The Adaptative Modulation of the Phosphinito–Phosphinous Acid Ligand: Computational Illustration Through Palladium-Catalyzed Alcohol Oxidation
Abstract
:1. Introduction
2. Results
2.1. Experimental Study: Comparison of PAP Ligand with Classical Phosphorus Ligands
2.2. Mechanistic Computational Study
2.2.1. β-Hydride Elimination vs. Direct H Abstraction
2.2.2. Reaction Force Analysis
3. Materials and Methods: Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stradiotto, M.; Lundgren, R.J. Ligand Design in Metal Chemistry: Reactivity and Catalysis; Wiley: Chichester, UK; Hoboken, NJ, USA, 2016; ISBN 978-1-118-83962-1. [Google Scholar]
- Kok, S.H.L.; Au-Yeung, T.T.-L.; Cheung, H.Y.; Lam, W.S.; Chan, S.S.; Chan, A.S.C. Bidentate Ligands Containing a Heteroatom–Phosphorus Bond. In The Handbook of Homogeneous Hydrogenation; John Wiley & Sons, Ltd.: Weinheim, Germany, 2008; Volume 27, pp. 883–993. ISBN 978-3-527-61938-2. [Google Scholar]
- Pfaltz, A.; Drury, W.J. Design of Chiral Ligands for Asymmetric Catalysis: From C2-Symmetric P,P- and N,N-Ligands to Sterically and Electronically Nonsymmetrical P,N-Ligands. Proc. Natl. Acad. Sci. USA 2004, 101, 5723–5726. [Google Scholar] [CrossRef] [PubMed]
- Börner, A. Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2008; ISBN 978-3-527-31746-2. [Google Scholar]
- Lemouzy, S.; Giordano, L.; Hérault, D.; Buono, G. Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure P-Stereogenic Molecules. Eur. J. Org. Chem. 2020, 2020, 3351–3366. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, X. A Hybrid Phosphorus Ligand for Highly Enantioselective Asymmetric Hydroformylation. J. Am. Chem. Soc. 2006, 128, 7198–7202. [Google Scholar] [CrossRef] [PubMed]
- Meeuwissen, J.; Reek, J.N.H. Supramolecular Catalysis beyond Enzyme Mimics. Nat. Chem. 2010, 2, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; van der Vlugt, J.I.; Reek, J.N.H. Supramolecular Self-Assembled Ligands in Asymmetric Transition Metal Catalysis. Isr. J. Chem. 2012, 52, 613–629. [Google Scholar] [CrossRef]
- Carboni, S.; Gennari, C.; Pignataro, L.; Piarulli, U. Supramolecular Ligand–Ligand and Ligand–Substrate Interactions for Highly Selective Transition Metal Catalysis. Dalton Trans. 2011, 40, 4355–4373. [Google Scholar] [CrossRef]
- Breuil, P.-A.R.; Patureau, F.W.; Reek, J.N.H. Singly Hydrogen Bonded Supramolecular Ligands for Highly Selective Rhodium-Catalyzed Hydrogenation Reactions. Angew. Chem. Int. Ed. 2009, 48, 2162–2165. [Google Scholar] [CrossRef]
- Reek, J.N.H.; de Bruin, B.; Pullen, S.; Mooibroek, T.J.; Kluwer, A.M.; Caumes, X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem. Rev. 2022, 122, 12308–12369. [Google Scholar] [CrossRef]
- Manca, G.; Caporali, M.; Ienco, A.; Peruzzini, M.; Mealli, C. Electronic Aspects of the Phosphine-Oxide → Phosphinous Acid Tautomerism and the Assisting Role of Transition Metal Centers. J. Organomet. Chem. 2014, 760, 177–185. [Google Scholar] [CrossRef]
- Pidcock, A.; Waterhouse, C.R. Phosphite and Phosphonate Complexes. Part I. Synthesis and Structures of Dialkyl and Diphenyl Phosphonate Complexes of Palladium and Platinum. J. Chem. Soc. Inorg. Phys. Theor. 1970, 2080–2086. [Google Scholar] [CrossRef]
- Bigeault, J.; Giordano, L.; Buono, G. [2+1] Cycloadditions of Terminal Alkynes to Norbornene Derivatives Catalyzed by Palladium Complexes with Phosphinous Acid Ligands. Angew. Chem. Int. Ed. 2005, 44, 4753–4757. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, W.B.; Rauchfuss, T.B.; Roundhill, D.M. Interconversion Reactions between Substituted Phosphinous Acid-Phosphinito Complexes of Platinum(II) and Their Capping Reactions with Boron Trifluoride-Diethyl Etherate. Inorg. Chem. 1975, 14, 1732–1734. [Google Scholar] [CrossRef]
- Vasseur, A.; Membrat, R.; Palpacelli, D.; Giorgi, M.; Nuel, D.; Giordano, L.; Martinez, A. Synthesis of Chiral Supramolecular Bisphosphinite Palladacycles through Hydrogen Transfer-Promoted Self-Assembly Process. Chem. Commun. 2018, 54, 10132–10135. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Chen, D.; Ng, W.-P.; Liu, D.; Liu, L.-J.; Sun, M.-Y.; Nawaz, T.; Wu, X.; Zhang, Y.; Li, Z.; et al. Phosphinous Acid–Phosphinito Tetra-Icosahedral Au52 Nanoclusters for Electrocatalytic Oxygen Reduction. JACS Au 2022, 2, 2617–2626. [Google Scholar] [CrossRef]
- Francos, J.; Elorriaga, D.; Crochet, P.; Cadierno, V. The Chemistry of Group 8 Metal Complexes with Phosphinous Acids and Related POH Ligands. Coord. Chem. Rev. 2019, 387, 199–234. [Google Scholar] [CrossRef]
- Shigehiro, Y.; Miya, K.; Shibai, R.; Kataoka, Y.; Ura, Y. Synthesis of Pd-NNP Phosphoryl Mononuclear and Phosphinous Acid-Phosphoryl-Bridged Dinuclear Complexes and Ambient Light-Promoted Oxygenation of Benzyl Ligands. Organometallics 2022. [Google Scholar] [CrossRef]
- Ackermann, L. Air- and Moisture-Stable Secondary Phosphine Oxides as Preligands in Catalysis. Synthesis 2006, 2006, 1557–1571. [Google Scholar] [CrossRef]
- Achard, T. Advances in Homogeneous Catalysis Using Secondary Phosphine Oxides (SPOs): Pre-Ligands for Metal Complexes. Chim. Int. J. Chem. 2016, 70, 8–19. [Google Scholar] [CrossRef]
- Gallen, A.; Riera, A.; Verdaguer, X.; Grabulosa, A. Coordination Chemistry and Catalysis with Secondary Phosphine Oxides. Catal. Sci. Technol. 2019, 9, 5504–5561. [Google Scholar] [CrossRef]
- van Leeuwen, P.W.N.M.; Cano, I.; Freixa, Z. Secondary Phosphine Oxides: Bifunctional Ligands in Catalysis. ChemCatChem 2020, 12, 3982–3994. [Google Scholar] [CrossRef]
- Shaikh, T.M.; Weng, C.-M.; Hong, F.-E. Secondary Phosphine Oxides: Versatile Ligands in Transition Metal-Catalyzed Cross-Coupling Reactions. Coord. Chem. Rev. 2012, 256, 771–803. [Google Scholar] [CrossRef]
- Lu, M.; Xu, W.; Ye, M. Phosphine Oxide-Promoted Rh(I)-Catalyzed C–H Cyclization of Benzimidazoles with Alkenes. Molecules 2023, 28, 736. [Google Scholar] [CrossRef]
- Nava, P.; Clavier, H.; Gimbert, Y.; Giordano, L.; Buono, G.; Humbel, S. Chemodivergent Palladium-Catalyzed Processes: Role of Versatile Ligands. ChemCatChem 2015, 7, 3848–3854. [Google Scholar] [CrossRef]
- Ponce-Vargas, M.; Klein, J.; Hénon, E. Novel Approach to Accurately Predict Bond Strength and Ligand Lability in Plati-num-Based Anticancer Drugs. Dalton Trans. 2020, 49, 12632–12642. [Google Scholar] [CrossRef]
- Martin, D.; Moraleda, D.; Achard, T.; Giordano, L.; Buono, G. Assessment of the Electronic Properties of P Ligands Stemming from Secondary Phosphine Oxides. Chem.Eur. J. 2011, 17, 12729–12740. [Google Scholar] [CrossRef]
- Gatineau, D.; Moraleda, D.; Naubron, J.-V.; Bürgi, T.; Giordano, L.; Buono, G. Enantioselective Alkylidenecyclopropanation of Norbornenes with Terminal Alkynes Catalyzed by Palladium–Phosphinous Acid Complexes. Tetrahedron: Asymmetry 2009, 20, 1912–1917. [Google Scholar] [CrossRef]
- Vasseur, A.; Membrat, R.; Gatineau, D.; Tenaglia, A.; Nuel, D.; Giordano, L. Secondary Phosphine Oxides as Multitalented Preligands En Route to the Chemoselective Palladium-Catalyzed Oxidation of Alcohols. ChemCatChem 2017, 9, 728–732. [Google Scholar] [CrossRef]
- Membrat, R.; Vasseur, A.; Martinez, A.; Giordano, L.; Nuel, D. Phosphinous Acid Platinum Complex as Robust Catalyst for Oxidation: Comparison with Palladium and Mechanistic Investigations. Eur. J. Org. Chem. 2018, 2018, 5427–5434. [Google Scholar] [CrossRef]
- Membrat, R.; Vasseur, A.; Moraleda, D.; Michaud-Chevallier, S.; Martinez, A.; Giordano, L.; Nuel, D. Platinum–(Phosphinito–Phosphinous Acid) Complexes as Bi-Talented Catalysts for Oxidative Fragmentation of Piperidinols: An Entry to Primary Amines. RSC Adv. 2019, 9, 37825–37829. [Google Scholar] [CrossRef]
- Wolf, C.; Ekoue-Kovi, K. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Using Phosphinous Acids and Dialkyl(Chloro)Phosphane Ligands. Eur. J. Org. Chem. 2006, 2006, 1917–1925. [Google Scholar] [CrossRef]
- Maronde, D.N.; Venancio, A.N.; Bolsoni, C.S.; Menini, L.; Santos, M.F.C.; Parreira, L.A. A New Perspective for Palladium(II)-Catalyzed Alcohol Oxidation in Aerobic Means. Can. J. Chem. 2024, 102, 355–365. [Google Scholar] [CrossRef]
- Schultz, M.J.; Sigman, M.S. Recent Advances in Homogeneous Transition Metal-Catalyzed Aerobic Alcohol Oxidations. Tetrahedron 2006, 62, 8227–8241. [Google Scholar] [CrossRef]
- Chan, E.Y.Y.; Zhang, Q.-F.; Sau, Y.-K.; Lo, S.M.F.; Sung, H.H.Y.; Williams, I.D.; Haynes, R.K.; Leung, W.-H. Chiral Bisphosphinite Metalloligands Derived from a P-Chiral Secondary Phosphine Oxide. Inorg. Chem. 2004, 43, 4921–4926. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Weinstein, A.B.; White, P.B.; Stahl, S.S. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem. Rev. 2018, 118, 2636–2679. [Google Scholar] [CrossRef] [PubMed]
- Muzart, J. Palladium-Catalysed Oxidation of Primary and Secondary Alcohols. Tetrahedron 2003, 59, 5789–5816. [Google Scholar] [CrossRef]
- Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Palladium(II)-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones by Molecular Oxygen. J. Org. Chem. 1999, 64, 6750–6755. [Google Scholar] [CrossRef]
- Steinhoff, B.A.; Stahl, S.S. Ligand-Modulated Palladium Oxidation Catalysis: Mechanistic Insights into Aerobic Alcohol Oxidation with the Pd(OAc)2/Pyridine Catalyst System. Org. Lett. 2002, 4, 4179–4181. [Google Scholar] [CrossRef]
- Mueller, J.A.; Goller, C.P.; Sigman, M.S. Elucidating the Significance of β-Hydride Elimination and the Dynamic Role of Acid/Base Chemistry in a Palladium-Catalyzed Aerobic Oxidation of Alcohols. J. Am. Chem. Soc. 2004, 126, 9724–9734. [Google Scholar] [CrossRef]
- Privalov, T.; Linde, C.; Zetterberg, K.; Moberg, C. Theoretical Studies of the Mechanism of Aerobic Alcohol Oxidation with Palladium Catalyst Systems. Organometallics 2005, 24, 885–893. [Google Scholar] [CrossRef]
- Conley, N.R.; Labios, L.A.; Pearson, D.M.; McCrory, C.C.L.; Waymouth, R.M. Aerobic Alcohol Oxidation with Cationic Palladium Complexes: Insights into Catalyst Design and Decomposition. Organometallics 2007, 26, 5447–5453. [Google Scholar] [CrossRef]
- Nielsen, R.J.; Goddard, W.A. Mechanism of the Aerobic Oxidation of Alcohols by Palladium Complexes of N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2006, 128, 9651–9660. [Google Scholar] [CrossRef] [PubMed]
- Ramsay-Burrough, S.; Marron, D.P.; Armstrong, K.C.; Del Castillo, T.J.; Zare, R.N.; Waymouth, R.M. Mechanism-Guided Design of Robust Palladium Catalysts for Selective Aerobic Oxidation of Polyols. J. Am. Chem. Soc. 2023, 145, 2282–2293. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.M.; Gulyás, H.; Benet-Buchholz, J.; Bo, C.; Freixa, Z.; Leeuwen, P.W.N.M. van SPOs as New Ligands in Rh(III) Catalyzed Enantioselective Transfer Hydrogenation. Catal. Sci. Technol. 2011, 1, 401–407. [Google Scholar] [CrossRef]
- ten Brink, G.-J.; Arends, I.W.C.E.; Sheldon, R.A. Catalytic Conversions in Water. Part 21: Mechanistic Investigations on the Palladium-Catalysed Aerobic Oxidation of Alcohols in Water†. Adv. Synth. Catal. 2002, 344, 355–369. [Google Scholar] [CrossRef]
- Feyereisen, M.W.; Feller, D.; Dixon, D.A. Hydrogen Bond Energy of the Water Dimer. J. Phys. Chem. 1996, 100, 2993–2997. [Google Scholar] [CrossRef]
- Herrera, B.; Toro-Labbé, A. The Role of Reaction Force and Chemical Potential in Characterizing the Mechanism of Double Proton Transfer in the Adenine−Uracil Complex. J. Phys. Chem. A 2007, 111, 5921–5926. [Google Scholar] [CrossRef]
- Toro-Labbé, A. Characterization of Chemical Reactions from the Profiles of Energy, Chemical Potential, and Hardness. J. Phys. Chem. A 1999, 103, 4398–4403. [Google Scholar] [CrossRef]
- Politzer, P.; Toro-Labbé, A.; Gutiérrez-Oliva, S.; Herrera, B.; Jaque, P.; Concha, M.C.; Murray, J.S. The Reaction Force: Three Key Points along an Intrinsic Reaction Coordinate. J. Chem. Sci. 2005, 117, 467–472. [Google Scholar] [CrossRef]
- Labet, V.; Morell, C.; Toro-Labbé, A.; Grand, A. Is an Elementary Reaction Step Really Elementary? Theoretical Decomposition of Asynchronous Concerted Mechanisms. Phys. Chem. Chem. Phys. 2010, 12, 4142–4151. [Google Scholar] [CrossRef]
- Duarte, F.; Vöhringer-Martinez, E.; Toro-Labbé, A. Insights on the Mechanism of Proton Transfer Reactions in Amino Acids. Phys. Chem. Chem. Phys. 2011, 13, 7773–7782. [Google Scholar] [CrossRef]
- Scheiner, S. Proton Transfers in Hydrogen-Bonded Systems. Cationic Oligomers of Water. J. Am. Chem. Soc. 1981, 103, 315–320. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Fukui, K. The Path of Chemical Reactions—the IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford, CT, USA, 2013.
- Gatineau, D.; Nguyen, D.H.; Hérault, D.; Vanthuyne, N.; Leclaire, J.; Giordano, L.; Buono, G. H-Adamantylphosphinates as Universal Precursors of P-Stereogenic Compounds. J. Org. Chem. 2015, 80, 4132–4141. [Google Scholar] [CrossRef]
- Membrat, R.; Vasseur, A.; Giordano, L.; Martinez, A.; Nuel, D. General methodology for the chemoselective N-alkylation of (2,2,6,6)-tetramethylpiperidin-4-ol: Contribution of microwave irradiation. Tetrahedron Lett. 2019, 60, 240–243. [Google Scholar] [CrossRef]
Entry | Catalyst | Yield (%) b | Reaction Mixture Aspect |
1 | 12a | 91 | Translucent |
2 | 12b | 36 | Translucent |
3 | 12c | 0 | Black Pd deposit |
4 | 12d | 10 | Black Pd deposit |
5 | 12e | 0 | Black Pd deposit |
6 | 12f | 8 | Black Pt deposit |
7 | 12g | 74 | Translucent |
Pd-PAP | Pt-PAP | |
---|---|---|
Separated reactants | 82.9 | 84.2 |
β-H Elimination | ||
(A-B) | 0.0 | 0.0 |
TS1 | 4.3 | 6.5 |
I | 4.7 a | - b |
TS_HT | −0.5 a | - b |
C | 3.0 a | 4.2 |
(the substrate and H2O are reoriented) | ||
Cβ | 29.8 | 38.4 |
TSβ | 55.6 | 55.9 |
Dβ | 44.9 | 21.8 |
Direct H abstraction | ||
(A-B)’ | 24.8 | 25.0 |
TS’ | 55.9 | 51.3 |
D’ | 13.4 | 9.7 |
Separated products | 122.7 | 125.5 |
Energetic Balance | 39.7 | 41.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Membrat, R.; Kondo, T.E.; Agostini, A.; Vasseur, A.; Nava, P.; Giordano, L.; Martinez, A.; Nuel, D.; Humbel, S. The Adaptative Modulation of the Phosphinito–Phosphinous Acid Ligand: Computational Illustration Through Palladium-Catalyzed Alcohol Oxidation. Molecules 2024, 29, 4999. https://doi.org/10.3390/molecules29214999
Membrat R, Kondo TE, Agostini A, Vasseur A, Nava P, Giordano L, Martinez A, Nuel D, Humbel S. The Adaptative Modulation of the Phosphinito–Phosphinous Acid Ligand: Computational Illustration Through Palladium-Catalyzed Alcohol Oxidation. Molecules. 2024; 29(21):4999. https://doi.org/10.3390/molecules29214999
Chicago/Turabian StyleMembrat, Romain, Tété Etonam Kondo, Alexis Agostini, Alexandre Vasseur, Paola Nava, Laurent Giordano, Alexandre Martinez, Didier Nuel, and Stéphane Humbel. 2024. "The Adaptative Modulation of the Phosphinito–Phosphinous Acid Ligand: Computational Illustration Through Palladium-Catalyzed Alcohol Oxidation" Molecules 29, no. 21: 4999. https://doi.org/10.3390/molecules29214999
APA StyleMembrat, R., Kondo, T. E., Agostini, A., Vasseur, A., Nava, P., Giordano, L., Martinez, A., Nuel, D., & Humbel, S. (2024). The Adaptative Modulation of the Phosphinito–Phosphinous Acid Ligand: Computational Illustration Through Palladium-Catalyzed Alcohol Oxidation. Molecules, 29(21), 4999. https://doi.org/10.3390/molecules29214999