, J.; Wu, W.; Jiang, H. Palladium-Catalyzed Oxidative Allylation of Sulfoxonium Ylides: Regioselective Synthesis of Conjugated Dienones. Org. Lett. 2019, 21, 872–875. [Google Scholar] [CrossRef]
- Li, C.; Liao, M.; He, Z.; Chen, Y.; Mai, J.; Dong, R.; Chen, J.; Chen, L. Metal-Free Oxidative Cross-Dehydrogenative Coupling of Alkenes with Thiophenols. ChemistrySelect 2023, 8, e202300845. [Google Scholar] [CrossRef]
Entry | Catalyst | Ligand | Solvent | Yield (%) b | E/Z/α b |
---|---|---|---|---|---|
1 | W(CO)6 | PPh3 | MeCN | n.d. | - |
2 | W(CO)3(CH3CN)3 | PPh3 | MeCN | n.d. | - |
3 | Mo(CO)6 | PPh3 | MeCN | 80 | 75/0/25 |
4 | Mo(CO)6 | P(p-Tol)3 | MeCN | 78 | 70/0/30 |
5 | Mo(CO)6 | P(tBu)3 | MeCN | n.d. | trace |
6 | Mo(CO)6 | dppb | MeCN | 85 | 98/0/2 |
7 | Mo(CO)6 | dppe | MeCN | 82 | 97/0/3 |
8 | Mo(CO)6 | dppbz | MeCN | 65 | 80/7/13 |
9 | Mo(CO)6 | xantphos | MeCN | 79 | 85/5/10 |
10 | Mo(CO)6 | dppb | THF | 90 | 98/0/2 |
11 | Mo(CO)6 | dppb | Et2O | 78 | 95/0/5 |
12 | Mo(CO)6 | dppb | Toluene | 54 | 91/0/9 |
13 | Mo(CO)6 | dppb | EtOH | trace | - |
14 | Mo(CO)6 | dppb | H2O | n.d. | - |
15 c | Mo(CO)6 | dppb | THF | 86 | 95/0/5 |
16 d | Mo(CO)6 | dppb | THF | 80 | 90/0/10 |
17 | - | dppb | THF | n.d. | - |
18 | Mo(CO)6 | - | THF | 43 | 54/12/34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, F.; Huang, Z.; Li, J.; Wang, Q.; Wu, L.; Li, X. Molybdenum-Catalyzed (E)-Selective Anti-Markovnikov Hydrosilylation of Alkynes. Molecules 2024, 29, 5952. https://doi.org/10.3390/molecules29245952
Ye F, Huang Z, Li J, Wang Q, Wu L, Li X. Molybdenum-Catalyzed (E)-Selective Anti-Markovnikov Hydrosilylation of Alkynes. Molecules. 2024; 29(24):5952. https://doi.org/10.3390/molecules29245952
Chicago/Turabian StyleYe, Feihua, Zhaoyang Huang, Jiahao Li, Qiumin Wang, Lihuan Wu, and Xiang Li. 2024. "Molybdenum-Catalyzed (E)-Selective Anti-Markovnikov Hydrosilylation of Alkynes" Molecules 29, no. 24: 5952. https://doi.org/10.3390/molecules29245952
APA StyleYe, F., Huang, Z., Li, J., Wang, Q., Wu, L., & Li, X. (2024). Molybdenum-Catalyzed (E)-Selective Anti-Markovnikov Hydrosilylation of Alkynes. Molecules, 29(24), 5952. https://doi.org/10.3390/molecules29245952