Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (249)

Search Parameters:
Keywords = molybdenum catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4653 KB  
Article
Non-Supported Heteroatom Modification Molybdenum-Based Catalyst for Synthesis Low-Carbon Alcohols from Coal-Based Syngas
by Peixuan Sun, Ruiyuan Tang, Lixia He, Zhibing Shen, Lingying Wang, Yuanyu Tian and Juntao Zhang
Fuels 2025, 6(4), 83; https://doi.org/10.3390/fuels6040083 - 7 Nov 2025
Viewed by 156
Abstract
Amid growing concerns over fossil fuel depletion and environmental degradation, developing alternative energy sources is imperative. While MoS2-based catalysts are known for their syngas conversion activity, their selectivity toward alcohols remains limited. This study addresses this gap by developing Cu-promoted MoS [...] Read more.
Amid growing concerns over fossil fuel depletion and environmental degradation, developing alternative energy sources is imperative. While MoS2-based catalysts are known for their syngas conversion activity, their selectivity toward alcohols remains limited. This study addresses this gap by developing Cu-promoted MoS2 catalysts to enhance alcohol synthesis. The results indicated that the introduction of copper significantly modulates the catalytic performance of MoS2. We demonstrate that incorporating Cu significantly modulates the catalytic properties of MoS2. The optimized catalyst with 9 wt% Cu loading exhibited a CO conversion of 17.9% and a markedly improved total alcohol selectivity of 46.4%, with a space-time yield of 67.6 mg·g−1·h−1. Although Cu addition slightly reduced CO conversion, it markedly improved alcohol selectivity by facilitating active site dispersion, suppressing Fischer-Tropsch side reactions, and stabilizing heteroatomic active phases. Finally, a catalytic mechanism for the synthesis of low-carbon alcohols from syngas on MoS2-based catalysts was proposed based on the catalyst analysis and reaction results. Full article
(This article belongs to the Special Issue Sustainability Assessment of Renewable Fuels Production)
Show Figures

Figure 1

18 pages, 3272 KB  
Article
Elucidating the Role of the Mo2C/MgO Catalyst Interface in the Mechanism of the Reverse Water Gas Shift Reaction
by Cameron Holder, Andrew Shabaev, Jeffrey Baldwin and Heather Willauer
Nanomaterials 2025, 15(20), 1591; https://doi.org/10.3390/nano15201591 - 18 Oct 2025
Viewed by 443
Abstract
The reverse water gas shift reaction (RWGS) is a key step in the valorization of CO2 to value-added products such as fuel. Metal carbides, particularly molybdenum carbide (Mo2C), supported on transition metal oxide supports have been reported as promising materials [...] Read more.
The reverse water gas shift reaction (RWGS) is a key step in the valorization of CO2 to value-added products such as fuel. Metal carbides, particularly molybdenum carbide (Mo2C), supported on transition metal oxide supports have been reported as promising materials to be used as catalysts for the low-temperature RWGS reaction. A deeper understanding of catalyst support interactions can be greatly beneficial for the development of better and more efficient catalysts in the future. To this end, this study computationally investigated the effect of the interaction between the Mo2C(001) surface and the MgO(001) surface on the RWGS mechanism. The RWGS mechanisms were explored at the Mo2C/MgO interface, as well as on the bare surface of Mo2C. While the pathway at the interface went through an associative-type mechanism and a carboxylate intermediate, the Mo2C surface was found to go through a redox-type mechanism. Interestingly, both the kinetics and thermodynamics of each pathway were similar, suggesting that the observed differences in the CO2 hydrogenation pathways were primarily limited by the diffusion of CO2 across the MgO surface rather than inhibitory energetics resulting from the interplay of the Mo2C material and MgO support. Full article
(This article belongs to the Special Issue Theoretical and Computational Studies of Nanocrystals)
Show Figures

Figure 1

18 pages, 13450 KB  
Article
Formation of η-Carbides by Mechanical Alloying of Co25Mo25C50 and Their Performance in Hydrodesulfurization
by Brenda Edith García Caudillo, Ignacio Carvajal-Mariscal, Adriana Isabel Reyes de la Torre, Jesús Noé Rivera Olvera, Vicente Garibay Febles, Leonardo González Reyes and Lucía Graciela Díaz Barriga Arceo
Processes 2025, 13(10), 3080; https://doi.org/10.3390/pr13103080 - 26 Sep 2025
Viewed by 419
Abstract
Cobalt–molybdenum η-carbides are attractive hydrodesulfurization (HDS) catalysts, yet controlling their phase composition and nanostructure remains challenging. Here, a Co25Mo25C50 powder was prepared by mechanical alloying in a horizontal mill, with and without superimposed vertical vibration. Phase composition [...] Read more.
Cobalt–molybdenum η-carbides are attractive hydrodesulfurization (HDS) catalysts, yet controlling their phase composition and nanostructure remains challenging. Here, a Co25Mo25C50 powder was prepared by mechanical alloying in a horizontal mill, with and without superimposed vertical vibration. Phase composition was determined by X-ray diffraction using the reference-intensity-ratio method, and the nanostructure was examined by SEM and HRTEM. Aquathermolysis of a heavy crude was monitored by ATR-FTIR in the window characteristic of S–S and C–S vibrations. Both milling routes produced the η-carbides Co3Mo3C and Co6Mo6C, as well as Co2Mo3, Co7Mo6, and Co3C; vibration-assisted milling increased the Co6Mo6C fraction and generated thin lamellae exhibiting Moiré contrast. In FTIR, the Co6Mo6C-rich powder showed strong attenuation of the disulfide and thioether bands, whereas the Co3Mo3C-rich powder behaved similarly to the water-only baseline under mild conditions (100 °C, 4 h). These results indicate that mechanical alloying with superposed vibration enables control over phase and nanostructure, and that a higher Co6Mo6C fraction correlates with a stronger HDS response under aquathermolysis. The approach offers a scalable route to Co–Mo carbides that are active for desulfurization at 100 °C in water without added H2. Full article
Show Figures

Figure 1

11 pages, 2281 KB  
Article
Amorphous MoSx Nanosheets with Abundant Interlayer Dislocations for Enhanced Photolytic Hydrogen Evolution Reaction
by Xuyang Xu, Zefei Wu, Weifeng Hu, Ning Sun, Zijun Li, Zhe Feng, Yinuo Zhao and Longlu Wang
Catalysts 2025, 15(9), 879; https://doi.org/10.3390/catal15090879 - 13 Sep 2025
Viewed by 538
Abstract
Transition metal dichalcogenides (TMSs), exemplified by molybdenum disulfide (MoS2), exhibit significant potential as alternatives to noble metals (e.g., Pt) for the hydrogen evolution reaction (HER). However, conventional synthesis methods of MoSx often suffer from active site loss, harsh reaction conditions, [...] Read more.
Transition metal dichalcogenides (TMSs), exemplified by molybdenum disulfide (MoS2), exhibit significant potential as alternatives to noble metals (e.g., Pt) for the hydrogen evolution reaction (HER). However, conventional synthesis methods of MoSx often suffer from active site loss, harsh reaction conditions, or undesirable oxidation, limiting their practical applicability. The development of MoSx with high-density active sites remains a formidable challenge. Herein, we propose a novel strategy employing [Mo3S13]2− clusters as precursors to construct three-dimensional amorphous MoSx nanosheets through optimized hydrothermal and solvent evaporation-induced self-assembly approaches. Comprehensive characterization confirms the material’s unique amorphous lamellar structure, featuring preserved [Mo3S13]2− units and engineered interlayer dislocations that facilitate enhanced electron transfer and active site exposure. This work not only establishes [Mo3S13]2− clusters as effective building blocks for high-performance MoSx catalysts, but also provides a scalable and environmentally benign synthesis route for the large-scale production of such nanostructured a-MoSx. Our findings facilitate the rational design of non-noble HER catalysts via structural engineering, with broad implications for energy conversion technologies. Full article
Show Figures

Figure 1

16 pages, 1249 KB  
Article
Selective Recovery of Molybdenum over Nickel and Cobalt from Simulated Secondary Sources Using Bifunctional Ionic Liquid [TOA][Cy272]
by Roshanak Adavodi, Adriana Zuffranieri, Pietro Romano, Soroush Rahmati and Francesco Vegliò
Materials 2025, 18(16), 3826; https://doi.org/10.3390/ma18163826 - 15 Aug 2025
Viewed by 686
Abstract
The growing demand for ultra-low sulfur fuels has intensified interest in recovering strategic metals from the large volumes of hazardous hydrodesulfurization catalysts that are discarded yearly. This work evaluates a task-specific ionic liquid, tri-n-octylammonium bis(2-,4-,4-trimethylpentyl)-phosphinate [TOA][Cy272], synthesized by the acid–base neutralization of tri-n-octylamine [...] Read more.
The growing demand for ultra-low sulfur fuels has intensified interest in recovering strategic metals from the large volumes of hazardous hydrodesulfurization catalysts that are discarded yearly. This work evaluates a task-specific ionic liquid, tri-n-octylammonium bis(2-,4-,4-trimethylpentyl)-phosphinate [TOA][Cy272], synthesized by the acid–base neutralization of tri-n-octylamine and Cyanex 272. FT-IR spectroscopy confirmed complete proton transfer and the formation of a stable ion pair. Liquid–liquid extraction tests were conducted with synthetic Co–Ni–Mo solutions (0.1–2.5 g/L each), a varying ionic liquid concentration (10–50 vol%), pH (1.5–12.5), and organic/aqueous ratio (1:1). At 35 vol% of ionic liquid and pH 2, the extraction efficiency for Mo reached 94%, with separation factors βMo/Ni = 12 and βMo/Co = 7.5; Co and Ni uptake remained ≤15%. Selectivity decreased at higher metal loadings because of ionic liquid saturation, and an excessive ionic liquid amount (>35%) offered no benefit, owing to viscosity-limited mass transfer. Stripping studies showed that 1 M NH4OH stripped about 95% Mo, while leaving Co and Ni in the organic phase; conversely, 2 M HCl removed 92–98% of Co and Ni, but <5% Mo. Overall Mo recovery of about 95% was obtained by a two-step extraction/stripping scheme. The results demonstrate that [TOA][Cy272] combines the cation exchange capability of quaternary ammonium ILs with the strong chelating affinity of organophosphinic acids, delivering rapid, selective, and regenerable separation of Mo from mixed-metal leachates and wastewater streams. Full article
(This article belongs to the Special Issue Recycling and Resource Utilization of Waste)
Show Figures

Figure 1

18 pages, 4250 KB  
Article
Highly Efficient Electrocatalyst of 2D–2D gC3N4–MoS2 Composites for Enhanced Overall Water Electrolysis
by Sankar Sekar, Atsaya Shanmugam, Youngmin Lee and Sejoon Lee
Materials 2025, 18(16), 3775; https://doi.org/10.3390/ma18163775 - 12 Aug 2025
Cited by 2 | Viewed by 866
Abstract
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, [...] Read more.
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, we employ 2D molybdenum disulfide (MoS2) nanosheets and pyrolytically fabricated 2D graphitic carbon nitride (gC3N4) nanosheets to create 2D gC3N4-decorated 2D MoS2 (2D–2D gC3N4–MoS2) nanocomposites using a facile sonochemical method. The 2D–2D gC3N4–MoS2 nanocomposites show an interconnected and agglomerated structure of 2D gC3N4 nanosheets decorated on 2D MoS2 nanosheets. For water electrolysis, the gC3N4–MoS2 nanocomposites exhibit low overpotentials (OER: 225 mV, HER: 156 mV), small Tafel slope values (OER: 49 mV/dec, HER: 101 mV/dec), and excellent durability (up to 100 h for both OER and HER) at 10 mA/cm2 in 1 M KOH. Furthermore, the gC3N4–MoS2 nanocomposites show excellent overall water electrolysis performance with a low full-cell voltage (1.52 V at 10 mA/cm2) and outstanding long-term cell stability. The superb bifunctional activities of the gC3N4–MoS2 nanocomposites are attributed to the synergistic effects of 2D gC3N4 (i.e., low charge-transfer resistance) and 2D MoS2 (i.e., a large electrochemically active surface area). These findings suggest that the 2D–2D gC3N4–MoS2 nanocomposites could serve as excellent bifunctional catalysts for overall water electrolysis. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage and Conversion)
Show Figures

Graphical abstract

14 pages, 2594 KB  
Article
Amorphous MoTex Nanomaterials Promote Visible-Light Co-Catalytic Degradation of Methylene Blue
by Zhen Zhang, Bin Liu, Jian Zhou and Zhimei Sun
Materials 2025, 18(14), 3388; https://doi.org/10.3390/ma18143388 - 18 Jul 2025
Viewed by 599
Abstract
To investigate the application potential of amorphous transition metal chalcogenides in catalysis, this study successfully synthesized amorphous molybdenum telluride (MoTex) materials and systematically explored their structural characteristics, compositional modulation, and catalytic performance. Experimental results indicate that the synthesized amorphous system consists [...] Read more.
To investigate the application potential of amorphous transition metal chalcogenides in catalysis, this study successfully synthesized amorphous molybdenum telluride (MoTex) materials and systematically explored their structural characteristics, compositional modulation, and catalytic performance. Experimental results indicate that the synthesized amorphous system consists of particles of approximately 200–300 nm in size. This distinct microstructure facilitates the exposure of abundant active sites and enhances physical adsorption capacity. The amorphous MoTe2/MoTe3 catalysts achieve an approximately 30%/40% degradation of methylene blue (MB) within 90 min, demonstrating significantly enhanced photocatalytic efficiency compared to that of crystalline MoTe2 (≈20% degradation under identical conditions). Furthermore, when integrated with titanium dioxide (TiO2), the composite exhibits exceptional co-catalytic performance, achieving a 90% degradation of MB within 90 min under visible-light irradiation, representing a catalytic efficiency improvement exceeding 160% compared to the results for pristine TiO2. Furthermore, through comparative analysis of the catalytic behavior and microstructural variations between amorphous MoTe3 (a-MoTe3) and MoTe2 (a-MoTe2), we observed that the catalytic activity of molybdenum tellurides exhibits a weak correlation with the tellurium content, with co-catalytic efficacy jointly governed by the density of the active sites and the physical adsorption properties. This research provides new methods and insights for the study and improvement of catalytic performance in chalcogenide materials. Full article
Show Figures

Graphical abstract

20 pages, 2436 KB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Cited by 1 | Viewed by 908
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

28 pages, 3287 KB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Cited by 2 | Viewed by 2283
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

29 pages, 13649 KB  
Review
Recent Progress in the Synthesis and Engineering of High-Performance MoS2 Electrocatalysts for the Hydrogen Evolution Reaction
by Xinyue Du, Yuqing Xu, Aixian Shan and Rongming Wang
Catalysts 2025, 15(7), 626; https://doi.org/10.3390/catal15070626 - 25 Jun 2025
Cited by 2 | Viewed by 2839
Abstract
Molybdenum disulfide (MoS2) is a promising earth-abundant electrocatalyst for the hydrogen evolution reaction (HER), attributed to its favorable electronic structure and chemical stability. Nevertheless, its application is limited by poor electrical conductivity and low exposure of active sites. This review highlights [...] Read more.
Molybdenum disulfide (MoS2) is a promising earth-abundant electrocatalyst for the hydrogen evolution reaction (HER), attributed to its favorable electronic structure and chemical stability. Nevertheless, its application is limited by poor electrical conductivity and low exposure of active sites. This review highlights recent progress in the synthesis and structural engineering of MoS2-based catalysts to improve HER performance. Strategies such as morphology tuning, phase modulation, defect engineering, and heterostructure construction are systematically evaluated for their roles in enhancing charge transport, increasing active site density, and improving intrinsic catalytic activity. Additionally, the relationship between atomic structure, electronic properties, and HER kinetics is discussed to elucidate fundamental structure–activity correlations. These insights advance the development of MoS2 as a cost-effective and scalable catalyst for hydrogen production and inform the rational design of future HER materials. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Graphical abstract

28 pages, 3203 KB  
Article
From Pollutant Removal to Renewable Energy: MoS2-Enhanced P25-Graphene Photocatalysts for Malathion Degradation and H2 Evolution
by Cristian Martínez-Perales, Abniel Machín, Pedro J. Berríos-Rolón, Paola Sampayo, Enrique Nieves, Loraine Soto-Vázquez, Edgard Resto, Carmen Morant, José Ducongé, María C. Cotto and Francisco Márquez
Materials 2025, 18(11), 2602; https://doi.org/10.3390/ma18112602 - 3 Jun 2025
Cited by 1 | Viewed by 2392
Abstract
The widespread presence of pesticides—especially malathion—in aquatic environments presents a major obstacle to conventional remediation strategies, while the ongoing global energy crisis underscores the urgency of developing renewable energy sources such as hydrogen. In this context, photocatalytic water splitting emerges as a promising [...] Read more.
The widespread presence of pesticides—especially malathion—in aquatic environments presents a major obstacle to conventional remediation strategies, while the ongoing global energy crisis underscores the urgency of developing renewable energy sources such as hydrogen. In this context, photocatalytic water splitting emerges as a promising approach, though its practical application remains limited by poor charge carrier dynamics and insufficient visible-light utilization. Herein, we report the design and evaluation of a series of TiO2-based ternary nanocomposites comprising commercial P25 TiO2, reduced graphene oxide (rGO), and molybdenum disulfide (MoS2), with MoS2 loadings ranging from 1% to 10% by weight. The photocatalysts were fabricated via a two-step method: hydrothermal integration of rGO into P25 followed by solution-phase self-assembly of exfoliated MoS2 nanosheets. The composites were systematically characterized using X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. Photocatalytic activity was assessed through two key applications: the degradation of malathion (20 mg/L) under simulated solar irradiation and hydrogen evolution from water in the presence of sacrificial agents. Quantification was performed using UV-Vis spectroscopy, gas chromatography–mass spectrometry (GC-MS), and thermal conductivity detection (GC-TCD). Results showed that the integration of rGO significantly enhanced surface area and charge mobility, while MoS2 served as an effective co-catalyst, promoting interfacial charge separation and acting as an active site for hydrogen evolution. Nearly complete malathion degradation (~100%) was achieved within two hours, and hydrogen production reached up to 6000 µmol g−1 h−1 under optimal MoS2 loading. Notably, photocatalytic performance declined with higher MoS2 content due to recombination effects. Overall, this work demonstrates the synergistic enhancement provided by rGO and MoS2 in a stable P25-based system and underscores the viability of such ternary nanocomposites for addressing both environmental remediation and sustainable energy conversion challenges. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Graphical abstract

14 pages, 2695 KB  
Article
Synergistic MoS2–Gold Nanohybrids for Sustainable Hydrogen Production
by Shrouq H. Aleithan, Shroq S. Laradhi, Kawther Al-Amer and Hany M. Abd El-Lateef
Catalysts 2025, 15(6), 550; https://doi.org/10.3390/catal15060550 - 1 Jun 2025
Cited by 1 | Viewed by 935
Abstract
Extensive research has been conducted on the catalytic properties of molybdenum disulfide (MoS2) materials in the context of the hydrogen evolution reaction (HER). This study focuses on exploring hybrid MoS2/Au structures as a catalyst for HER, utilizing linear sweep [...] Read more.
Extensive research has been conducted on the catalytic properties of molybdenum disulfide (MoS2) materials in the context of the hydrogen evolution reaction (HER). This study focuses on exploring hybrid MoS2/Au structures as a catalyst for HER, utilizing linear sweep voltammetry as the experimental methodology. Firstly, 2D-MoS2 flakes were synthesized by the chemical vapor deposition (CVD) approach and directly added to gold nanoparticles during or after their preparation process. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy with energy-dispersive X-ray analysis (SEM/EDX). The HER performance was tested for the two resulting samples to show that the preparation of gold nanoparticles with the coexistence of CVD-MoS2 flakes produces a superior electrocatalytic performance of the sample in a neutral medium. Notably, the onset potential was measured as −0.152 V (versus reversible hydrogen electrode (RHE)) with an exchange current density (j0) of 0.22 mA/cm2. Chronoamperometric data show that all composites retained initial current densities for 15 hours, confirming stable, efficient HER performance post-decay. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Figure 1

13 pages, 7259 KB  
Article
Morphology-Engineered NiMo Alloy on Nickel Foam for Enhanced Hydrogen Evolution Reaction Performance
by Yanhong Ding, Yong Cao, Zhichao Gao, Hanzhou Ding, Haifeng Xu, Bin Liu, Fusheng Liu and Yirong Zhu
Molecules 2025, 30(11), 2396; https://doi.org/10.3390/molecules30112396 - 30 May 2025
Cited by 2 | Viewed by 1424
Abstract
A nanoflower-like nickel-molybdenum alloy was synthesized by hydrothermal in situ growth of NiMoO4 nanorod arrays on nickel foam (NF) followed by gas-phase re-reduction at 600 °C. The resulting structure has a uniform porosity and high specific surface area, which improves the availability [...] Read more.
A nanoflower-like nickel-molybdenum alloy was synthesized by hydrothermal in situ growth of NiMoO4 nanorod arrays on nickel foam (NF) followed by gas-phase re-reduction at 600 °C. The resulting structure has a uniform porosity and high specific surface area, which improves the availability of active sites and facilitates efficient electron and mass transport. SEM and XPS analyses confirm that the formed NiMoO4 nanorods are uniformly distributed, which leads to significant optimization of their electronic structure. The electrochemical measurements revealed that the sample exhibited excellent hydrogen evolution reaction (HER) performance, with an overpotential as low as 127 mV at 100 mA cm−2 and a Tafel slope of 124 mV dec−1. CV and EIS showed that the sample had the largest electrochemically active surface area (121.3 mF cm−2) among the samples treated at different temperatures, with the smallest charge transfer resistance. In addition, the catalyst maintained high stability after 45 h of continuous operation. These results highlight the potential of NiMo/NF as a highly efficient and durable HER catalyst to help advance hydrogen energy technology. Full article
(This article belongs to the Special Issue Novel Electrode Materials for Rechargeable Batteries, 2nd Edition)
Show Figures

Figure 1

48 pages, 6314 KB  
Review
Unsaturated Macrolactones from Renewable Feedstocks: Synthesis, Ring-Opening Polymerization and Application Prospects
by Ilya Nifant’ev, Anna Afanaseva, Alexander Vinogradov and Pavel Ivchenko
Int. J. Mol. Sci. 2025, 26(11), 5039; https://doi.org/10.3390/ijms26115039 - 23 May 2025
Viewed by 1583
Abstract
Unsaturated macrolactones (UMs) have long attracted researchers’ attention due to a combination of a reactive ester fragment and C=C bond in their structures. UMs of natural origin are comparatively few in number, and the task of developing synthetic approaches to new UMs is [...] Read more.
Unsaturated macrolactones (UMs) have long attracted researchers’ attention due to a combination of a reactive ester fragment and C=C bond in their structures. UMs of natural origin are comparatively few in number, and the task of developing synthetic approaches to new UMs is relevant. Recent advances in the synthesis of UMs cannot be dissociated from the progress in design of metathesis catalysts, since this catalytic approach is an atom-economy alternative to conventional organochemical methods. In the present review, we summarized and discussed the use of ring-closing metathesis, catalyzed by Ru and Group 6 metal complexes, in the synthesis of Ums and the advantages and shortcomings of the catalytic approach to UMs in comparison with organochemical methods. In a separate section, the use of UMs in the synthesis of unsaturated polyesters, the functionalization of these (co)polymers, and the prospects for practical use of the material obtained are also presented. It is essential that the actual approaches to UMs are often based on the use of renewable feedstocks, thereby meeting Green Chemistry principles. Full article
(This article belongs to the Special Issue Synthesis of Advanced Polymer Materials, 3rd Edition)
Show Figures

Figure 1

21 pages, 3238 KB  
Systematic Review
A Review for the Design and Optimization of Catalysts: The Use of Statistics as a Powerful Tool for Literature Analysis
by Tatiana Martinez, Laura Stephania Lavado Romero, D. Estefania Rodriguez and Jahaziel Amaya
Chemistry 2025, 7(3), 74; https://doi.org/10.3390/chemistry7030074 - 1 May 2025
Cited by 1 | Viewed by 1620
Abstract
In this study, a statistical analysis of results reported in the literature was conducted through a 2n experimental design on the synthesis of bifunctional catalysts used in the production of lighter fuels, aiming for optimization while considering factors such as support (bentonite [...] Read more.
In this study, a statistical analysis of results reported in the literature was conducted through a 2n experimental design on the synthesis of bifunctional catalysts used in the production of lighter fuels, aiming for optimization while considering factors such as support (bentonite and vermiculite), acidity modifier (zirconium and cerium), metal (tungsten and molybdenum), metal content (5% and 10%), promoter (nickel and cobalt), and heteropolyacids (tungstophosphoric acid and molybdophosphoric acid), identifying their influence on textural properties and catalytic performance. Regarding the textural properties, vermiculite proved to be the most favorable support due to its high porosity. It was also established that the implemented metals impart positive characteristics to the catalysts due to their various properties; however, incorporating large amounts led to an adverse effect by clogging the pores. Catalytic performance was analyzed in isomerization and cracking reactions, which were enhanced by the use of cerium due to the presence of Brønsted acid sites and molybdenum for its stability. In this way, the statistical analysis conducted in this study was crucial for identifying the influence of key factors on the textural properties and catalytic performance of bifunctional catalysts. Using a 2n experimental design allowed for a systematic evaluation of variables reported in the literature, such as support, acidity modifiers, metals, metal content, promoters, and heteropolyacids. Full article
(This article belongs to the Section Catalysis)
Show Figures

Figure 1

Back to TopTop