Studies of the Sorption-Desorption of Pesticides from Cellulose-Based Derivative Nanocomposite Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Apparent Viscosity (μ)
2.2. Thermal Analysis
Thermogravimetric Analysis (TG) and Differential Thermogravimetric Analysis (DTG)
2.3. Influence of Osmotic Force on the Swelling Degree Properties of MC Nanocomposites
2.4. Herbicide Sorption
2.5. Release Properties
3. Materials and Methods
3.1. Materials
3.2. Nanocomposite Hydrogel Synthesis
3.3. Nanocomposite Hydrogel Characterization Methods
3.3.1. Apparent Viscosity (μ)
3.3.2. Thermogravimetric Analysis (TG)
3.3.3. Degree of Swelling (SD)
3.3.4. Herbicide Sorption and Release Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva e Souza, G.; Gomes, E.G. Assessing the Influence of External Factors on Agricultural Production in Brazil. Socioecon. Plann. Sci. 2023, 85, 101440. [Google Scholar] [CrossRef]
- Paumgartten, F.J.R. Pesticides and Public Health in Brazil. Curr. Opin. Toxicol. 2020, 22, 7–11. [Google Scholar] [CrossRef]
- Li, Y.; Guo, R.; Liang, X.; Yao, B.; Yan, S.; Guo, Y.; Han, Y.; Cui, J. Pollution Characteristics, Ecological and Health Risks of Herbicides in a Drinking Water Source and Its Inflowing Rivers in North China. Environ. Pollut. 2023, 334, 122130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Kim, E.; Bentley, W.E.; Payne, G.F. Spectroelectrochemical Testing of a Proposed Mechanism for a Redox-Based Therapeutic Intervention: Ascorbate Treatment of Severe Paraquat Poisoning. Adv. Redox Res. 2023, 8, 100068. [Google Scholar] [CrossRef]
- Ward, M.C.E.; Barrios, M.C.; Fallon, A.M. Paraquat Is Toxic to the Soil-Dwelling Arthropod, Folsomia candida (Collembola: Isotomidae), and Has Potential Effects on Its Wolbachia Endosymbiont. J. Invertebr. Pathol. 2023, 198, 107936. [Google Scholar] [CrossRef]
- Pecev-Marinković, E.T.; Grahovac, Z.M.; Mitić, S.S.; Pavlović, A.N.; Rašić Mišić, I.D.; Mitić, M.N. Determination of Herbicide Difenzoquat Methyl Sulfate in Citruses and Baby Juices by Kinetic-Spectrophotometric Method and HPLC Method. J. Chin. Chem. Soc. 2014, 61, 671–678. [Google Scholar] [CrossRef]
- Vinhal, J.O.; Lima, C.F.; Cassella, R.J. Sorption of the Herbicides Diquat and Difenzoquat from Aqueous Medium by Polymeric Resins in the Presence of Sodium Dodecylsulfate: Kinetic and Mechanistic Study. J. Environ. Sci. Health Part B 2016, 51, 482–489. [Google Scholar] [CrossRef]
- Vinhal, J.O.; Nege, K.K.; Lage, M.R.; Carneiro, J.W.D.M.; Lima, C.F.; Cassella, R.J. Adsorption of the Herbicides Diquat and Difenzoquat on Polyurethane Foam: Kinetic, Equilibrium and Computational Studies. Ecotoxicol. Environ. Saf. 2017, 145, 597–604. [Google Scholar] [CrossRef]
- Tanaka, F.N.; Ferreira, C.R., Jr.; de Moura, M.R.; Aouada, F.A. Water Absorption and Physicochemical Characterization of Novel Zeolite-PMAA-Co-PAAm Nanocomposites. J. Nanosci. Nanotechnol. 2018, 18, 7286–7295. [Google Scholar] [CrossRef]
- da Silva Fernandes, R.; Tanaka, F.C.; Junior, C.R.F.; Yonezawa, U.G.; de Moura, M.R.; Aouada, F.A. PAAm/CMC/Nanoclay Nanocomposite Hydrogel: Understanding the Influence of Initiators on the Chain-Growth Mechanisms. J. Polym. Res. 2022, 29, 519. [Google Scholar] [CrossRef]
- Tanaka, F.C.; Junior, C.R.F.; Fernandes, R.S.; de Moura, M.R.; Aouada, F.A. Correlating PH and Swelling Degree Parameters to Understand the Sorption and Desorption Process of Diquat Herbicide from Nanocomposites Based on Polysaccharide and Clinoptilolite. J. Polym. Environ. 2021, 29, 3389–3400. [Google Scholar] [CrossRef]
- da Silva Fernandes, R.; Tanaka, F.N.; de Moura, M.R.; Aouada, F.A. Development of Alginate/Starch-Based Hydrogels Crosslinked with Different Ions: Hydrophilic, Kinetic and Spectroscopic Properties. Mater. Today Commun. 2019, 21, 100636. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, S.; Huang, L.; Wang, H.; Wang, W.; Ye, Q. Starch-Based Hydrogel Loading with Carbendazim for Controlled-Release and Water Absorption. Carbohydr. Polym. 2015, 125, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Seidi, F.; Wu, W.; Pan, Y.; Xiao, H. Dual-Functional Lignin-Based Hydrogels for Sustained Release of Agrochemicals and Heavy Metal Ion Complexation. Int. J. Biol. Macromol. 2023, 235, 123701. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Tanweer, M.S.; Mir, T.A.; Alam, M.; Ikram, S.; Sheikh, J.N. Antimicrobial Gum Based Hydrogels as Adsorbents for the Removal of Organic and Inorganic Pollutants. J. Water Process Eng. 2023, 51, 103377. [Google Scholar] [CrossRef]
- Barbosa, D.; Moura, M.; Aouada, F. Polysaccharide-Based Nanocomposite Hydrogels with Zeolite: Evaluation of the Sorption Process of Pesticide Paraquat. Quim Nova 2018, 41, 380–385. [Google Scholar] [CrossRef]
- Aouada, F.A.; de Moura, M.R.; Orts, W.J.; Mattoso, L.H.C. Polyacrylamide and Methylcellulose Hydrogel as Delivery Vehicle for the Controlled Release of Paraquat Pesticide. J. Mater. Sci. 2010, 45, 4977–4985. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release II. Fickian and Anomalous Release from Swellable Devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Mittal, H.; Jindal, R.; Kaith, B.S.; Maity, A.; Ray, S.S. Flocculation and Adsorption Properties of Biodegradable Gum-Ghatti-Grafted Poly(Acrylamide-Co-Methacrylic Acid) Hydrogels. Carbohydr. Polym. 2015, 115, 617–628. [Google Scholar] [CrossRef]
- Mittal, H.; Maity, A.; Ray, S.S. Effective Removal of Cationic Dyes from Aqueous Solution Using Gum Ghatti-Based Biodegradable Hydrogel. Int. J. Biol. Macromol. 2015, 79, 8–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Chen, Y. Synthesis and Characterization of Starch-g-Poly(Acrylic Acid)/Organo-Zeolite 4A Superabsorbent Composites with Respect to Their Water-Holding Capacities and Nutrient-Release Behavior. Polym. Compos. 2017, 38, 1838–1848. [Google Scholar] [CrossRef]
- Philia, J.; Widayat, W.; Sulardjaka, S.; Nugroho, G.A.; Darydzaki, A.N. Aluminum-Based Activation of Natural Zeolite for Glycerol Steam Reforming. Results Eng. 2023, 19, 101247. [Google Scholar] [CrossRef]
- Hao, W.; Shi, Y.; Ullah, L.; Li, R.; Hedin, N. Effects of the Ion-Exchange Sequence on the CO2 Uptake and CO2–over–N2 Selectivity of Zeolite NaKA. Sustain. Chem. Clim. Action 2023, 3, 100030. [Google Scholar] [CrossRef]
- Rashidzadeh, A.; Olad, A.; Salari, D.; Reyhanitabar, A. On the Preparation and Swelling Properties of Hydrogel Nanocomposite Based on Sodium Alginate-g-Poly (Acrylic Acid-Co-Acrylamide)/Clinoptilolite and Its Application as Slow Release Fertilizer. J. Polym. Res. 2014, 21, 344. [Google Scholar] [CrossRef]
- Sarkar, D.J.; Singh, A.; Mandal, P.; Kumar, A.; Parmar, B.S. Synthesis and Characterization of Poly (CMC-g-Cl-PAam/Zeolite) Superabsorbent Composites for Controlled Delivery of Zinc Micronutrient: Swelling and Release Behavior. Polym. Plast. Technol. Eng. 2015, 54, 357–367. [Google Scholar] [CrossRef]
- Tanaka, F.C.; Yonezawa, U.G.; de Moura, M.R.; Aouada, F.A. Obtention, Characterization, and Herbicide Diquat Carrier/Release Properties by Nanocomposite Hydrogels Based on the Polysaccharides and Zeolite for Future Use in Agriculture. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100880. [Google Scholar] [CrossRef]
- Alves, T.V.G.; Tavares, E.J.M.; Aouada, F.A.; Negrão, C.A.B.; Oliveira, M.E.C.; Duarte Júnior, A.P.; Ferreira da Costa, C.E.; Silva Júnior, J.O.C.; Ribeiro Costa, R.M. Thermal Analysis Characterization of PAAm-Co-MC Hydrogels. J. Therm. Anal. Calorim. 2011, 106, 717–724. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Elhady, M.A. PH-Sensitive Wax Emulsion Copolymerization with Acrylamide Hydrogel Using Gamma Irradiation for Dye Removal. Radiat. Phys. Chem. 2017, 134, 47–55. [Google Scholar] [CrossRef]
- Lumbreras-Aguayo, A.; Meléndez-Ortiz, H.I.; Puente-Urbina, B.; Alvarado-Canché, C.; Ledezma, A.; Romero-García, J.; Betancourt-Galindo, R. Poly(Methacrylic Acid)-Modified Medical Cotton Gauzes with Antimicrobial and Drug Delivery Properties for Their Use as Wound Dressings. Carbohydr. Polym. 2019, 205, 203–210. [Google Scholar] [CrossRef]
- Junior, C.R.F.; Tanaka, F.N.; Bortolin, A.; de Moura, M.R.; Aouada, F.A. Thermal and Morphological Characterization of Highly Porous Nanocomposites for Possible Application in Potassium Controlled Release. J. Therm. Anal. Calorim. 2018, 131, 2205–2212. [Google Scholar] [CrossRef]
- Filho, W.B.F.; Agassin, S.T.R.; Naidek, K.P.; Paulino, A.T. Pectin Hydrogels Modified with Montmorillonite: Case Studies for the Removal of Dyes and Herbicides from Water. J. Environ. Chem. Eng. 2023, 11, 110846. [Google Scholar] [CrossRef]
Solution | Viscosity (cP) |
---|---|
Water | 1.0 |
Hydrogel CMC | 336.9 |
Nanocomposite CMC-1.5% zeolite | 341.1 |
Hydrogel MC | 41.2 |
Nanocomposite MC-1.5% zeolite | 38.2 |
0% Zeolite | ||||
T0 (°C) | Tf (°C) | Tmax (°C) | % Weigh | |
1° event | 38.7 | 163.2 | 114.0 | 5.4 |
2° event | 163.2 | 271.7 | 205.5 | 12.6 |
3° event | 271.7 | 556.5 | 349.4 | 67.5 |
0.5% Zeolite | ||||
T0 (°C) | Tf (°C) | Tmax (°C) | % Weigh | |
1° event | 38.0 | 170.1 | 91.5 | 6.1 |
2° event | 170.1 | 275.9 | 207.0 | 12.3 |
3° event | 275.9 | 582.8 | 375.6 | 67.9 |
1.0% Zeolite | ||||
T0 (°C) | Tf (°C) | Tmax (°C) | % Weigh | |
1° event | 30.9 | 165.8 | 52.8 | 7.4 |
2° event | 165.8 | 275.2 | 208.1 | 11.8 |
3° event | 275.2 | 598.5 | 352.3 | 66.7 |
1.5% Zeolite | ||||
T0 (°C) | Tf (°C) | Tmax (°C) | % Weigh | |
1° event | 35.1 | 175.1 | 57.3 | 6.6 |
2° event | 175.1 | 275.2 | 207.8 | 10.6 |
3° event | 275.2 | 599.2 | 377.7 | 61.5 |
PQ | ||||
pH | Ceq (mg·L−1) | %Leq | qeq (mg·g−1) | |
4 | 15.35 | 40.76 | 6.12 | |
Matrix | 7 | 14.17 | 37.55 | 4.94 |
10 | 12.40 | 32.83 | 4.26 | |
4 | 14.31 | 37.75 | 4.46 | |
CMC-0% Z | 7 | 14.74 | 37.40 | 4.96 |
10 | 14.32 | 36.31 | 4.53 | |
4 | 10.68 | 27.24 | 3.23 | |
CMC-1.5% Z | 7 | 10.47 | 26.57 | 3.17 |
10 | 11.62 | 29.50 | 3.80 | |
4 | 13.71 | 34.90 | 3.07 | |
MC-0% Z | 7 | 14.73 | 37.46 | 3.20 |
10 | 13.44 | 34.12 | 3.07 | |
4 | 12.91 | 32.75 | 4.94 | |
MC-1.5% | 7 | 10.44 | 26.46 | 4.01 |
10 | 12.07 | 30.61 | 4.00 | |
DFZ | ||||
pH | Ceq (mg·L−1) | %Leq | qeq (mg·g−1) | |
4 | 14.84 | 31.10 | 4.76 | |
Matrix | 7 | 16.00 | 35.06 | 5.73 |
10 | 16.43 | 33.80 | 6.01 | |
4 | 15.80 | 32.81 | 6.52 | |
CMC-0% Z | 7 | 18.30 | 38.00 | 7.22 |
10 | 19.00 | 39.00 | 7.12 | |
4 | 17.93 | 37.70 | 6.52 | |
CMC-1.5% Z | 7 | 17.44 | 36.00 | 4.53 |
10 | 19.46 | 40.16 | 7.00 | |
4 | 16.45 | 34.20 | 5.00 | |
MC-0% Z | 7 | 16.74 | 34.63 | 4.90 |
10 | 16.91 | 34.80 | 4.86 | |
MC-1.5% Z | 4 | 18.23 | 37.92 | 6.66 |
7 | 17.10 | 35.34 | 5.20 | |
10 | 20.00 | 41.12 | 8.06 |
Materials | Providers |
---|---|
Methacrylic acid (MAA—99%) | Aldrich (St. Louis, MO, USA) |
Acrylamide (AAm—98%) | Vetec-Brazil (Duque de Caxias, Brazil) |
N ‘, N methylenebisacrylamide (MBAAm—98%) | Vetec-Brasil (Duque de Caxias, Brazil) |
Potassium persulfate (K2S2O8—≥99%) | Sigma (St. Louis, MO, USA) |
Carboxymethylcellulose (CMC, Mv = 114 × 103 g/mol) | Vetec-Brasil (Duque de Caxias, Brazil) |
Methylcellulose (MC, Mw = 40 × 103 g/mol) | Sigma (St. Louis, MO, USA) |
Zeolite clinoptilolite ZK406H (porous size 4–7 Å, cation exchange capacity (CEC) 0.8–1.2 meq·g−1, surface charge density 10.1 × 10−23 meq/Å2, and 99% purity) | St. Cloud Minning (Winston, NM, USA) |
Paraquat hydrated dichloride (99.5%) | Chem Service (West Chester, PA, USA) |
Difenzoquat methyl sulfate (99.5%) | Chem Service (West Chester, PA, USA) |
Sodium chloride (NaCl, 99%) | Vetec-Brazil (Duque de Caxias, Brazil) |
Calcium chloride (CaCl2, 96%) | Vetec-Brazil (Duque de Caxias, Brazil) |
Aluminum chloride (AlCl3, 98%) | Vetec-Brazil (Duque de Caxias, Brazil) |
Sodium hydroxide (NaOH, ≥95%) | Vetec-Brazil (Duque de Caxias, Brazil) |
Hydrochloric acid (HCl, 36.5–38%) | Synth-Brazil (Sao Paulo, Brazil) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, F.C.; Yonezawa, U.G.; de Moura, M.R.; Aouada, F.A. Studies of the Sorption-Desorption of Pesticides from Cellulose-Based Derivative Nanocomposite Hydrogels. Molecules 2024, 29, 4932. https://doi.org/10.3390/molecules29204932
Tanaka FC, Yonezawa UG, de Moura MR, Aouada FA. Studies of the Sorption-Desorption of Pesticides from Cellulose-Based Derivative Nanocomposite Hydrogels. Molecules. 2024; 29(20):4932. https://doi.org/10.3390/molecules29204932
Chicago/Turabian StyleTanaka, Fabrício C., Uilian G. Yonezawa, Marcia R. de Moura, and Fauze A. Aouada. 2024. "Studies of the Sorption-Desorption of Pesticides from Cellulose-Based Derivative Nanocomposite Hydrogels" Molecules 29, no. 20: 4932. https://doi.org/10.3390/molecules29204932
APA StyleTanaka, F. C., Yonezawa, U. G., de Moura, M. R., & Aouada, F. A. (2024). Studies of the Sorption-Desorption of Pesticides from Cellulose-Based Derivative Nanocomposite Hydrogels. Molecules, 29(20), 4932. https://doi.org/10.3390/molecules29204932