The Valorisation of Biochar Produced from Black Liquor Pyrolysis for the Development of CO2 Adsorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbents Preparation
2.2. Characterization of Biochar and Adsorbent Materials
2.3. CO2 Adsorption Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Zhang, W.; Shen, D.; Zhang, H.; Wang, Z. Preparation of porous carbon materi-als from black liquor lignin and its utilization as CO2 adsorbents. J. Energy Inst. 2023, 107, 101179. [Google Scholar] [CrossRef]
- Ramonet, M.; Chatterjee, A.; Ciais, P.; Levin, I.; Sha, M.K.; Steinbacher, M.; Sweeney, C. CO2 in the Atmosphere: Growth and Trends Since 1850; OREs: New York, NY, USA, 2023. [Google Scholar]
- Zhang, X.G.; Buthiyappan, A.; Jewaratnam, J.; Metselaar, H.S.C.; Raman, A.A.A. Bifunctional materials for integrated CO2 capture and conversion: Review on adsorbent and catalyst types, recent advances, and challenges. J. Environ. Chem. Eng. 2023, 12, 111799. [Google Scholar] [CrossRef]
- Kong, M.; Song, L.; Liao, H.; Zhang, S.; Wang, Y.; Deng, X.; Feng, W. A review on development of post-combustion CO2 capture technologies: Performance of carbon-based, zeolites and MOFs adsorbents. Fuel 2024, 371, 132103. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Review of technological progress in carbon dioxide capture, storage, and utilization. Gas Sci. Eng. 2023, 117, 205070. [Google Scholar] [CrossRef]
- Hurlbert, M.; Osazuwa-Peters, M. Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology. Renew. Sustain. Energy Rev. 2023, 173, 113104. [Google Scholar] [CrossRef]
- Rogelj, J.; Huppmann, D.; Krey, V.; Riahi, K.; Clarke, L.; Gidden, M.; Meinshausen, M. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 2019, 573, 357–363. [Google Scholar] [CrossRef]
- Gul, A.; Un, U.T. Effect of temperature and gas flow rate on CO2 capture. Eur. J. Sustain. Dev. Res. 2022, 6, em0181. [Google Scholar] [CrossRef]
- Udroiu, N.A.; Nicolae, C.G. Possibilities to reduce CO2 emissions by using electric motors with high energy efficiency. Sci. Pap. Ser. 2022, 65, 428–435. [Google Scholar]
- Zhu, Q. Developments on CO2-utilization technologies, Clean. Energy 2019, 3, 85–100. [Google Scholar]
- Duyar, D.S.; Trevino, M.A.A.; Farrauto, R.J. Dual function materials for CO2 capture and conversion using renewable H2. Appl. Catal. B Environ. 2015, 168, 370–376. [Google Scholar] [CrossRef]
- Zongze, L.V.; Changlei, Q.; Shuzhen, C.; Dawid, P.; Hanak, C.W. Efficient-and-stable CH4 reforming with integrated CO2 capture and utilization using Li4SiO4 sorbent. Sep. Purif. Technol. 2021, 277, 119476. [Google Scholar]
- Wang, G.; Guo, Y.; Yu, J.; Liu, F.; Sun, J.; Wang, X.; Wang, T.; Zhao, C. Ni-CaO dual function materials prepared by different synthetic modes for integrated CO2 capture and conversion. Chem. Eng. J. 2022, 428, 132110. [Google Scholar] [CrossRef]
- Oliveira, M.; Santos, V.G.; Carvalho, L.S.; Ruiz, D.; Barbosa, I.A.S.; das Virgens, C.F.; Martins, A.R. Adsorventes obtidos de resíduos de licor negro: Síntese, caracterização e avaliação na remoção de corantes têxteis. Sci. Plena 2020, 16, 1–11. [Google Scholar] [CrossRef]
- Miricioiu, M.G.; Zaharioiu, A.; Oancea, S.; Bucura, F.; Raboaca, M.S.; Filote, C.; Ionete, R.E.; Niculescu, V.C.; Constantinescu, M. Sewage Sludge Derived Materials for CO2 Adsorption. Appl. Sci. 2021, 11, 7139. [Google Scholar] [CrossRef]
- Zaharioiu, A.M.; Şandru, C.; Ionete, E.I.; Marin, F.; Ionete, R.E.; Soare, A.; Constantinescu, M.; Bucura, F.; Niculescu, V.-C. Eco-Friendly Alternative Disposal through the Pyrolysis Process of Meat and Bone Meal. J. Mater. 2022, 15, 6593. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shen, F.; Smith, R.L.; Qi, X. Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions. Bioresour. Technol. 2019, 294, 122198. [Google Scholar] [CrossRef]
- Sari, A.A.; Amriani, F.; Muryanto, M.; Triwulandari, E.; Sudiyani, Y.; Barlianti, V. Mechanism, adsorption kinetics and applications of carbonaceous adsorbents derived from black liquor sludge. J. Taiwan Inst. Chem. Eng. 2017, 77, 236–243. [Google Scholar] [CrossRef]
- Kelm, M.A.P.; da Silva Júnior, M.J.; de Barros Holanda, S.H.; de Araujo, C.M.B.; de Assis Filho, R.B.; Freitas, E.J. Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes. Environ. Sci. Pollut. Res. 2019, 26, 28558–28573. [Google Scholar] [CrossRef]
- Cardoso, M.; Gonçalves, C.R.S.; Oliveira, É.D.; Passos, M.L.A. Caracterização do Licor Negro de Eucalipto Proveniente da Indústria de Papel; Congreso Iberoamericano de Investigación en Celulose y Papel: Iguazú, Argentina, 2000. [Google Scholar]
- Antonakou, E.; Lappas, A.; Merete, H.N.; Aud, B.; Stöcker, M. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 2006, 85, 2202–2212. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Wu, S.; Liang, J.; Lei, M. Enhancing the quality of bio-oil from catalytic pyrolysis of kraft black liquor lignin. RSC Adv. 2016, 6, 107970–107976. [Google Scholar] [CrossRef]
- Jeon, M.-J.; Jeon, J.-K.; Suh, D.J.; Park, S.H.; Sa, Y.J.; Joo, S.H.; Park, Y.-K. Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catal. Today 2013, 204, 170–178. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Marin, F.; Bucura, F.; Niculescu, V.-C.; Roman, A.; Botoran, O.R.; Constantinescu, M.; Spiridon, S.I.; Ionete, E.I.; Oancea, S.; Zaharioiu, A.M. Mesoporous Silica Nanocatalyst-Based Pyrolysis of a By-Product of Paper Manufacturing, Black Liquor. Sustainability 2024, 16, 3429. [Google Scholar] [CrossRef]
- Kiani, P.; Meshksar, M.; Rahimpour, M.R. Biogas reforming over La-promoted Ni/SBA-16 catalyst for syngas production: Catalytic structure and process activity investigation. Int. J. Hydrog. Energy 2023, 48, 6262–6274. [Google Scholar] [CrossRef]
- Sun, C.; Summa, P.; Wang, Y.; Świrk Da Costa, K.; Miró i Rovira, A.; Casale, S.; Świerczek, K.; Hu, C.; Rønning, M.; Da Costa, P. Boosting CO2 reforming of methane via the metal-support interaction in mesostructured SBA-16-derived Ni nanoparticles. Appl. Mater. Today 2022, 26, 101354. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, C.; Zhuo, J.; Yao, Q. Investigation of a Ni-Modified MCM-41 Catalyst for the Reduction of Oxygenates and Carbon Deposits during the Co-Pyrolysis of Cellulose and Polypropylene. ACS Omega 2020, 5, 20299–20310. [Google Scholar] [CrossRef]
- Karnjanakom, S.; Guan, G.; Asep, B.; Hao, X.; Kongparakul, S.; Samart, C.; Abudula, A. Catalytic Upgrading of Bio-Oil over Cu/MCM-41 and Cu/KIT-6 Prepared by β-Cyclodextrin-Assisted Coimpregnation Method. J. Phys. Chem. C 2016, 120, 3396–3407. [Google Scholar] [CrossRef]
- Al-Kaabi, Z.; Pradhan, R.; Thevathasan, N.; Gordon, A.; Chiang, Y.W.; Dutta, A. Bio-carbon production by oxidation and hydrothermal carbonization of paper recycling black liquor. J. Clean. Prod. 2019, 213, 332–341. [Google Scholar] [CrossRef]
- Boucard, H.; Weiss-Hortala, E.; Gueye, F.; Espitalier, F.; Barna, R. Insights in mechanisms of carbonaceous microparticles formation from black liquor hydrothermal conversion. J. Supercrit. Fluids 2020, 161, 104817. [Google Scholar] [CrossRef]
- Zhang, J.P.; Sun, Y.; Woo, M.W.; Zhang, L.; Xu, K.Z. Preparation of steam activated carbon from black liquor by flue gas precipitation and its performance in hydrogen sulfide removal: Experimental and simulation works. J. Taiwan Inst. Chem. Eng. 2016, 59, 395–404. [Google Scholar] [CrossRef]
- Sethupathi, S.; Zhang, M.; Upamali Rajapaksha, A.; Lee, S.R.; Nor, N.M.; Mohamed, A.R.; Al-Wabel, M.; Lee, S.S.; Ok, Y.S. Biochars as Potential Adsorbers of CH4, CO2 and H2S. Sustenability 2017, 9, 121. [Google Scholar] [CrossRef]
- Morya, R.; Kumar, M.; Tyagi, I.; Pandey, A.K.; Park, J.; Raj, T.; Sirohi, R.; Kumar, V.; Kim, S.-H. Recent advances in black liquor valorization. Bioresour. Technol. 2022, 350, 126916. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Zhang, X.; Yang, H.; Chen, Y.; Zhang, S.; Chen, H. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar. Sci. Total Environ. 2020, 716, 137016. [Google Scholar] [CrossRef]
- Suman, S.; Panwar, D.S.; Gautam, S. Surface morphology properties of biochars obtained from different biomass waste. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1007–1012. [Google Scholar] [CrossRef]
- Huang, H.; Reddy, N.G.; Huang, X.; Chen, P.; Wang, P.; Zhang, Y.; Huang, Y.; Lin, P.; Garg, A. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci. Rep. 2021, 11, 7419. [Google Scholar] [CrossRef]
- Li, S.Y.; Teng, H.-J.; Guo, J.-Z.; Wang, Y.-X.; Li, B. Enhanced removal of Cr(VI) by nitrogen-doped hydrochar prepared from bamboo and ammonium chloride. Bioresour. Technol. 2021, 342, 126028. [Google Scholar] [CrossRef]
- Rwiza, M.J.; Kleinke, M.; Kim, K.W. A study on Pb removal kinetics using modified agricultural wastes from Tanzania. SN Appl. Sci. 2020, 2, 1921. [Google Scholar] [CrossRef]
- Petrovic, B.; Gorbounov, M.; Soltani, S.M. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous Mesoporous Mater. 2021, 312, 110751. [Google Scholar] [CrossRef]
- Guo, S.; Li, Y.; Wang, Y.; Wang, L.; Sun, Y.; Liu, L. Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Sci. Technol. 2022, 4, 100059. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Panneerselvam, B.; Kumar, L.; Huligowda, D.; Umesh, M.; Gupta, M.; Muzammil, K.; Zahrani, Y.; Malmutheibi, M. Lignocellulosic biomass for biochar production: A green initiative on biowaste conversion for pharmaceutical and other emerging pollutant removal. Chemosphere 2024, 360, 142312. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, R.; Kaur, H. A systematic review of lignocellulosic biomass for remediation of environmental pollutants. Appl. Surf. Sci. Adv. 2024, 19, 100547. [Google Scholar] [CrossRef]
- Mukherjee, A.; Borugadda, V.B.; Dynes, J.J.; Niu, C.; Dalai, A.K. Carbon dioxide capture from flue gas in biochar produced from spent coffee grounds: Effect of surface chemistry and porous structure. J. Environ. Chem. Eng. 2021, 9, 106049. [Google Scholar] [CrossRef]
- Zhou, S.; Osman, N.B.; Li, H.; McDonald, A.G.; Mourant, D.; Li, C.-Z.; Garcia-Perez, M. Effect of sulfuric acid addition on the yield and composition of lignin derived oligomers obtained by the auger and fast pyrolysis of Douglas-fir wood. Fuel 2013, 103, 512–523. [Google Scholar] [CrossRef]
- Hu, J.; Xiao, R.; Shen, D.; Zhang, H. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Bioresour. Technol. 2013, 128, 633–639. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, H.; Wu, H.; Wang, M.; Cheng, D. Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior. Fuel Process. Technol. 2013, 106, 385–391. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Lou, R.; Wu, S.B. Products properties fromfast pyrolysis of enzymatic/mild acidolysis lignin. Appl. Energy 2011, 88, 316–322. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, G.; Yue, J.; Xu, G. Pyrolysis of black liquor for phenols and impact of its inherent alkali. Fuel Process. Technol. 2014, 127, 149–156. [Google Scholar] [CrossRef]
- Siipola, V.; Tamminen, T.; Källi, A.; Lahti, R.; Romar, H.; Rasa, K.; Keskinen, R.; Hyväluoma, J.; Hannula, M.; Wikberg, H. Effects of biomass type, carbonization process, and activation method on the properties of bio-based activated carbons. Bioresources 2018, 13, 5976–6002. [Google Scholar] [CrossRef]
- Shimekit, B.; Mukhtar, H. Natural Gas Purification Technologies—Major Advances for CO2 Separation and Future Directions. In Advances in Natural Gas Technology; Al-Megren, H.A., Ed.; INTECH: Vienna, Austria, 2012. [Google Scholar] [CrossRef]
- Akpasi, S.O.; Isa, Y.M. Effect of operating variables on CO2 adsorption capacity of activated carbon, kaolinite, and activated carbon–kaolinite composite adsorbent. Water-Energy Nexus 2022, 5, 21–28. [Google Scholar] [CrossRef]
- Ahmad, A.; Hameed, B. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater. 2010, 175, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, Y.; Bud, J.; Byambajav, E.; Tsubouchi, N. Pore properties and CO2 adsorption performance of activated carbon prepared from various carbonaceous materials. Carbon Resour. Convers. 2024, 100237. [Google Scholar] [CrossRef]
Treatment | Adsorbent Material |
---|---|
HCl | 2a—BLPYCHARCu-Zn-MCM-41_HCl 2b—BLPYCHAR_Ni-SBA-16_HCl |
HCL and KOH | 3a—BLPYCHARCu-Zn-MCM-41_HCl+KOH (1:1) 3b—BLPYCHAR_Ni-SBA-16_HCl+KOH (1:1) |
HCl, KOH, calcination | 4a—BLPYCHAR_Ni-SBA-16_HCl+KOHc |
Adsorbent Materials | H % | N % | S % | C % |
---|---|---|---|---|
BLPYCHAR | 6.51 | 0.34 | 1.78 | 18.11 |
1a | 0.93 | 0.22 | 2.10 | 34.96 |
1b | 0.94 | 0.27 | 2.61 | 35.51 |
2a | 2.12 | 0.47 | 6.50 | 73.45 |
2b | 2.13 | 0.49 | 6.21 | 77.04 |
3a | 1.87 | 0.29 | 1.04 | 36.62 |
3b | 1.93 | 0.27 | 0.70 | 36.25 |
4a | 1.17 | 0.30 | 0.96 | 37.06 |
Adsorbent Materials | Pb mg/kg | Cu mg/kg | Fe mg/kg | Ni mg/kg | Mn mg/kg | Zn mg/kg | Ca mg/kg | Mg mg/kg |
---|---|---|---|---|---|---|---|---|
1a | <6.00 | 1139.21 | 2145.26 | 16.55 | 36.21 | 374.89 | 424.57 | 383.39 |
1b | <6.01 | 67.26 | 2089.27 | 49.56 | 32.13 | 81.52 | 159.73 | 258.83 |
2a | <6.02 | 929.40 | 138.98 | <3.00 | <4.00 | 27.96 | 66.57 | 27.38 |
2b | <6.03 | 69.46 | 75.37 | 15.91 | <4.01 | 7.22 | 55.73 | 8.57 |
3a | <6.04 | 741.33 | 788.78 | <3.00 | <4.02 | 51.39 | 68.66 | 51.32 |
3b | <6.05 | 41.67 | 647.03 | 16.29 | <4.03 | 18.08 | 68.99 | 50.24 |
4a | <6.06 | 1101.89 | 985.00 | <3.00 | 4.09 | 82.72 | 62.86 | 67.19 |
Adsorbent Materials | SBET m2/g | V cm3/g | DV(r) Å |
---|---|---|---|
1a | 75.37 | 0.04 | 19.68 |
2a | 54.47 | 0.28 | 20.86 |
3a | 6.36 | 0.09 | 303.78 |
4a | 41.34 | 0.03 | 19.66 |
1b | 54.29 | 0.01 | 19.65 |
2b | 224.06 | 0.28 | 77.41 |
3b | 4.33 | 0.01 | 76.98 |
Wavenumber (cm−1) | Assignment |
---|---|
935 | C-H out of plan |
1036–1118 | C-O deformation from primary alcohols |
1185 | C-O vibration plus C=O and C-C from guaianyl and syringyl cores |
1408 | in-plane deformation of OH |
1554 | C-H vibration |
1643 | The vibration of the aromatic nucleus plus the C=O stretch |
2329 | C-H stretching from methyl and methylene groups |
3340 | O-H stretching from phenols, alcohols, and water |
Gas Mixture | Injection | CO2 Evolution vol% | Adsorption Capacity cm3/g | Separation Efficiency % | Recovery % | ||||
---|---|---|---|---|---|---|---|---|---|
3b | 2b | 3b | 2b | 3b | 2b | 3b | 2b | ||
81 vol% CO2 balance N2 | 1 | 69.22 | 69.32 | 17.59 | 18.57 | 94.52 | 99.78 | 40.45 | 62.98 |
2 | 69.01 | 58.13 | |||||||
3 | 67.33 | 49.77 | |||||||
4 | 62.47 | 40.12 | |||||||
5 | 60.66 | 31.03 | |||||||
6 | 59.05 | 22.75 | |||||||
7 | 42.44 | 15.47 | |||||||
8 | 29.91 | 9.33 | |||||||
9 | 17.81 | 3.78 | |||||||
10 | 4.44 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaharioiu, A.M.; Niculescu, V.-C.; Sandru, C.; Spiridon, S.I.; Soare, A.; Oancea, S.; Marin, F. The Valorisation of Biochar Produced from Black Liquor Pyrolysis for the Development of CO2 Adsorbents. Molecules 2024, 29, 5613. https://doi.org/10.3390/molecules29235613
Zaharioiu AM, Niculescu V-C, Sandru C, Spiridon SI, Soare A, Oancea S, Marin F. The Valorisation of Biochar Produced from Black Liquor Pyrolysis for the Development of CO2 Adsorbents. Molecules. 2024; 29(23):5613. https://doi.org/10.3390/molecules29235613
Chicago/Turabian StyleZaharioiu, Anca Maria, Violeta-Carolina Niculescu, Claudia Sandru, Stefan Ionut Spiridon, Amalia Soare, Simona Oancea, and Florian Marin. 2024. "The Valorisation of Biochar Produced from Black Liquor Pyrolysis for the Development of CO2 Adsorbents" Molecules 29, no. 23: 5613. https://doi.org/10.3390/molecules29235613
APA StyleZaharioiu, A. M., Niculescu, V.-C., Sandru, C., Spiridon, S. I., Soare, A., Oancea, S., & Marin, F. (2024). The Valorisation of Biochar Produced from Black Liquor Pyrolysis for the Development of CO2 Adsorbents. Molecules, 29(23), 5613. https://doi.org/10.3390/molecules29235613