The Influence of Thermal Treatment of Activated Carbon on Its Electrochemical, Corrosion, and Adsorption Characteristics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Characterization of ACs
2.2. Adsorption Results
2.3. Corrosion Characterization of ACs
2.4. Electrochemical Characterization of ACs
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Material Characterization
3.3. Batch Adsorption Experiments
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muttil, N.; Jagadeesan, S.; Chanda, A.; Duke, M.; Singh, S.K. Production, types and applications of activated carbon derived from waste tyres: An overview. Appl. Sci. 2023, 13, 257. [Google Scholar] [CrossRef]
- Saleem, J.; Shahid, U.B.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefin. 2019, 9, 775–802. [Google Scholar] [CrossRef]
- Wolak, E.; Vogt, E.; Szczurowski, J. Modification of activated carbons for application in adsorption cooling systems. Technol. Sci. 2019, 22, 87–98. [Google Scholar] [CrossRef]
- Yang, I.; Jung, M.; Kim, M.-S.; Choi, D.; Jung, J.C. Physical and chemical activation mechanisms of carbon materials based on the microdomain model. J. Mater. Chem. A 2021, 9, 9815–9825. [Google Scholar] [CrossRef]
- Issaoui, M.; Belhachemi, M.; Mahmoudi, K.; Ali, M.B.; Jellali, S.; Jeguirim, M. Palm wastes valorization for wastewater treatment. In Palms Trees and Fruit Residues. Recent Advances for Integrated and Sustainable Management; Elsevier: Amsterdam, The Netherlands, 2023; Chapter 7; pp. 243–308. [Google Scholar] [CrossRef]
- Ganjoo, R.; Sharma, S.; Kumar, A.; Daouda, M.M.A. Activated carbon: Fundamentals, classification and properties. In Activated Carbon: Progress and Applications; Verma, C., Quraishi, M.A., Eds.; The Royal Society of Chemistry: London, UK, 2023; Chapter 1; pp. 1–12. [Google Scholar] [CrossRef]
- Ahmad, A.; Azam, T. Water purification technologies. In Bottled and Packaged Water; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; Chapter 4; pp. 83–120. [Google Scholar] [CrossRef]
- Gan, Y.X. Activated carbon from biomass sustainable sources. J. Carbon Res. 2021, 7, 39. [Google Scholar] [CrossRef]
- Lee, K.-C.; Lim, M.S.W.; Hong, Z.-Y.; Chong, S.; Tiong, T.Y.; Pan, G.-T.; Huang, C.-M. Coconut shell-derived activated carbon for high-performance solid-state supercapacitors. Energies 2021, 14, 4546. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, N.; Li, X.; Wang, Y.; Xiong, Y.; Meng, R.; Liu, L.; He, S. Single-step hydrothermal synthesis of biochar from waste industrial hemp stalk core for Pb2+ sorption: Characterization and mechanism studies. Sustain. Chem. Pharm. 2023, 36, 101316. [Google Scholar] [CrossRef]
- Paluch, D.; Bazan-Wozniak, A.; Nosal-Wiercinska, A.; Pietrzak, R. Removal of methylene blue and methyl red from aqueous solutions using activated carbons obtained by chemical activation of caraway seed. Molecules 2023, 28, 6306. [Google Scholar] [CrossRef]
- Köseoglu, E.; Akmil-Basar, C. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv. Powder Technol. 2015, 26, 811–818. [Google Scholar] [CrossRef]
- Qu, W.-H.; Xu, Y.-Y.; Lu, A.-H.; Zhang, X.-Q.; Li, X.-C. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour. Technol. 2015, 189, 285–291. [Google Scholar] [CrossRef]
- Huarote-Garcia, E.; Cardenas-Riojas, A.A.; Monje, I.E.; Lopez, E.O.; Arias-Pinedo, O.M.; Planes, G.A.; Baena-Moncada, A.M. Activated carbon electrodes for supercapacitors from purple corncob (Zea mays L.). ACS Environ. Au 2024, 4, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Nam, H.; Gebreegziabher, T.B.; Nam, H. Adsorption of acetic acid and hydrogen sulfide using NaOH impregnated activated carbon for indoor air purification. Eng. Rep. 2020, 2, e12083. [Google Scholar] [CrossRef]
- Li, D.; Chen, W.; Wu, J.; Jia, C.Q.; Jiang, X. The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: Focus on N functional groups. J. Mater. Chem. A 2020, 8, 24977. [Google Scholar] [CrossRef]
- Bazan-Wozniak, A.; Cielecka-Piontek, J.; Nosal-Wiercinska, A.; Pietrzak, R. Adsorption of organic compounds on adsorbents obtained with the use of microwave heating. Materials 2022, 15, 5664. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cahyadi, H.S.; Mushtaq, U.; Verma, D.; Han, D.; Nam, K.-W.; Kwak, S.K.; Kim, J. Highly efficient reductive catalytic fractionation of lignocellulosic biomass over extremely low-loaded Pd catalysts. ACS Catal. 2020, 10, 12487–12506. [Google Scholar] [CrossRef]
- Yang, G.; Kuwahara, Y.; Masuda, S.; Mori, K.; Louis, C.; Yamashita, H. PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO2 to formate. J. Mater. Chem. A 2020, 8, 4437. [Google Scholar] [CrossRef]
- Balahmar, N.; Mokaya, R. Pre-mixed precursors for modulating the porosity of carbons for enhanced hydrogen storage: Towards predicting the activation behaviour of carbonaceous matter. J. Mater. Chem. A 2019, 7, 17466. [Google Scholar] [CrossRef]
- Taurbekov, A.; Abddisattar, A.; Atamanov, M.; Kaida, B.; Yeleuov, M.; Joia, R.; Amrousse, R.; Atamanova, T. Investigations of activated carbon from different natural sources for preparation of binder-free few-walled CNTs/activated carbon electrodes. J. Compos. Sci. 2023, 7, 452. [Google Scholar] [CrossRef]
- Duan, F.; Li, Y.; Cao, H.; Wang, Y.; Crittenden, J.C.; Zhang, Y. Activated carbon electrodes: Electrochemical oxidation coupled with desalination for wastewater treatment. Chemosphere 2015, 125, 205–211. [Google Scholar] [CrossRef]
- de Mello, R.; Motheo, A.J.; Saez, C.; Rodrigo, M.A. Recent progress in the combination of the activated carbon adsorption and electrolysis for the treatment of wastes. Curr. Opin. Electrochem. 2022, 36, 101167. [Google Scholar] [CrossRef]
- Fernandez-Gomez, B.; Ruiz-Rosas, R.; Beaumont, S.; Cazorla-Amoros, D.; Morallon, E. Electrochemical regeneration of spent activated carbon from drinking water treatment plant at different scale reactors. Chemosphere 2021, 264, 128399. [Google Scholar] [CrossRef] [PubMed]
- Rashda; Aryee, A.A.; Kailu, D.; Kiran, S.; Li, Z.; Han, R. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chlorophenol using bio-based activated carbon: Thermodynamics, kinetics and cytotoxicity evaluation. Environ. Funct. Mater. 2024; in press. [Google Scholar] [CrossRef]
- Alwi, R.S.; Gopinathan, R.; Bhowal, A.; Garlapati, C. Adsorption characteristics of activated carbon for the reclamation of Eosin Y and Indigo Carmine colored effluents and new isotherm model. Molecules 2020, 25, 6014. [Google Scholar] [CrossRef] [PubMed]
- Hupian, M.; Galambos, M.; Viglasova, E.; Rosskopfova, O.; Kusumkar, V.V.; Dao, M. Activated carbon treated with different chemical agents for pertechnetate adsorption. J. Radioanal. Nucl. Chem. 2024, 333, 1815–1829. [Google Scholar] [CrossRef]
- Lai, R.; Hu, J.; Sun, Y.; Lu, P. Physicochemical and adsorption characteristics of activated carbons from cellulose, xylan, and lignin. J. Anal. Appl. Pyrol. 2023, 173, 106067. [Google Scholar] [CrossRef]
- Awitdrus, A.; Amri, A.; Taslim, R.; Taer, E. The physical and electrochemical properties of activated carbon electrode derived from pineapple leaf waste for supercapacitor applications. J. Phys. Conf. Ser. 2020, 1655, 012008. [Google Scholar] [CrossRef]
- Bosacka, A.; Zienkiewicz-Strzałka, M.; Deryło-Marczewska, A.; Chrzanowska, A.; Wasilewska, M.; Sternik, D. Physicochemical, structural, and adsorption properties of chemically and thermally modified activated carbons. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129130. [Google Scholar] [CrossRef]
- Tugrul, Y. Surface characteristics and electrochemical properties of activated carbon obtained from different parts of Pinus pinaster. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126982. [Google Scholar] [CrossRef]
- Choi, J.-H.; Kim, J.-E.; Lim, G.H.; Han, J.; Roh, K.C.; Lee, J.-W. Comparison of the electrochemical properties of activated carbon prepared from woody biomass with different lignin content. Wood Sci. Technol. 2020, 54, 1165–1180. [Google Scholar] [CrossRef]
- Gupta, M.; Kumar, A.; Sharma, S.; Bharti; Ghamouss, F.; Singh, P.; Chawla, V.; Kumar, A.; Kumar, Y. Study of electrochemical properties of activated carbon electrode synthesized using bio-waste for supercapacitor applications. Biomass Convers. Biorefin. 2023, 13, 14059–14070. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mostafapour, F.K.; Faridi, H.; Farzadkia, M.; Sargazi, S.; Sohrabi, A. Removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous environments using single-walled carbon nanotubes. Health Scope 2013, 2, 39–46. [Google Scholar] [CrossRef]
- Kuśmierek, K.; Pakuła, M.; Biniak, S.; Świątkowski, A.; Dąbek, L. Adsorption and electrodegradation of phenoxyacetic acids on various activated carbons. Int. J. Electrochem. Sci. 2020, 15, 5770–5781. [Google Scholar] [CrossRef]
- Vinayagam, R.; Ganga, S.; Murugesan, G.; Rangasamy, G.; Bhole, R.; Goveas, L.C.; Varadavenkatesan, T.; Dave, N.; Samanth, A.; Devi, V.R.; et al. 2,4-dichlorophenoxyacetic acid (2,4-D) adsorptive removal by algal magnetic activated carbon nanocomposite. Chemosphere 2023, 310, 136883. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, X.; Liu, X.; Xu, X.; Duan, W.; Park, J.; Gao, L.; Lu, Y. Comparative study on the adsorption characteristics of heavy metal ions by activated carbon and selected natural adsorbents. Sustainability 2022, 14, 15579. [Google Scholar] [CrossRef]
- Samarghandi, M.R.; Nemattollahi, D.; Asgari, G.; Shokoohi, R.; Anasari, A.; Dargahi, A. Electrochemical process for 2,4-D herbicide removal from aqueous solutions using stainless steel 316 and graphite anodes: Optimization using response surface methodology. Sep. Sci. Technol. 2019, 54, 478–493. [Google Scholar] [CrossRef]
- Barzoki, H.R.; Dargahi, A.; Shabanloo, A.; Ansari, A.; Bairami, S. Electrochemical advanced oxidation of 2,4-D herbicide and real pesticide wastewater with an integrated anodic oxidation/heterogeneous electro-Fenton process. J. Water Process. Eng. 2023, 56, 104429. [Google Scholar] [CrossRef]
- Kuśmierek, K.; Świątkowski, A.; Skrzypczyńska, K.; Błażewicz, S.; Hryniewicz, J. The effects of the thermal treatment of activated carbon on the phenols adsorption. Korean J. Chem. Eng. 2017, 34, 1081–1090. [Google Scholar] [CrossRef]
- Dudek, M.; Adamczyk, B.; Świątkowski, A.; Błażewicz, S.; Skrzypkiewicz, M. The influence of high-temperature treatment of granular activated carbon on its behaviour in direct carbon solid oxide fuel cell. In Proceedings of the 5th Central and Eastern European Conference on Thermal Analysis and Calorimetry (CEEC-TAC5) and 14th Mediterranean Conference on Calorimetry and Thermal Analysis (Medicta2019), Rome, Italy, 27–30 August 2019. Book of abstracts, PS2.027. [Google Scholar]
- Biniak, S.; Pakuła, M.; Świątkowski, A.; Bystrzejewski, M.; Błażewicz, S. Influence of high-temperature treatment of granular activated carbon on its structure and electrochemical behaviour in aqueous electrolyte solution. J. Mater. Res. 2010, 25, 1617–1628. [Google Scholar] [CrossRef]
- Błażewicz, S.; Świątkowski, A.; Trznadel, B.J. The influence of heat treatment on activated carbon structure and porosity. Carbon 1999, 37, 693–700. [Google Scholar] [CrossRef]
- Blachnio, M.; Kusmierek, K.; Swiatkowski, A.; Derylo-Marczewska, A. Adsorption of phenoxyacetic herbicides from water on carbonaceous and non-carbonaceous adsorbents. Molecules 2023, 28, 5404. [Google Scholar] [CrossRef]
- Abdel daiem, M.M.; Sánchez-Polo, M.; Rashed, A.S.; Kamal, N.; Said, N. Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons. Pol. J. Chem. Technol. 2019, 21, 1–12. [Google Scholar] [CrossRef]
- Kuśmierek, K.; Białek, A.; Świątkowski, A. Effect of activated carbon surface chemistry on adsorption of phenoxy carboxylic acid herbicides from aqueous solutions. Desalin. Water Treat. 2020, 186, 450–459. [Google Scholar] [CrossRef]
- Kuśmierek, K.; Dąbek, L.; Świątkowski, A. Removal of phenoxy herbicides from aqueous solutions using lignite as a low-cost adsorbent. Desalin. Water Treat. 2022, 260, 111–118. [Google Scholar] [CrossRef]
- Abdel Daiem, M.M.; Rivera-Utrilla, J.; Sánchez-Polo, M.; Ocampo-Pérez, R. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides. Sci. Total Environ. 2015, 537, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Kuśmierek, K.; Świątkowski, A.; Skrzypczyńska, K.; Dąbek, L. Adsorptive and electrochemical properties of carbon nanotubes, activated carbon, and graphene oxide with relatively similar specific surface area. Materials 2021, 14, 496. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Z.; Zhang, R.; Zhou, W.; Gao, P.; Wy, J.; Liu, H.; Liu, J.; Hu, A.; Chen, X. Oxygen-containing functional groups regulating the carbon/electrolyte interfacial properties toward enhanced K+ storage. Nano-Micro Lett. 2021, 13, 192. [Google Scholar] [CrossRef]
- Pakuła, M.; Świątkowski, A.; Biniak, S. Electro-oxidation of chlorophenoxy herbicides: Voltametric investigations. In Proceedings of the Annual Conference of Carbon (Carbon 2012), Krakow, Poland, 17–22 June 2012; p. 1080, ISBN 978-1-62993-436-5. [Google Scholar]
- Kudur, S.P.; Jayaprakash, G.K.; Abbas, M.; Rikhari, B.; Kalikeri, S. Some progress in developing electrochemical sensors for detection of 2,4-dichlorophenoxyacetic acid based on modified carbon interfaces: A brief review. J. Electrochem. Sci. Eng. 2023, 13, 923–936. [Google Scholar] [CrossRef]
- Fathia, S.; Rezaeeb, R.; Malekib, A.; Aminib, N.; Safarib, M.; Leec, S.-M. Fabrication of a sensitive electrochemical sensor of 2,4-dichlorophenoxyacetic acid herbicide based on synergistic catalysis of silver/manganese oxide nanoparticles and polyalizarin at low potential. Desalin. Water Treat. 2021, 229, 283–290. [Google Scholar] [CrossRef]
- Morales, D.M.; Risch, M. Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance. J. Phys. Energy 2021, 3, 034013. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, H.; Chen, G.; Zhang, Y. Study of IrxRu1-xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis. Electrochim. Acta 2009, 54, 6250–6256. [Google Scholar] [CrossRef]
- Aromaa, J.; Forsen, O. Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode. Electrochim. Acta 2006, 51, 6104–6110. [Google Scholar] [CrossRef]
- Teles, J.J.S.; Faria, E.R.; Franco, D.V.; Da Silva, L.M. Inner and outer surface areas, electrochemical porosity, and morphology factor of mixed oxide-covered mesh electrodes with a nominal composition of MOME-Sn0.5IrxRu(0.5−x)O2. Int. J. Electrochem. Sci. 2017, 12, 1755–1773. [Google Scholar] [CrossRef]
- Gaudet, J.; Tavares, A.C.; Trasatti, S.; Guay, D. Physicochemical characterization of mixed RuO2-SnO2 solutions. Chem. Mater. 2005, 17, 1570–1579. [Google Scholar] [CrossRef]
Carbon Material | SBET, m2·g−1 | Vmi, cm3·g−1 | Vme, cm3·g−1 | Vtot, cm3·g−1 |
---|---|---|---|---|
AC1500 | 969 | 0.416 | 0.070 | 0.486 |
AC1800 | 551 | 0.235 | 0.125 | 0.360 |
AC2100 | 8 | 0.00034 | 0.022 | 0.0223 |
Isotherm Model | Adsorbent | ||
---|---|---|---|
AC1500 | AC1800 | AC2100 | |
Freundlich | |||
KF ((mmol·g−1)(L·mmol−1)1/n) | 2.922 | 1.564 | 1.061 |
1/n | 0.298 | 0.292 | 0.275 |
R2 | 0.910 | 0.921 | 0.966 |
Langmuir | |||
qm (mmol·g−1) | 2.370 | 1.588 | 0.277 |
KL (L·mmol−1) | 19.26 | 8.970 | 4.171 |
R2 | 0.997 | 0.997 | 0.996 |
Carbon Material | OCP, V | Ecorr, V | jcorr, A·g−1 | Rp, Ω | ba, V·dec−1 | bc, V·dec−1 |
---|---|---|---|---|---|---|
AC1500 | 0.133 | −0.067 | 9.48·10−4 | 277 | 0.100 | 0.062 |
AC1800 | 0.217 | 0.018 | 5.05·10−4 | 366 | 0.077 | 0.051 |
AC2100 | 0.273 | 0.061 | 4.04·10−5 | 6153 | 0.085 | 0.053 |
Measurement | OCP, V | Ecorr, V | jcorr, A·g−1 | Rp, Ω | ba, V·dec−1 | bc, V·dec−1 |
---|---|---|---|---|---|---|
AC1500 | ||||||
I | 0.133 | −0.067 | 9.48·10−4 | 277 | 0.100 | 0.062 |
II | 0.210 | 0.010 | 1.23·10−3 | 193 | 0.099 | 0.053 |
III | 0.298 | 0.101 | 1.47·10−3 | 152 | 0.099 | 0.050 |
AC1800 | ||||||
I | 0.217 | 0.018 | 5.05·10−4 | 366 | 0.077 | 0.051 |
II | 0.317 | 0.117 | 8.82·10−4 | 222 | 0.082 | 0.054 |
III | 0.403 | 0.212 | 1.17·10−3 | 193 | 0.091 | 0.064 |
AC2100 | ||||||
I | 0.273 | 0.061 | 4.04·10−5 | 6153 | 0.085 | 0.053 |
II | 0.356 | 0.114 | 5.26·10−5 | 3139 | 0.046 | 0.045 |
III | 0.380 | 0.128 | 8.55·10−5 | 2118 | 0.054 | 0.042 |
Carbon Material | Cdl, F·g−1 | SBET, m2·g−1 |
---|---|---|
AC1500 | 4.5 | 969 |
AC1800 | 3.4 | 551 |
AC2100 | 2.2·10−3 | 8 |
Carbon Material | , C·g−1 | , C·g−1 | , C·g−1 | ||
---|---|---|---|---|---|
AC1500 | 129.37 | 2.10 | 127.27 | 0.02 | 0.98 |
AC1800 | 45.18 | 1.35 | 43.83 | 0.03 | 0.97 |
AC2100 | 4.60·10−3 | 2.56·10−3 | 2.04·10−3 | 0.56 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątkowski, A.; Kuśmierek, E.; Kuśmierek, K.; Błażewicz, S. The Influence of Thermal Treatment of Activated Carbon on Its Electrochemical, Corrosion, and Adsorption Characteristics. Molecules 2024, 29, 4930. https://doi.org/10.3390/molecules29204930
Świątkowski A, Kuśmierek E, Kuśmierek K, Błażewicz S. The Influence of Thermal Treatment of Activated Carbon on Its Electrochemical, Corrosion, and Adsorption Characteristics. Molecules. 2024; 29(20):4930. https://doi.org/10.3390/molecules29204930
Chicago/Turabian StyleŚwiątkowski, Andrzej, Elżbieta Kuśmierek, Krzysztof Kuśmierek, and Stanisław Błażewicz. 2024. "The Influence of Thermal Treatment of Activated Carbon on Its Electrochemical, Corrosion, and Adsorption Characteristics" Molecules 29, no. 20: 4930. https://doi.org/10.3390/molecules29204930
APA StyleŚwiątkowski, A., Kuśmierek, E., Kuśmierek, K., & Błażewicz, S. (2024). The Influence of Thermal Treatment of Activated Carbon on Its Electrochemical, Corrosion, and Adsorption Characteristics. Molecules, 29(20), 4930. https://doi.org/10.3390/molecules29204930