Molecular Networking, Docking, and Biological Evaluation of Licarin A from Myristica fragrans as a Potential Cancer Chemopreventive Agent
Abstract
:1. Introduction
2. Results
2.1. Applications of Molecular Networking of Myristica fragrans to Target the Presence of 1 for Isolation and Characterization
2.2. Bioactivity Screening of M. fragrans Extracts and Fractions
2.3. Isolation and Characterization of Licarin A (1)
2.4. Identification of the Binding Site of 1, GNPS Library Hits, and SIRIUS CSI: FingerID Structural Predictions to NF-κBp65 and PARP-1 by Molecular Docking
2.5. Demonstration of Innocuous Effects by Licarin A in Cell Cytotoxicity and Viability Assays
2.6. Comparative Cell Oxidative Control of Licarin A When Compared to 2 and Vitamin C
2.7. Inflammatory Protection by Licarin A in a phosphoNF-κBp65 Cytosolic Translocation Assay
2.8. Superior Safety Profile of 1 When Compared to 2 and Tamoxifen
3. Discussion
4. Materials and Methods
4.1. General
4.2. Plant Material
4.3. Extraction, Isolation, and Compound Identification
4.4. Test Compounds and Reagents
4.5. Cell Culture
4.6. Feature-Based Molecular Networking (FBMN), Global Natural Product Social Molecular Networking (GNPS), and SIRIUS Analysis
4.7. Molecular Docking
4.8. SRB Cell Cytotoxicity Assay
4.9. Cell Viability Crystal Violet Assay
4.10. Cell Oxidative Stress Assay
4.11. PhosphoNF-κBp65 Assay
4.12. Toxicity Assay in Zebrafish
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serrano, D.; Gandini, S.; Thomas, P.; Crew, K.D.; Kumar, N.B.; Vornik, L.A.; Lee, J.J.; Veronesi, P.; Viale, G.; Guerrieri-Gonzaga, A.; et al. Efficacy of alternative dose regimens of exemestane in postmenopausal women with stage 0 to II estrogen receptor–positive breast cancer: A randomized clinical trial. JAMA Oncol. 2023, 9, 664–672. [Google Scholar] [CrossRef]
- Penny, L.K.; Wallace, H.M. The challenges for cancer chemoprevention. Chem. Soc. Rev. 2015, 44, 8836–8847. [Google Scholar] [CrossRef]
- Mehta, R.G.; Pezzuto, J.M. Discovery of cancer preventive agents from natural products: From plants to prevention. Curr. Oncol. Rep. 2002, 4, 478–486. [Google Scholar] [CrossRef]
- Kinghorn, A.D.; Su, B.N.; Jang, D.S.; Chang, L.C.; Lee, D.; Gu, J.Q.; Carcache de Blanco, E.J.; Pawlus, A.D.; Park, E.J.; Cuendet, M.; et al. Natural inhibitors of carcinogenesis. Planta Med. 2004, 70, 691–705. [Google Scholar] [CrossRef]
- George, B.P.; Chandran, R.; Abrahamse, H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants 2021, 10, 1455. [Google Scholar] [CrossRef]
- Blanco Carcache, P.J.; Clinton, S.K.; Kinghorn, A.D. Discovery of natural products for cancer prevention. Cancer J. 2024, 30, 313–319. [Google Scholar] [CrossRef]
- Muñoz-Acuña, U.; Blanco Carcache, P.J.; Matthew, S.; Carcache de Blanco, E.J. New acyclic bis phenylpropanoid and neolignans, from Myristica fragrans Houtt., exhibiting PARP-1 and NF-κB inhibitory effects. Food Chem. 2016, 202, 269–275. [Google Scholar] [CrossRef]
- Jannu, L.N.; Hussain, S.P.; Rao, A.R. Chemopreventive action of mace (Myristica fragrans, Houtt.) on DMBA-induced papillomagenesis in the skin of mice. Cancer Lett. 1991, 56, 59–63. [Google Scholar] [CrossRef]
- Rao, A.R.; Hashim, S. Chemopreventive action of oriental food-seasoning spices mixture garam masala on DMBA-induced transplacental and translactational carcinogenesis in mice. Nutr. Cancer 1995, 23, 91–101. [Google Scholar] [CrossRef]
- Martins, C.; Doran, C.; Silva, I.C.; Miranda, C.; Rueff, J.; Rodrigues, A.S. Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells. Chem. Biol. Interact. 2014, 218, 1–9. [Google Scholar] [CrossRef]
- Zheng, G.-Q.; Kenney, P.M.; Zhang, J.; Lam, L.K.T. Inhibition of benzo[a]pyrene-induced tumorigenesis by myristicin, a volatile aroma constituent of parsley leaf oil. Carcinogenesis 1992, 13, 1921–1923. [Google Scholar] [CrossRef]
- Ahmad, H.; Tijerina, M.T.; Tobola, A.S. Preferential overexpression of a class MU glutathione-S-transferase subunit in mouse liver by myristicin. Biochem. Biophys. Res. Commun. 1997, 236, 825–828. [Google Scholar] [CrossRef]
- León-Díaz, R.; Meckes, M.; Said-Fernández, S.; Molina-Salinas, G.M.; Vargas-Villarreal, J.; Torres, J.; Luna-Herrera, J.; Jiménez-Arellanes, A. Antimycobacterial neolignans isolated from Aristolochia taliscana. Mem. Inst. Oswaldo Cruz 2010, 105, 45–51. [Google Scholar] [CrossRef]
- Mengarda, A.C.; Silva, M.P.; Cirino, M.E.; Morais, T.R.; Conserva, G.A.; Lago, J.H.G.; De Moraes, J. Licarin A, a neolignan isolated from Nectandra oppositifolia Nees & Mart. (Lauraceae), exhibited moderate preclinical efficacy against Schistosoma mansoni infection. Phytother. Res. 2021, 35, 5154–5162. [Google Scholar]
- Sathya, S.; Amarasinghe, N.R.; Jayasinghe, L.; Araya, H.; Fujimoto, Y. Enzyme inhibitors from the aril of Myristica fragrans. S. Afr. J. Bot. 2020, 130, 172–176. [Google Scholar] [CrossRef]
- Nishina, A.; Ukiya, M.; Motegi, K.; Kiryu, R.; Sato, D.; Sada, M.; Hori, Y.; Satsu, H.; Uemura, K.; Koketsu, M.; et al. Promotion of ABCG2 gene expression by neolignans from Piper longum L. Biosci. Biotechnol. Biochem. 2023, 87, 1523–1531. [Google Scholar] [CrossRef]
- Li, F.; Yang, X.-W. Three new neolignans from the aril of Myristica fragrans. Helv. Chim. Acta 2007, 90, 1491–1496. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Nothias-Esposito, M.; Da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Chin, Y.-W.; Jung, H.-A.; Liu, Y.; Su, B.-N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, A.D. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J. Agric. Food Chem. 2007, 55, 4691–4697. [Google Scholar] [CrossRef]
- Wang, L.; Mou, L.; Guan, S.; Wang, C.; Sik, A.; Stoika, R.; Liu, K.; Jin, M. Isoliquiritigenin induces neurodevelopmental-toxicity and anxiety-like behavior in zebrafish larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 266, 109555. [Google Scholar] [CrossRef]
- Barbosa-Filho, J.M.; Leitão Da-Cunha, E.V.; Da Silva, M.S. Complete assignment of the 1H and 13C NMR spectra of some lignoids from Lauraceae. Magn. Reson. Chem. 1998, 36, 929–935. [Google Scholar] [CrossRef]
- Phan, M.G.; Phan, T.S.; Matsunami, K.; Otsuka, H. New neolignans and lignans from Vietnamese medicinal plant Machilus odoratissima NEES. Chem. Pharm. Bull. 2006, 54, 380–383. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Huang, S.; Du, J.; Huang, C. Screening of anti-cancer agent using zebrafish: Comparison with the MTT assay. Biochem. Biophys. Res. Commun. 2012, 422, 85–90. [Google Scholar] [CrossRef]
- Nazarali, S.A.; Narod, S.A. Tamoxifen for women at high risk of breast cancer. Breast Cancer Targets Ther. 2014, 6, 29–36. [Google Scholar]
- Kim, E.-Y.; Choi, H.-J.; Park, M.-J.; Jung, Y.-S.; Lee, S.-O.; Kim, K.-J.; Choi, J.-H.; Chung, T.-W.; Ha, K.-T. Myristica fragrans suppresses tumor growth and metabolism by inhibiting lactate dehydrogenase A. Am. J. Chin. Med. 2016, 44, 1063–1079. [Google Scholar] [CrossRef]
- Rutz, A.; Sorokina, M.; Galgonek, J.; Mietchen, D.; Willighagen, E.; Gaudry, A.; Graham, J.G.; Stephan, R.; Page, R.; Vondrášek, J.; et al. The LOTUS initiative for open knowledge management in natural products research. Elife 2022, 11, e70780. [Google Scholar] [CrossRef]
- To, C.; Kim, E.-H.; Royce, D.B.; Williams, C.R.; Collins, R.M.; Risingsong, R.; Sporn, M.B.; Liby, K.T. The PARP inhibitors, veliparib and olaparib, are effective chemopreventive agents for delaying mammary tumor development in BRCA1-deficient mice. Cancer Prev. Res. 2014, 7, 698–707. [Google Scholar] [CrossRef]
- Weaver, A.N.; Yang, E.S. Beyond DNA repair: Additional functions of PARP-1 in cancer. Front. Oncol. 2013, 3, 290. [Google Scholar] [CrossRef]
- Racz, I.; Tory, K.; Gallyas, F.; Berente, Z.; Osz, E.; Jaszlits, L.; Bernath, S.; Sumegi, B.; Rabloczky, G.; Literati-Nagy, P. BGP-15—A novel poly(ADP-ribose) polymerase inhibitor—Protects against nephrotoxicity of cisplatin without compromising its antitumor activity. Biochem. Pharmacol. 2002, 63, 1099–1111. [Google Scholar] [CrossRef]
- Moloney, J.N.; Cotter, T.G. ROS signaling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef]
- Szabó, C.; Ohshima, H. DNA damage induced by peroxynitrite: Subsequent biological effects. Nitric Oxide 1997, 1, 373–385. [Google Scholar] [CrossRef]
- Park, M.H.; Hong, J.T. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 2016, 5, 15. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Ren, H.-H.; Wang, D.; Chen, Y.; Qu, C.-J.; Pan, Z.-H.; Liu, X.-N.; Hao, W.-J.; Xu, W.-J.; Wang, K.-J.; et al. Isoliquiritigenin induces mitochondrial dysfunction and apoptosis by inhibiting mitoNEET in a reactive oxygen species-dependent manner in A375 human melanoma cells. Oxid. Med. Cell. Longev. 2019, 2019, 9817576. [Google Scholar] [CrossRef]
- Li, A.; Yang, L.; Geng, X.; Peng, X.; Lu, T.; Deng, Y.; Dong, Y. Rocaglamide-A potentiates osteoblast differentiation by inhibiting NF-κB signaling. Mol. Cells 2015, 38, 941–949. [Google Scholar] [CrossRef]
- Xia, L.; Zheng, L.; Zhou, J.L. Transcriptional and morphological effects of tamoxifen on the early development of zebrafish (Danio rerio). J. Appl. Toxicol. 2016, 36, 853–862. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Kao, E.-S.; Chu, C.-Y.; Lin, W.-L.; Chiou, Y.-H.; Tseng, T.-H. Inhibitory effect of ailanthoidol on 12-O-tetradecanoyl-phorbol-13-acetate-induced tumor promotion in mouse skin. Oncol. Rep. 2006, 16, 921–927. [Google Scholar] [CrossRef]
- Chilampalli, S.; Zhang, X.; Fahmy, H.; Kaushik, R.S.; Zeman, D.; Hildreth, M.B.; Dwivedi, C. Chemopreventive effects of honokiol on UVB-induced skin cancer development. Anticancer Res. 2010, 30, 777. [Google Scholar]
- Konoshima, T.; Kozuka, M.; Tokuda, H.; Nishino, H.; Iwashima, A.; Haruna, M.; Ito, K.; Tanabe, M. Studies on inhibitors of skin tumor promotion, IX. Neolignans from Magnolia officinalis. J. Nat. Prod. 1991, 54, 816–822. [Google Scholar] [CrossRef]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef]
- Dührkop, K.; Nothias, L.F.; Fleischauer, M.; Ludwig, M.; Hoffmann, M.A.; Rousu, J.; Dorrestein, P.C.; Böcker, S. Classes for the masses: Systematic classification of unknowns using fragmentation spectra. BioRxiv 2020, 046672. [Google Scholar] [CrossRef]
- Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [Google Scholar] [CrossRef]
- Ludwig, M.; Nothias, L.-F.; Dührkop, K.; Koester, I.; Fleischauer, M.; Hoffmann, M.A.; Petras, D.; Vargas, F.; Morsy, M.; Aluwihare, L.; et al. ZODIAC: Database-independent molecular formula annotation using Gibbs sampling reveals unknown small molecules. BioRxiv 2019, 842740. [Google Scholar] [CrossRef]
- Hoffmann, M.A.; Nothias, L.-F.; Ludwig, M.; Fleischauer, M.; Gentry, E.C.; Witting, M.; Dorrestein, P.C.; Dührkop, K.; Böcker, S. Assigning confidence to structural annotations from mass spectra with COSMIC. BioRxiv 2021, 435634. [Google Scholar] [CrossRef]
- Discovery Studio Visualizer v21.1.0.20298; Dassault Systèmes Biovia Corp: Vèlizy-Villacoublay, France, 2021.
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Blanco Carcache, P.J.; Anaya Eugenio, G.D.; Ninh, T.N.; Moore, C.E.; Rivera-Chávez, J.; Ren, Y.; Soejarto, D.D.; Kinghorn, A.D. Cytotoxic constituents of Glycosmis ovoidea collected in Vietnam. Fitoterapia 2022, 162, 105265. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Muñoz-Acuna, U.; Ezzone, N.; Rakotondraibe, L.H.; Carcache de Blanco, E.J. Activity in MCF-7 estrogen-sensitive breast cancer cells of capsicodendrin from Cinnamosma fragrans. Anticancer Res. 2021, 41, 5935. [Google Scholar] [CrossRef]
- Anaya Eugenio, G.D.; Addo, E.M.; Ezzone, N.; Henkin, J.M.; Ninh, T.N.; Ren, Y.; Soejarto, D.D.; Kinghorn, A.D.; Carcache de Blanco, E.J. Caspase-dependent apoptosis in prostate cancer cells and zebrafish by corchorusoside C from Streptocaulon juventas. J. Nat. Prod. 2019, 82, 1645–1655. [Google Scholar] [CrossRef]
- Mirtallo Ezzone, N.P.; Anaya-Eugenio, G.D.; Addo, E.M.; Ren, Y.; Kinghorn, A.D.; Carcache de Blanco, E.J. Effects of corchorusoside C on NF-κB and PARP-1 molecular targets and toxicity profile in zebrafish. Int. J. Mol. Sci. 2022, 23, 14545. [Google Scholar] [CrossRef]
- Velazquez Cruz, M.; Salinas-Arellano, E.; Castro Dionicio, I.; Jeyaraj, J.G.; Mirtallo Ezzone, N.P.; Carcache de Blanco, E.J. Bioactive compounds isolated from the bark of Aesculus glabra Willd. Phytochem. Lett. 2024, 61, 106–114. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef]
Compound No. | Estimated Free Energy of Binding (kcal/mol) | Estimated Inhibition Constant, ki (µM) | GNPS vs. SIRIUS Database (Tier) | Certainty Coefficient |
---|---|---|---|---|
NF-κBp65 | ||||
Licarin A (1) | −6.78 | 10.66 | GNPS (Bronze) | 0.81 c |
3 | −6.48 | 17.9 | SIRIUS | 80.60% |
4 | −6.56 | 15.54 | SIRIUS | 80.60% |
5 | −7.43 | 3.58 | SIRIUS | 90.70% |
6 | −7.02 | 7.12 | SIRIUS | 90.70% |
7 | −7.20 | 5.30 | GNPS (Bronze) | 0.82 c |
8 | −6.04 | 37.5 | GNPS (Bronze) | 0.90 c |
9 | −6.93 | 8.20 | GNPS (Bronze) | 0.87 c |
10 | −6.58 | 15.01 | GNPS (Bronze) | 0.82 c |
PARP-1 | ||||
Licarin A (1) | −8.93 | 0.286 | GNPS (Bronze) | 0.81 c |
3 | −8.45 | 0.639 | SIRIUS | 80.60% |
4 | −8.49 | 0.598 | SIRIUS | 80.60% |
5 | −8.79 | 0.363 | SIRIUS | 90.70% |
6 | −8.86 | 0.363 | SIRIUS | 90.70% |
7 | −9.5 | 0.108 | GNPS (Bronze) | 0.82 c |
8 | −8.56 | 0.530 | GNPS (Bronze) | 0.90 c |
9 | −8.90 | 0.300 | GNPS (Bronze) | 0.87 c |
10 | −9.43 | 0.123 | GNPS (Bronze) | 0.82 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco Carcache, P.J.; Castro-Dionicio, I.Y.; Mirtallo Ezzone, N.P.; Salinas-Arrellano, E.D.; Bahar, J.; Clinton, S.K.; Kinghorn, A.D. Molecular Networking, Docking, and Biological Evaluation of Licarin A from Myristica fragrans as a Potential Cancer Chemopreventive Agent. Molecules 2024, 29, 4919. https://doi.org/10.3390/molecules29204919
Blanco Carcache PJ, Castro-Dionicio IY, Mirtallo Ezzone NP, Salinas-Arrellano ED, Bahar J, Clinton SK, Kinghorn AD. Molecular Networking, Docking, and Biological Evaluation of Licarin A from Myristica fragrans as a Potential Cancer Chemopreventive Agent. Molecules. 2024; 29(20):4919. https://doi.org/10.3390/molecules29204919
Chicago/Turabian StyleBlanco Carcache, Peter J., Ines Y. Castro-Dionicio, Nathan P. Mirtallo Ezzone, Eric D. Salinas-Arrellano, Joshua Bahar, Steven K. Clinton, and A. Douglas Kinghorn. 2024. "Molecular Networking, Docking, and Biological Evaluation of Licarin A from Myristica fragrans as a Potential Cancer Chemopreventive Agent" Molecules 29, no. 20: 4919. https://doi.org/10.3390/molecules29204919
APA StyleBlanco Carcache, P. J., Castro-Dionicio, I. Y., Mirtallo Ezzone, N. P., Salinas-Arrellano, E. D., Bahar, J., Clinton, S. K., & Kinghorn, A. D. (2024). Molecular Networking, Docking, and Biological Evaluation of Licarin A from Myristica fragrans as a Potential Cancer Chemopreventive Agent. Molecules, 29(20), 4919. https://doi.org/10.3390/molecules29204919