Facile Fabrication of Co-Doped Porous Carbon from Coal Hydrogasification Semi-Coke for Efficient Microwave Absorption
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphology and Structure
2.2. Microwave Absorption Performance
2.3. Microwave Absorption Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of Hierarchical Porous Co/C Absorbers
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guan, H.; Wang, Q.; Wu, X.; Pang, J.; Jiang, Z.; Chen, G.; Dong, C.; Wang, L.; Gong, C. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B Eng. 2021, 207, 108562. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Pan, H.; Wu, R. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, Y.; Liu, W.; Yang, L.; Zhang, B.; Wang, L.P.; Ji, G.; Xu, Z.J. Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption. Nano-Micro Lett. 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Gu, W.; Wang, G.; Zheng, J.; Pei, C.; Fan, F.; Ji, G. Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding. J. Mater. Chem. A 2020, 8, 24267–24283. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Guo, F.; Du, Y.; Chen, Y. Self-assembly sandwich-like Fe, Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance. Appl. Surf. Sci. 2021, 562, 150212. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, Y.; Wang, W.; Yu, D. Robust magnetic and electromagnetic wave absorption performance of reduced graphene oxide loaded magnetic metal nanoparticle composites. Adv. Powder Technol. 2021, 32, 194–203. [Google Scholar] [CrossRef]
- Lu, X.; Li, X.; Zhu, W.; Xu, H. Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption. Carbon 2022, 191, 600–609. [Google Scholar] [CrossRef]
- Yang, W.; Yan, L.; Jiang, B.; Wang, P.; Li, Z.; Wang, C.; Bai, H.; Zhang, C.; Li, Y. Crumpled nitrogen-doped porous carbon nanosheets derived from petroleum pitch for high-performance and flexible electromagnetic wave absorption. Ind. Eng. Chem. Res. 2022, 61, 2799–2808. [Google Scholar] [CrossRef]
- Wang, H.; Meng, F.; Li, J.; Li, T.; Chen, Z.; Luo, H.; Zhou, Z. Carbonized Design of Hierarchical Porous Carbon/Fe3O4@Fe Derived from Loofah Sponge to Achieve Tunable High-Performance Microwave Absorption. ACS Sustain. Chem. Eng. 2018, 6, 11801–11810. [Google Scholar] [CrossRef]
- Wu, Z.; Tian, K.; Huang, T.; Hu, W.; Xie, F.; Wang, J.; Su, M.; Li, L. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 11108–11115. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, Q.; Zhang, R.; Zhao, Y.; Wang, J. Fabrication of flexible thermoplastic polyurethane/coal hydrogasification semi-coke composites with low rGO content for high-performance microwave absorption. ACS Appl. Electron. Mater. 2022, 4, 5941–5952. [Google Scholar] [CrossRef]
- Zhang, D.; He, W.; Quan, G.; Wang, Y.; Su, Y.; Lei, L.; Du, Y.; Hong, Y.; Wang, S.; Tang, Y.; et al. Sterculia lychnophora seed-derived porous carbon@CoFe2O4 composites with efficient microwave absorption performance. Appl. Surf. Sci. 2023, 607, 155027. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, X.; Luo, H.; Deng, L.; Wang, S.; Wei, S.; Zheng, Y.; Jia, Q.; Liu, J. Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 2019, 494, 540–550. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, P.; Liang, B.; Wan, G.-S. Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon 2023, 202, 66–75. [Google Scholar] [CrossRef]
- Quan, B.; Xu, G.; Gu, W.; Sheng, J.; Ji, G. Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance. J. Colloid Interface Sci. 2019, 533, 297–303. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, B.; Lv, H. Low-dimensional cobalt doped carbon composite towards wideband electromagnetic dissipation. Nano Res. 2023, 16, 70–79. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, D.; Fan, T. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 2008, 93, 013110. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.; Chen, C.; Liu, X.; Liu, H. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 2019, 152, 545–555. [Google Scholar] [CrossRef]
- Wang, L.; Du, Z.; Bai, X.; Lin, Y. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption. J. Colloid Interface Sci. 2021, 591, 76–84. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.; Jin, H.; Dong, Y. Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption. Compos. Sci. Technol. 2020, 195, 108206. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.-B.; Wu, X.; Deng, Z.; Zhou, E.; Yu, Z.-Z. Nanolayered cobalt@carbon hybrids derived from metal–organic frameworks for microwave absorption. ACS Appl. Nano Mater. 2019, 2, 2325–2335. [Google Scholar] [CrossRef]
- Jin, H.; Wang, J.; Yang, S.; Wu, Q.; Zhang, B. ZIF-67-derived micron-sized cobalt-doped porous carbon-based microwave absorbers with g-C3N4 as template. Ceram. Int. 2021, 47, 11506–11513. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Zhang, H.; He, X.; Wu, B.; Wang, J.; Mahmood, N.; Jian, X. The MOFs/COFs-derivant decorating FeSiAl coupling magnetic and electrical losses for enhanced microwave absorption. Appl. Surf. Sci. 2024, 651, 159242. [Google Scholar] [CrossRef]
- Liang, J.; Chen, J.; Shen, H.; Hu, K.; Zhao, B.; Kong, J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 2021, 33, 1789–1798. [Google Scholar] [CrossRef]
- Fu, M.; Yu, H.; Chen, W. Construction of Co3O4 porous rod/graphene heterostructures toward strong and broadband microwave absorption applications. Appl. Surf. Sci. 2023, 622, 156946. [Google Scholar] [CrossRef]
- Li, C.; Sui, J.; Zhang, Z.; Jiang, X.; Zhang, Z.; Yu, L. Microwave-assisted synthesis of tremella-like NiCo/C composites for efficient broadband electromagnetic wave absorption at 2–40 GHz. Chem. Eng. J. 2019, 375, 122017. [Google Scholar] [CrossRef]
- Wu, N.; Liu, C.; Xu, D.; Liu, J.; Liu, W.; Liu, H.; Zhang, J.; Xie, W.; Guo, Z. Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. J. Mater. Chem. C 2019, 7, 1659–1669. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, K.; Zhang, C.; Wang, J.; Shu, R.; Chen, Z.; Liu, X.; Li, Y.; Xu, L. Lightweight and efficient luffa sponge carbon/Co composites with adjustable electromagnetic wave absorption properties. J. Colloid Interface Sci. 2023, 652, 1138–1147. [Google Scholar] [CrossRef]
- Wang, X.; Guan, Y.; Zhang, R.; Zhou, P.; Song, Z.; Wang, M.; Wang, L.; Zhang, Q. Facile synthesis of cobalt nanoparticles embedded in a rod-like porous carbon matrix with excellent electromagnetic wave absorption performance. Ceram. Int. 2021, 47, 643–653. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Kang, M.; Zhao, Y.; Li, Q.; Wang, J. Fabrication of flexible waterborne polyurethane/Fe-doped residual carbon from coal hydrogasification semi-coke composites for high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 2023, 174, 107710. [Google Scholar] [CrossRef]
- Li, P.; Ailijiang, N.; Cao, X.; Lei, T.; Liang, P.; Zhang, X.; Huang, X.; Teng, J. Pretreatment of coal gasification wastewater by adsorption using activated carbons and activated coke. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 177–183. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Zhang, T.; Tang, J.; Xu, Y.; Zhang, J. Effect of Operational Variables on the Hydrogasification of Inner Mongolian Lignite Semicoke. Energy Fuels 2013, 27, 4589–4597. [Google Scholar] [CrossRef]
- Ding, X.K.; Zhang, T.K.; Zhang, Y.F.; Xu, Y.; Zhang, G.J. Hydrogasification of Low-Oxygen Semi-Coke to Produce Methane by Consuming Less Hydrogen. Appl. Mech. Mater. 2013, 316–317, 124–127. [Google Scholar] [CrossRef]
- Gao, F.; Li, Y.; Mao, L.; Wang, Y.; Zhu, B.; Liang, L.; Li, G.; Zhang, R. Facile synthesis of Co/SC microwave absorbents by recycling coal hydrogasification residue. Mater. Lett. 2022, 308, 131168. [Google Scholar] [CrossRef]
- Gao, S.; Chen, L.; Zhang, Y.; Shan, J. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber. Compos. Sci. Technol. 2021, 213, 108921. [Google Scholar] [CrossRef]
- Deng, J.; Li, S.; Zhou, Y.; Liang, L.; Zhao, B.; Zhang, X.; Zhang, R. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J. Colloid Interface Sci. 2018, 509, 406–413. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Deng, X.; Gao, S.; Liu, Y.; Bao, Y.; Zhu, Y.; Fu, Y. Cellular-like sericin-derived carbon decorated reduced graphene oxide for tunable microwave absorption. Appl. Surf. Sci. 2022, 599, 154063. [Google Scholar] [CrossRef]
- Cui, J.; Wang, X.; Huang, L.; Zhang, C.; Yuan, Y.; Li, Y. Environmentally friendly bark-derived Co-Doped porous carbon composites for microwave absorption. Carbon 2022, 187, 115–125. [Google Scholar] [CrossRef]
- Cai, Y.; Cheng, Y.; Wang, Z.; Fei, G.; Lavorgna, M.; Xia, H. Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption. Chem. Eng. J. 2023, 457, 141102. [Google Scholar] [CrossRef]
- Wang, B.; Ji, Y.; Mu, C.; Huo, Y.; Xiang, J.; Nie, A.; Xue, T.; Zhai, K.; Liu, Z.; Wen, F. Well-controlled Core-shell structures based on Fe3O4 nanospheres coated by polyaniline for highly efficient microwave absorption. Appl. Surf. Sci. 2022, 591, 153176. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, X.; Huang, J.; Chen, S.; Zhang, Y.; Dong, C.; Chen, G.; Wang, L.; Guan, H. Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects. J. Alloys Compd. 2021, 890, 161887. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, Y.; Yang, C.; Kong, L.B. NiFe2O4/coal-based carbon composites with magnetic properties and microwave absorption capacity prepared through microwave radiation and hydrothermal reaction. Synth. Met. 2023, 297, 117404. [Google Scholar] [CrossRef]
- Li, X.; Zhou, H.; Zhang, J.; Zhang, X.; Li, M.; Zhang, J.; Darwish, M.A.; Zhou, T.; Sun, S.-K.; Xie, L.; et al. Construction of shell-like carbon superstructures through anisotropically oriented self-assembly for distinct electromagnetic wave absorption. J. Mater. Chem. A 2024, 12, 4057–4066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-F.; Wang, L.-F.; Gao, S.-J.; Yu, T.-L.; Li, Q.-F.; Wang, J.-W. Facile Fabrication of Co-Doped Porous Carbon from Coal Hydrogasification Semi-Coke for Efficient Microwave Absorption. Molecules 2024, 29, 4633. https://doi.org/10.3390/molecules29194633
Li Y-F, Wang L-F, Gao S-J, Yu T-L, Li Q-F, Wang J-W. Facile Fabrication of Co-Doped Porous Carbon from Coal Hydrogasification Semi-Coke for Efficient Microwave Absorption. Molecules. 2024; 29(19):4633. https://doi.org/10.3390/molecules29194633
Chicago/Turabian StyleLi, Yan-Fang, Li-Fang Wang, Shu-Juan Gao, Tan-Lai Yu, Qi-Feng Li, and Jun-Wei Wang. 2024. "Facile Fabrication of Co-Doped Porous Carbon from Coal Hydrogasification Semi-Coke for Efficient Microwave Absorption" Molecules 29, no. 19: 4633. https://doi.org/10.3390/molecules29194633
APA StyleLi, Y.-F., Wang, L.-F., Gao, S.-J., Yu, T.-L., Li, Q.-F., & Wang, J.-W. (2024). Facile Fabrication of Co-Doped Porous Carbon from Coal Hydrogasification Semi-Coke for Efficient Microwave Absorption. Molecules, 29(19), 4633. https://doi.org/10.3390/molecules29194633