Bimetallic Uranium Complexes with 2,6-Dipicolinoylbis(N,N-Dialkylthioureas)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Isomerism of Dimeric Uranyl Complexes with H2LR Ligands
2.2. Mixed-Metal Complexes with Gold and Lead
2.3. Mixed-Metal Complexes with Various 3D Metal Ions
3. Materials and Methods
3.1. Radiation Precaution
3.2. Physical Measurements
3.3. Syntheses
3.4. X-Ray Crystallography
3.5. Computational Chemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burns, C.J.; Eisen, M.S. The Chemistry of the Actinide and Transactinide Elements; Morss, L.R., Edelstein, N.M., Fuge, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 5. [Google Scholar]
- Organometallic and Coordination Chemistry of the Actinides; Albrecht-Schmitt, T.E. (Ed.) Springer: Berlin/Heidelberg, Germany, 2008; Volume 127. [Google Scholar]
- Hayton, T.W. Recent developments in actinide–ligand multiple bonding. Chem. Commun. 2013, 49, 2956–2973. [Google Scholar] [CrossRef] [PubMed]
- Ephritikhine, M. Recent Advances in Organoactinide Chemistry as Exemplified by Cyclopentadienyl Compounds. Organometallics 2013, 32, 2464–2488. [Google Scholar] [CrossRef]
- Liddle, S.T. The Renaissance of Non-Aqueous Uranium Chemistry. Angew. Chem. Int. Ed. 2015, 54, 8604–8646. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.R.; Bart, S.C.; Meyer, K.; Cummins, C.C. Towards uranium catalysts. Nature 2008, 455, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Moro, F.; Mills, D.P.; Liddle, S.T.; van Slageren, J. The Inherent Single-Molecule Magnet Character of Trivalent Uranium. Angew. Chem. Int. Ed. 2013, 52, 3430–3433. [Google Scholar] [CrossRef]
- Liddle, S.T.; van Slageren, J. Improving f-element single molecule magnets. Chem. Soc. Rev. 2015, 44, 6655–6669. [Google Scholar] [CrossRef]
- Gardner, B.M.; Liddle, S.T. Small-Molecule Activation at Uranium(III). Eur. J. Inorg. Chem. 2013, 2013, 3753–3770. [Google Scholar] [CrossRef]
- Hohloch, S.; Garner, M.E.; Parker, B.F.; Arnold, J. New supporting ligands in actinide chemistry: Tetramethyltetraazaannulene complexes with thorium and uranium. Dalton Trans. 2017, 46, 13768–13782. [Google Scholar] [CrossRef]
- Andrews, M.B.; Cahill, C.L. Uranyl bearing hybrid materials: Synthesis, speciation and solid state structures. Chem. Rev. 2013, 113, 1121–1136. [Google Scholar] [CrossRef]
- Frisch, M.; Cahill, C.L. Synthesis, structure and fluorescent studies of novel uranium coordination polymers in the pyridine dicarboxylic acid system. Dalton Trans. 2006, 2006, 4679–4690. [Google Scholar] [CrossRef]
- Carter, K.P.; Kalaj, M.; Cahill, C.L. Harnessing uranyl oxo atoms via halogen bonding interactions in molecular uranyl materials featuring 2,5-diiodobenzoic acid and N-donor capping ligands. Inorg. Chem. Front. 2017, 4, 65–78. [Google Scholar] [CrossRef]
- Lussier, A.J.; Lopez, R.A.K.; Burns, P.C. A Revised and Expanded Structure Hierarchy of Natural and Synthetic Hexavalent Uranium Compounds. Can. Miner. 2016, 54, 177–283. [Google Scholar] [CrossRef]
- Zhang, Z.; Senchyk, G.; Liu, Y.; Spano, T.; Szymanowski, J.; Burns, P. Porous uranium diphosphonate frameworks with trinuclear units template by organic ammonium hydrolyzed from amine solvents. Inorg. Chem. 2017, 56, 13249–13256. [Google Scholar] [CrossRef]
- Qiu, J.; Spano, T.; Dembowski, M.; Kokot, A.; Szymanowski, J.; Burns, P.C. Sulfate-Centered Sodium-Icosahedron-Templated Uranyl Peroxide Phosphate Cages with Uranyl Bridged by μ-η1:η2 Peroxide. Inorg. Chem. 2016, 56, 1874–1880. [Google Scholar] [CrossRef]
- Serezhkina, L.B.; Grigor’ev, M.S.; Shimin, N.A.; Klepov, V.V.; Sereszhkin, V.N. First uranyl methacrylate complexes: Synthesis and structure. Russ. J. Inorg. Chem. 2015, 60, 672–683. [Google Scholar] [CrossRef]
- Serezhkina, L.B.; Vologzhanina, A.V.; Klepov, V.V.; Serezhkin, V.N. Crystal Structure of R[UO2(CH3COO)3] (R = NH4+, K+, or Cs+). Crystallogr. Rep. 2010, 55, 773–779. [Google Scholar] [CrossRef]
- Carter, K.P.; Kalaj, M.; Kerridge, A.; Ridenour, J.A.; Cahill, C. How to Bend the Uranyl Cation via Crystal Engineering. Inorg. Chem. 2018, 57, 2714–2723. [Google Scholar] [CrossRef]
- Ridenour, J.A.; Cahill, C.L. Synthesis, structural analysis, and supramolecular assembly of a series of in situ generated uranyl-peroxide complexes with functionalized 2,2’-bipyridine and varied carboxylic acid ligands. New J. Chem. 2018, 42, 1816–1831. [Google Scholar] [CrossRef]
- Parker, B.F.; Zhang, Z.; Rao, L.; Arnold, J. An overview and recent progress in the chemistry of uranium extraction from Seawater. Dalton Trans. 2018, 47, 639–644. [Google Scholar] [CrossRef]
- Meyer, K.; Hartline, D.R. From Chemical Curiosities and Trophy Molecules to Uranium-Based Catalysis: Development for Uranium Catalysis as a New Facet in Molecular Uranium Chemistry. JACS Au 2021, 6, 698–709. [Google Scholar]
- King, D.M.; Liddle, S.T. Progress in molecular uranium-nitride chemistry. Coord. Chem. Rev. 2014, 266–267, 2–15. [Google Scholar] [CrossRef]
- Teixeira Costa Peluzo, B.M.; Kraka, E. Uranium: The nuclear Fuel Cycle and Beyond. Int. J. Mol. Sci. 2022, 23, 4655. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.A. The Chemistry and Toxicology of Depleted Uranium. Toxics 2014, 2, 50–78. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Cambridge Crystallographic Database, Version 5.44. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 5 August 2024).
- Ephritikhine, M. Molecular Actinide Compounds with soft chalcogene ligands. Coord. Chem. Rev. 2016, 319, 35–62. [Google Scholar] [CrossRef]
- Nief, F. Complexes containing bonds between group 3, lanthanide or actinide metals and non-first-row main group elements (excluding halogens). Coord. Chem. Rev. 1998, 178–180, 13–81. [Google Scholar] [CrossRef]
- Casellato, U.; Vidali, M.; Vigato, P.A. Actinide complexes with chelating ligands containing sulfur and amidic nitrogen donor atoms. Coord. Chem. Rev. 1979, 28, 231–277. [Google Scholar] [CrossRef]
- Abram, U.; Schulz Lang, E.; Bonfada, E. Thiosemicarbazonato Complexes of Uranium. Z. Anorg. Allg. Chem. 2002, 628, 1873–1878. [Google Scholar] [CrossRef]
- Garcia Santos, I.; Abram, U. Synthesis and structures of dioxouranium complexes with 2-pyridineformamide thiosemicarbazones. Inorg. Chem. Commun. 2004, 7, 440–442. [Google Scholar] [CrossRef]
- Gaunt, A.J.; Scott, B.L.; Neu, M.P. Homoleptic uranium(III) imidodiphosphinochalcogenides including the first structurally characterised molecular trivalent actinide–Se bond. Chem. Commun. 2005, 25, 3215–3217. [Google Scholar] [CrossRef]
- Gaunt, A.J.; Reilly, S.D.; Enriquez, A.E.; Scott, B.L.; Ibers, J.A.; Sekar, P.; Ingram, K.I.M.; Kaltsoyannis, N.; Neu, M.P. Experimental and Theoretical Comparison of Actinide and Lanthanide Bonding in M[N(EPR2)2]3 Complexes (M = U, Pu, La, Ce; E = S, Se, Te; R = Ph, iPr, H). Inorg. Chem. 2008, 47, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, A.J.; Scott, B.L.; Neu, M.P. A Molecular Actinide–Tellurium Bond and Comparison of Bonding in [MIII{N(TePiPr2)2}3] (M = U, La). Angew. Chem. Int. Ed. 2006, 45, 1638–1641. [Google Scholar] [CrossRef] [PubMed]
- Ingram, K.I.M.; Kaltsoyannis, N.; Gaunt, A.J.; Neu, M.P. Covalency in the f-element–chalcogen bond: Computational studies of [M(N(EPH2)2)3] (M = La, U, Pu; E = O, S, Se, Te). J. Alloys Compd. 2007, 444–445, 369–375. [Google Scholar] [CrossRef]
- Cantat, T.; Arliguie, T.; Noël, A.; Thuéry, P.; Ephritikhine, M.; Le Floch, P.; Mézailles, N. The U=C Double Bond: Synthesis and Study of Uranium Nucleophilic Carbene Complexes. J. Am. Chem. Soc. 2009, 131, 963–972. [Google Scholar] [CrossRef]
- Tourneux, J.C.; Berthet, J.C.; Thuéry, P.; Mézailles, N.; Le Floch, P.; Ephritikhine, M. Easy access to uranium nucleophilic carbene complexes. Dalton Trans. 2010, 39, 2494–2496. [Google Scholar] [CrossRef]
- Tourneux, J.-C.; Berthet, J.-C.; Cantat, T.; Thuéry, P.; Mézailles, N.; Le Floch, P.; Ephritikhine, M. Uranium(IV) Nucleophilic Carbene Complexes. Organometallics 2011, 30, 2957–2971. [Google Scholar] [CrossRef]
- Tourneux, J.-C.; Berthet, J.-C.; Cantat, T.; Thuéry, P.; Mézailles, N.; Ephritikhine, M. Exploring the Uranyl Organometallic Chemistry: From Single to Double Uranium–Carbon Bonds. J. Am. Chem. Soc. 2011, 133, 6162–6165. [Google Scholar] [CrossRef]
- Noufele, C.N.; Hagenbach, A.; Abram, U. Uranyl Complexes with Aroylbis(N,N-dialkylthioureas). Inorg. Chem. 2018, 57, 12255–12269. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Jegathesh, J.J.; Takiden, A.; Hauenstein, D.; Pham, C.T.; Le, C.D.; Abram, U. 2,6-Dipicolinoylbis(N,N-dialkylthioureas) as versatile building blocks for oligo- and polynuclear architectures. Dalton Trans. 2016, 45, 10771–10779. [Google Scholar] [CrossRef]
- Pham, C.T.; Nguyen, H.H.; Hagenbach, A.; Abram, U. Iron(III) Metallacryptand and Metallacryptate Assemblies Derived from Aroylbis(N,N-diethylthioureas). Inorg. Chem. 2017, 56, 11406–11416. [Google Scholar] [CrossRef]
- Pham, C.T.; Roca Jungfer, M.; Abram, U. Indium(III) {2}-Metallacryptates Assembled from 2,6-Dipicolinoyl-bis(N,N-diethylthiourea. New J. Chem. 2020, 44, 3672–3680. [Google Scholar] [CrossRef]
- Jesudas, J.J.; Pham, C.T.; Hagenbach, A.; Abram, U.; Nguyen, H.H. Trinuclear ‘CoIILnIIICoII’ Complexes (Ln = La, Ce, Nd, Sm, Gd, Dy, Er and Yb) with 2,6-Dipicolinoyl-bis(N,N-diethylthiourea)—Synthesis, Structures and Magnetism. Inorg. Chem. 2020, 58, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Sucena, S.F.; Demirer, T.I.; Baitullina, A.; Hagenbach, A.; Grewe, J.; Spreckelmeyer, S.; März, J.; Barkleit, A.; daSilva Maia, P.I.; Nguyen, H.H.; et al. Gold-based Coronands as Hosts for M3+ Metal Ions: Ring Size Matters. Molecules 2023, 28, 5421. [Google Scholar] [CrossRef] [PubMed]
- Santos dos Santos, S.; Schwade, V.D.; Schulz Lang, E.; Pham, C.T.; Roca Jungfer, M.; Abram, U.; Nguyen, H.H. Organotellurium(II) and -(IV) Compounds with Picolinoylbis(thioureas): From Simple 1:1 Adducts to Multimetallic Aggregates. Eur. J. Inorg. Chem. 2024, 27, e202400344. [Google Scholar] [CrossRef]
- Bensch, W.; Schuster, M. Komplexierung von Gold mit N,N-Dialkyl-N′-benzoylthioharnstoffen: Die Kristallstruktur von N,N-Diethyl-N′-benzoylthioureatogold(I)-chlorid. Z. Anorg. Allg. Chem. 1992, 611, 99–102. [Google Scholar] [CrossRef]
- Khan, U.A.; Badshah, A.; Tahir, M.N.; Khan, E. Gold(I), silver(I) and copper(I) complexes of 2,4,6-trimethylphenyl-3-benzoylthiourea; synthesis and biological applications. Polyhedron 2020, 181, 114484. [Google Scholar] [CrossRef]
- Kuchar, J.; Rust, J.; Lehmann, C.W.; Mohr, F. Acylseleno- and acylthioureato complexes of gold(i) N-heterocyclic carbenes. New J. Chem. 2019, 43, 10750–10754. [Google Scholar] [CrossRef]
- Schwade, V.D.; Kirsten, L.; Hagenbach, A.; Schulz Lang, E.; Abram, U. Indium(III), lead(II), gold(I) and copper(II) complexes with isophthaloylbis(thiourea) ligands. Polyhedron 2013, 55, 155–161. [Google Scholar] [CrossRef]
- Ketchemen, K.I.J.; Mlowe, S.; Nyamen, L.D.; Aboud, A.A.; Akerman, M.P.; Ndifon, P.T.; O’Brien, P.; Revaprasadu, N. Heterocyclic lead(II) thioureato complexes as single-source precursors for the aerosol assisted chemical vapour deposition of PbS thin films. Inorg. Chim. Acta 2018, 479, 43–48. [Google Scholar] [CrossRef]
- Ezenwa, T.E.; McNaughter, P.D.; Raftery, J.; Lewis, D.J.; O’Brien, P. Full compositional control of PbSxSe1−x thin films by the use of acylchalcogourato lead(ii) complexes as precursors for AACVD. Dalton Trans. 2018, 47, 16938–16943. [Google Scholar] [CrossRef]
- Sucena, S.F.; Pham, T.T.; Hagenbach, A.; Pham, C.T.; Abram, U. Structural Diversity of Alkaline Earth Centered Gold(I) Metallacoronates. Eur. J. Inorg. Chem. 2020, 2020, 4341–4349. [Google Scholar] [CrossRef]
- Pham, C.T.; Pham, T.T.; Abram, U.; Nguyen, H.H. Gold(I) {2}-Metallacoronates derived from a Catechol-scaffolding Aroylbis(N,N-diethylthiourea): Syntheses and Structures. Z. Anorg. Allg. Chem. 2024, 650, e20240012. [Google Scholar] [CrossRef]
- Sucena, S.F. Gold Complexes and Cages with Aroylthioureas. Doctoral Thesis, Freie Universität, Berlin, Germany, 2018. Available online: https://refubium.fu-berlin.de/handle/fub188/12274 (accessed on 5 August 2024).
- Baitullina, A.; Claude, G.; Sucena, S.F.; Nisli, E.; Scholz, C.; Bhardwaj, P.; Amthauer, H.; Brenner, W.; Geppert, C.; Gorges, C.; et al. Metallacages with 2,6-dipicolinoylbis(N,N-dialkylthioureas) as novel platforms in nuclear medicine for 68Ga, 177Lu and 198Au. EJNMMI Radiopharm. Chem. 2023, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.E.; Green, J.C.; Mingos, D.P.; McPartlin, C.; Whittingham, C.; Williams, D.J.; Woodroffe, T.M. Complexes of gold(I) and platinum(II) with polyaromatic phosphine ligands. J. Organomet. Chem. 1998, 551, 313–330. [Google Scholar] [CrossRef]
- Brooner, R.E.M.; Brown, T.J.; Widenhoefer, R.A. Synthesis and Study of Cationic, Two-Coordinate Triphenylphosphine–Gold–π Complexes. Chem. Eur. J. 2013, 19, 8276–8284. [Google Scholar] [CrossRef]
- Delgado, E.; Hernández, E.; Maestro, M.A.; Nievas, A.; Villa, M. Gold–ruthenium compounds containing bridging phosphide or thiolate groups: Crystal structures of the intermediate species [Ru3(CO)8L(μ3-η2,η4,η3-{Me3SiCC(C2Fc)SC(Fc)CSC≡CSiMe3})] (L = NMe3 or PPh2H). J Organomet. Chem. 2006, 691, 3596–3601. [Google Scholar] [CrossRef]
- Scherbaum, F.; Grohmann, A.; Huber, B.; Krüger, C.; Schmidbaur, H. “Aurophilicity” as a Consequence of Relativistic Effects: The Hexakis(triphenylphosphaneaurio)methane Dication [(Ph3PAu)6C]2+. Angew. Chem. Int. Ed. Engl. 1988, 27, 1544–1546. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Graf, W.; Müller, G. Weak Intramolecular Bonding Relationships: The Conformation-Determining Attractive Interaction between Gold(I) Centers. Angew. Chem. Int. Ed. Engl. 1988, 27, 417–419. [Google Scholar] [CrossRef]
- Rapson, W.S. Exciting developments in the chemistry of gold. Gold Bull. 1989, 22, 19–20. [Google Scholar] [CrossRef]
- Schmidbaur, H. The fascinating implications of new results in gold chemistry. Gold Bull. 1990, 23, 11–13. [Google Scholar] [CrossRef]
- Schmidbaur, H. The aurophilicity phenomenon: A decade of experimental findings, theoretical concepts and emerging applications. Gold Bull. 2000, 33, 3–10. [Google Scholar] [CrossRef]
- Gold, Progress in Chemistry, Biochemistry and Technology; Schmidbaur, H. (Ed.) Wiley: Chichester, UK, 1999; ISBN 0-471-97369-6. [Google Scholar]
- Gold Chemistry, Applications and Future Directions in the Life Sciences; Mohr, F. (Ed.) Wiley-VCH: Weinheim, Germany, 2009; ISBN 978-3-527-62673-1. [Google Scholar]
- Schmidbaur, H.; Schier, A. Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012, 41, 370–412. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Gil, D.; Herrera, R.P.; Gimeno, C. Catalysis-free synthesis of thiazolidine–thiourea ligands for metal coordination (Au and Ag) and preliminary cytotoxic studies. Dalton Trans. 2023, 52, 7797–7808. [Google Scholar] [CrossRef] [PubMed]
- Reger, D.L.; Huff, M.F.; Rheingold, A.L.; Haggerty, B.S. Control of structure in lead(II) complexes using poly(pyrazolyl)borate ligands. Stereochemically inactive lone pair in octahedral [HB(3,5-Me2pz)3]2Pb (pz = pyrazolyl ring). J. Am. Chem. Soc. 1992, 114, 579–584. [Google Scholar]
- Reger, D.L.; Wright, T.D.; Little, C.A.; Lamba, J.J.S.; Smith, M.D. Control of the Stereochemical Impact of the Lone Pair in Lead(II) Tris(pyrazolyl)methane Complexes. Improved Preparation of Na{B[3,5-(CF3)2C6H3]4}. Inorg. Chem. 2001, 40, 3810–3814. [Google Scholar] [CrossRef]
- Casas, J.S.; Sordo, J.; Vidarte, M.J. Lead coordination chemistry in the solid state. In Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects; Casas, J.S., Sordo, J., Eds.; Elsevier, B.V.: Amsterdam, The Netherlands, 2006; pp. 41–99. [Google Scholar]
- Shimoni-Livny, L.; Glusker, J.P.; Bock, C.W. Lone Pair Functionality in Divalent Lead Compounds. Inorg. Chem. 1998, 37, 1853–1867. [Google Scholar] [CrossRef]
- Pham, C.T.; Nguyen, T.H.; Trieu, T.N.; Matsumoto, K.; Nguyen, H.H. Syntheses, Structures, and Magnetism of Trinuclear Zn2Ln Complexes with 2,6-Dipicolinoylbis(N,N-diethylthiourea). Z. Anorg. Allg. Chem. 2019, 645, 1072–1078. [Google Scholar] [CrossRef]
- Pham, C.T.; Nguen, T.H.; Matsumoto, K.; Nguyen, H.H. CuI/CuII Complexes with Dipicolinoylbis(N,N-diethylthiourea): Structures, Magnetism, and Guest Ion Exchange. Eur. J. Inorg. Chem. 2019, 2019, 4142–4146. [Google Scholar] [CrossRef]
- Le, C.D.; Pham, C.T.; Nuyen, H.H. Zinc(II) {2}-Metallacoronates and {2}-Metallacryptates based on Dipicolinoylbis(N,N-diethylthiourea): Structures and Biological Activities. Polyhedron 2019, 173, 114143. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Pham, C.T.; Pham, D.H.; Le, C.D.; Nguyen, T.H.; Nguyen, M.H.; Matsumoto, K. Syntheses, Structures and Magnetism of trinuclear bimetallic MnIILnIIIMnII Complexes (Ln = La, Nd, Sm, Gd, Dy and Er) with 2,6-Dipicolinoylbis(N,N-diethylthiourea). Eur. J. Inorg. Chem. 2024, e202400366. [Google Scholar]
- Noufele, C.N. Uranium and Thorium Complexes with Aroylbis(N,N-dialkylthioureas). Doctoral Thesis, Freie Universität, Berlin, Germany, 2018. Available online: https://refubium.fu-berlin.de/handle/fub188/12093 (accessed on 5 August 2024).
- Nguyen, H.H. Complexes of Rhenium and Technetium with Chelating Thiourea Ligands. Doctoral Thesis, Freie Universität, Berlin, Germany, 2009. Available online: https://refubium.fu-berlin.de/handle/fub188/11301 (accessed on 5 August 2024).
- Ackermann, J. Nitrosyl Complexes of Technetium. Doctoral Thesis, Freie Universität, Berlin, Germany, 2016. Available online: https://refubium.fu-berlin.de/handle/fub188/6030 (accessed on 5 August 2024).
- Nguyen, H.H.; Abram, U.; Pham, C.T. Ammonium-Iron(III) metallacryptate inclusion complexes based on Aroylbis(N,N-diethylthioureas): Synthesis and structure. Vietnam J. Chem. Int. Ed. 2022, 60, 622–628. [Google Scholar]
- Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 2005, 249, 1693–1708. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. Shape—Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. University of Barcelona. Available online: https://www.ee.ub.edu/downloads/ (accessed on 30 August 2024).
- Zabrodsky, H.; Peleg, S.; Avnir, D. Continuous Symmetry Measures. J. Am. Chem. Soc. 1992, 114, 7843–7851. [Google Scholar] [CrossRef]
- Pinsky, M.; Avnir, D. Continuous Symmetry Measures. 5. The Classical Polyhedra. Inorg. Chem. 1998, 37, 5575–5582. [Google Scholar] [CrossRef]
- Douglass, I.B.; Dains, F.B. Some Derivatives of Benzoyl and Furoyl Isothiocyanates and their Use in Synthesizing Heterocyclic Compounds. J. Am. Chem. Soc. 1934, 56, 719–721. [Google Scholar] [CrossRef]
- Sheldrick, G. SADABS, Version 2014/5; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Coppens, P. The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. In Crystallographic Computing; Muksgaard: Copenhagen, Denmark, 1979. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Bennett, L.; Melchers, B.; Proppe, B. High-Performance Computing at ZEDAT. Freie Universität, Berlin, Germany. 2020. Available online: https://refubium.fu-berlin.de/handle/fub188/26993 (accessed on 30 August 2024).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Hay, P.J. Ab initio studies of excited states of polyatomic molecules including spin-orbit and multiplet effects: The electronic states of UF6. J. Chem. Phys. 1983, 79, 5469–5482. [Google Scholar] [CrossRef]
- Spitznagel, G.W.; Clark, T.; von Ragué Schleyer, P.; Hehre, W.J. An evaluation of the performance of diffuse function-augmented basis sets for second row elements, Na-Cl. J. Comput. Chem. 1987, 8, 1109–1116. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; von Ragué Schleyer, P. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Pantazis, D.A.; Neese, F. All-Electron Scalar Relativistic Basis Sets for the Actinides. J. Chem. Theory Comput. 2011, 7, 677–684. [Google Scholar] [CrossRef]
- Shamov, G.A.; Schreckenbach, G.; Vo, T.N. A Comparative Relativistic DFT and AbInitio Study on the Structure and Thermodynamics of the Oxofluorides of Uranium(IV), (V) and (VI). Chem. Eur. J. 2007, 13, 4932–4947. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Feller, D. The role of databases in support of computational chemistry calculations. J. Comput. Chem. 1996, 17, 1571–1586. [Google Scholar] [CrossRef]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010, 133, 134105. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef]
U1–O10 | U1–O20 | U2–O30 | U2–O40 | U1–N46 | U2–N56 | U1–O5 | U1–O15 | U2–O25 | |
syn,syn (a) | 1.765(6) | 1.770(6) | 1.776(6) | 1.783(6) | 2.579(7) | 2.564(7) | 2.357(6) | 2.376(5) | 2.380(6) |
anti,anti (b) | 1.768(7) | 1.762(7) | - | - | 2.518(6) | - | 2.357(7) | 2.348(8) | - |
syn,anti (c) | 1.782(3) | 1.786(3) | 1.788(3) | 1.791(3) | 2.537(4) | 2.531(4) | 2.359(3) | 2.362(3) | 2.357(3) |
U2–O35 | U1–O61 | U1–O62 | U2–O61 | U2–O62 | C2–S1 | C12–S11 | C22–S21 | C32–S31 | |
syn,syn (a) | 2.372(6) | 2.348(6) | 2.365(5) | 2.336(6) | 2.344(5) | 1.686(7) | 1.697(7) | 1.674(7) | 1.686(7) |
anti,anti (b) | - | 2.357(7) | 2.377(8) | - | - | 1.67(1) | 1.68(1) | - | - |
syn,anti (c) | 2.365(3) | 2.332(3) | 2.350(3) | 2.351(3) | 2.341(3) | 1.687(5) | 1.690(5) | 1.686(5) | 1.695(5) |
C4–O5 | C14–O15 | C24–C25 | C34–O35 | U1…U2 | O5–U1–O15 | O25–U2–O35 | |||
syn,syn (a) | 1.305(5) | 1.305(5) | 1.302(6) | 1.307(5) | 3.772(5) | 126.7(3) | 126.8(3) | ||
anti,anti (b) | 1.289(9) | 1.280(12) | - | - | 3.7825(7) | 127.1(2) | - | ||
syn,anti (c) | 1.284(5) | 1.291(5) | 1.288(5) | 1.291(5) | 3.7343(3) | 126.1(1) | 127.1(1) |
U1–O10 | U1–O20 | U2–O30 | U2–O40 | U3–O50 | U3–O60 | U1–N60 | U1–O25 | U1–O3 | U2–O35 |
1.778(4) | 1.773(4) | 1.806(4) | 1.780(4) | 1.770(4) | 1.763(4) | 2.527(5) | 2.346(3) | 2.359(3) | 2.355(2) |
U2–N76 | U2-O3 | Pb1–S31 | Pb1–S11 | Pb1–S1 | Pb1-O13 | Pb1–O15 | Pb1–O5 | U3–O15 | U3–N46 |
2.541(4) | 2.292(3) | 2.795(1) | 2.720(1) | 2.883(1) | 2.686(3) | 2.735(3) | 2.710(3) | 2.470(2) | 2.654(4) |
U3–N76 | U3–O5 | U1…U2 | |||||||
2.647(4) | 2.468(2) | 3.7114(9) |
U1–O10 | U1–O20 | U2–O30 | U2–O40 | U1–O1 | U2–O1 | U1–O5 | U1–N26 | U1–O15 |
1.768(7) | 1.774(7) | 1.801(6) | 1.775(6) | 2.240(5) | 2.254(5) | 2.385(6) | 2.558(7) | 2.500(5) |
U1–O32 | U2–S11 | U2–O15 | U2–O33′ | U1…U2 | U1…U1′ | U2…U2′ | U1–O1–U2 | U1–O31-U2′ |
2.374(7) | 2.911(4) | 2.509(6) | 2.370(6) | 3.8721(5) | 7.089(8) | 3.6555(8) | 119.0(2) | 131.6(2) |
U1–S1 | U1–N3 | U1–N26 | U1–O15 | U1–O31 | U1–O32 | U2–S41 | U2–N33 | |
5a (Ni) | 2.864(4) | 2.47(1) | 2.56(1) | 2.49(1) | 2.52(1) | 2.45(1) | - | - |
5b (Co) | 2.855(1) | 2.578(4) | 2.565(4) | 2.493(3) | 2.525(3) | 2.449(3) | - | - |
5c (Fe) | 2.859(1) | 2.468(4) | 2.561(4) | 2.494(3) | 2.535(4) | 2.462(3) | - | - |
5d (Mn) | 2.871(1) | 2.472(4) | 2.549(4) | 2.518(3) | 2.511(3) | 2.475(3) | 2.886(1) | 2.480(4) |
6b (Co) | 2.872(2) | 2.460(4) | 2.549(4) | 2.487(4) | 2.517(4) | 2.462(4) | 2.854(2) | 2.465(5) |
U2–N66 | U2–O35 | M1–S11 | M1–S51 | M1–O15 | M1–O55 | M1–O32 | M1–O72 | |
5a (Ni) | - | - | 2.350(5) | - | 2.08(1) | - | 2.07(1) | - |
5b (Co) | - | - | 2.362(2) | - | 2.133(3) | - | 2.093(4) | - |
5c (Fe) | - | - | 2.410(2) | - | 2.155(3) | - | 2.119(4) | - |
5d (Mn) | 2.557(4) | 2.480(4) | 2.540(1) | 2.515(1) | 2.216(3) | 2.228(3) | 2.177(3) | 2.164(3) |
6b (Co) | 2.562(5) | 2.490(4) | 2.397(2) | 2.441(2) | 2.168(4) | 2.139(4) | 2.0754) | 2.120(4) |
U1…M1 | U2…M1 | U1…U2/U1′ (a) | C4–O5 | C14–O15 | C44–O45 | C54–O55 | ||
5a (Ni) | 3.702(1) | - | 6.115(1) | 1.24(2) | 1.27(2) | - | - | |
5b (Co) | 3.766(1) | - | 6.376(1) | 1.220(6) | 1.286(6) | - | - | |
5c (Fe) | 3.779(1) | - | 6.290(1) | 1.228(6) | 1.300(6) | - | - | |
5d (Mn) | 3.926(1) | 3.922(1) | 6.645(1) | 1.228(6) | 1.302(5) | 1.223(6) | 1.297(5) | |
6b (Co) | 3.817(1) | 3.760(1) | 6.759(1) | 1.223(7) | 1.301(6) | 1.222(7) | 1.257(7) |
U1–O10 | U1–O20 | U1–O5 | U1–O15 | U1–O25 | U1–O35 | U1–N46 | U1–N56 | Ni1–I1 |
1.775(7) | 1.767(6) | 2.485(6) | 2.405(6) | 2.476(6) | 2.553(6) | 2.600(7) | 2.588(7) | 2.642(3) |
Ni1–S11 | Ni1–S31 | Ni1–O15 | Ni1–O35 | Ni2–I2 | Ni2–S1 | Ni2–S21 | Ni2–O5 | Ni2–O25 |
2.308(4) | 2.282(3) | 2.052(6) | 2.040(6) | 2.702(3) | 2.288(3) | 2.301(3) | 2.055(6) | 2.036(6) |
C14–O15 | C34–O35 | C4–O5 | C24–O25 | Ni1…U1 | Ni2…U1 | Ni1…Ni2 | ||
1.30(1) | 1.29(1) | 1.30(1) | 1.30(1) | 3.569(2) | 3.708(2) | 7.199(1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Njiki Noufele, C.; Schulze, D.; Roca Jungfer, M.; Hagenbach, A.; Abram, U. Bimetallic Uranium Complexes with 2,6-Dipicolinoylbis(N,N-Dialkylthioureas). Molecules 2024, 29, 5001. https://doi.org/10.3390/molecules29215001
Njiki Noufele C, Schulze D, Roca Jungfer M, Hagenbach A, Abram U. Bimetallic Uranium Complexes with 2,6-Dipicolinoylbis(N,N-Dialkylthioureas). Molecules. 2024; 29(21):5001. https://doi.org/10.3390/molecules29215001
Chicago/Turabian StyleNjiki Noufele, Christelle, Dennis Schulze, Maximilian Roca Jungfer, Adelheid Hagenbach, and Ulrich Abram. 2024. "Bimetallic Uranium Complexes with 2,6-Dipicolinoylbis(N,N-Dialkylthioureas)" Molecules 29, no. 21: 5001. https://doi.org/10.3390/molecules29215001
APA StyleNjiki Noufele, C., Schulze, D., Roca Jungfer, M., Hagenbach, A., & Abram, U. (2024). Bimetallic Uranium Complexes with 2,6-Dipicolinoylbis(N,N-Dialkylthioureas). Molecules, 29(21), 5001. https://doi.org/10.3390/molecules29215001