Optimization of Different Extraction Methods for Phenolic Compound Verbascoside from Chinese Olea europaea Leaves Using Deep Eutectic Solvents: Impact on Antioxidant and Anticancer Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Experiment Analysis
2.1.1. Effects of Extraction Time on the TPC and VAY
2.1.2. Effects of Liquid–Solid Ratios on the TPC and VAY
2.1.3. Effects of Moisture Contents on the TPC and VAY
2.2. Optimization Experiment of RSM Analysis
2.2.1. Extraction Model Analysis
2.2.2. Response Surface Analysis
2.2.3. Optimization of Extraction Conditions
2.3. Quantitative Analysis of Phenolic Compounds
2.4. Antioxidant Activity Assay
2.4.1. DPPH• Assay
2.4.2. ABTS•+ Assay
2.5. Anticancer Activity Assay
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of DESs
3.3. Experimental Design Using UAE and WBE
3.3.1. Single-Factor Experiment
3.3.2. RSM Optimization Experiment
3.4. HPLC Analysis of Phenolic Compounds
3.5. Determination of Total Phenolic Content (TPC)
3.6. Determination of Antioxidant Activity
3.6.1. DPPH• Radical Scavenging Activity
3.6.2. ABTS•+ Radical Scavenging Activity
3.7. Determination of Antitumor Activity
3.7.1. Cell Culture
3.7.2. Cell Viability Assay
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ćavar Zeljkovıć, S.; Sahinler, S.S.; Sarikurkcu, C.; Kirkan, B.; Binzet, R.; Tarkowski, P. Exploring the pharmacological potential of Onosma riedliana: Phenolic compounds and their biological activities. Plant Foods Hum. Nutr. 2024, 79, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, H.A.A.; Jasim, R.A.; Ibrahim, I.T. Verbascoside—A review of its antitumor activities. Pharmacol. Pharm. 2021, 12, 109–126. [Google Scholar] [CrossRef]
- Khound, P.; Sarma, H.; Sarma, P.P.; Jana, U.K.; Devi, R. Ultrasound-assisted extraction of verbascoside from Clerodendrum glandulosum leaves for analysis of antioxidant and antidiabetic activities. ACS Omega 2023, 8, 20360–20369. [Google Scholar] [CrossRef] [PubMed]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef]
- Khan, R.A.; Hossain, R.; Roy, P.; Jain, D.; Saikat, A.S.M.; Shuvo, A.P.R.; Akram, M.; Elbossaty, W.F.; Khan, I.N.; Painuli, S. Anticancer effects of acteoside: Mechanistic insights and therapeutic status. Eur. J. Pharmacol. 2022, 916, 174699. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Pan, J.; Ma, K. Verbascoside: A neuroprotective phenylethanoid glycosides with anti-depressive properties. Phytomedicine 2023, 120, 155027. [Google Scholar] [CrossRef]
- Anil, S.; Dosler, S.; Mericli, A. Chemical composition and antimicrobial activity of verbascum caesareum. Chem. Nat. Compd. 2016, 52, 125–126. [Google Scholar] [CrossRef]
- Nigro, O.; Tuzi, A.; Tartaro, T.; Giaquinto, A.; Vallini, I.; Pinotti, G. Biological effects of verbascoside and its anti-inflammatory activity on oral mucositis: A review of the literature. Anti-Cancer Drugs 2020, 31, 1–5. [Google Scholar] [CrossRef]
- Rossi, R.; Mainardi, E.; Vizzarri, F.; Corino, C. Verbascoside-rich plant extracts in animal nutrition. Antioxidants 2023, 13, 39. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, C.; Li, J.; Zhang, L.; Yang, L.; Zhou, Z.; Zhu, Y.; Zhao, D. Ionic liquid-based microwave-assisted extraction of verbascoside from Rehmannia root. Ind. Crops Prod. 2018, 124, 59–65. [Google Scholar] [CrossRef]
- Oyourou, J.-N.; Combrinck, S.; Regnier, T.; Marston, A. Purification, stability and antifungal activity of verbascoside from Lippia javanica and Lantana camara leaf extracts. Ind. Crops Prod. 2013, 43, 820–826. [Google Scholar] [CrossRef]
- Henn, J.G.; Steffens, L.; de Moura Sperotto, N.D.; de Souza Ponce, B.; Veríssimo, R.M.; Boaretto, F.B.M.; Hassemer, G.; Péres, V.F.; Schirmer, H.; Picada, J.N. Toxicological evaluation of a standardized hydroethanolic extract from leaves of Plantago australis and its major compound, verbascoside. J. Ethnopharmacol. 2019, 229, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Gan, W. RP-HPLC simultaneous determination of three phenylethanoid glycosides in Cistanche sinensis G. Beck. Chin. J. Pharm. Anal. 2011, 31, 1084–1087. [Google Scholar]
- Zhai, J.; Chen, X.; Sun, Z.; Li, C.; Li, B. Current advances in biosynthesis of acteoside. China Biotechnol. 2021, 41, 94–104. [Google Scholar]
- Huang, L.; Sun, S.; Zheng, Y. Simultaneous determination and optimization of extraction process of catalpol and acteoside from rehmanniae radix. J. Chin. Med. Mater. 2012, 35, 1318–1322. [Google Scholar]
- Ayinuer, M.; Li, G.; Huo, S.; Yan, M. Optimization of centrifugal extraction technology of verbascoside by box-behnken response surface methodology. Chin. J. Mod. Appl. Pharm. 2022, 39, 3086–3091. [Google Scholar]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Zheng, L.; Gong, Z.M. Study on wall-breaking assisted extraction of dihydromyricetin from Ampelopsis grossedentata. Hubei Agric. Sci. 2018, 57, 118. [Google Scholar]
- Lucia, S.; Fabio, F.; Nicola, C.; Maria, D.C.; Carmela, C.M.; Barbara, S.; Roberta, T.; Fernanda, G. Hydrophobic deep eutectic solvents in the food sector: Focus on their use for the extraction of bioactive compounds. Food Chem. 2023, 405, 134703. [Google Scholar]
- Wu, K.; Ren, J.; Wang, Q.; Nuerjiang, M.; Xia, X.; Bian, C. Research progress on the preparation and action mechanism of natural deep eutectic solvents and their application in food. Foods 2022, 11, 3528. [Google Scholar] [CrossRef]
- Wang, B.; Qu, J.; Feng, S.; Chen, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Seasonal variations in the chemical composition of Liangshan olive leaves and their antioxidant and anticancer activities. Foods 2019, 8, 657. [Google Scholar] [CrossRef] [PubMed]
- Đani, B.; Monika, B.; Ana, M.; DANIELA, A.K.; Anamaria, B.; Sanja, D.; Mihaela, F.; ANA, K.M. Oleuropein in olive leaf, branch, and stem extracts: Stability and biological activity in human cervical carcinoma and melanoma cells. Acta Pharm. 2023, 73, 601–616. [Google Scholar]
- Markhali, F.S.; Teixeira, J.A.; Rocha, C.M. Olive tree leaves—A source of valuable active compounds. Processes 2020, 8, 1177. [Google Scholar] [CrossRef]
- Selin, Ş.; Mehmet, B. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar]
- Zheng, B.; Yuan, Y.; Xiang, J.; Jin, W.; Johnson, J.B.; Li, Z.; Wang, C.; Luo, D. Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison and bioactivities. LWT 2022, 154, 112740. [Google Scholar] [CrossRef]
- García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J.J.; Fernández-Bolaños, J. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef]
- Huang, J.; Guo, X.; Xu, T.; Fan, L.; Zhou, X.; Wu, S. Ionic deep eutectic solvents for the extraction and separation of natural products. J. Chromatogr. A 2019, 1598, 1–19. [Google Scholar] [CrossRef]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Meng, Z.; Zhao, J.; Duan, H.; Guan, Y.; Zhao, L. Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. J. Pharm. Biomed. Anal. 2018, 161, 246–253. [Google Scholar] [CrossRef]
- Legesse, A.B.; Emire, S.A.; Tadesse, M.G.; Dadi, D.W.; Kassa, S.K.; Oyinloye, T.M.; Yoon, W.B. Optimization of ultrasound-assisted extraction of verbascum sinaiticum Leaves: Maximal phenolic yield and antioxidant capacity. Foods 2024, 13, 1255. [Google Scholar] [CrossRef]
- Ma, J.-S.; Liu, H.; Han, C.-R.; Zeng, S.-J.; Xu, X.-J.; Lu, D.-J.; He, H.-J. Extraction, characterization and antioxidant activity of polysaccharide from Pouteria campechiana seed. Carbohydr. Polym. 2020, 229, 115409. [Google Scholar] [CrossRef] [PubMed]
- Ranalli, A.; Contento, S.; Lucera, L.; Di Febo, M.; Marchegiani, D.; Di Fonzo, V. Factors affecting the contents of iridoid oleuropein in olive leaves (Olea europaea L.). J. Agric. Food Chem. 2006, 54, 434–440. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, S.; Zhu, J. Broken Ganoderma lucidum spores by breaking-extracting method. J. Jilin Univ. (Eng. Technol. Ed.) 2004, 34, 312–315. [Google Scholar]
- González-Silva, N.; Nolasco-González, Y.; Aguilar-Hernández, G.; Sáyago-Ayerdi, S.G.; Villagrán, Z.; Acosta, J.L.; Montalvo-González, E.; Anaya-Esparza, L.M. Ultrasound-assisted extraction of phenolic compounds from Psidium cattleianum leaves: Optimization using the response surface methodology. Molecules 2022, 27, 3557. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Shalaby, E.A.; Shanab, S.M. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Geo-Mar. Sci. 2013, 42, 556–564. [Google Scholar]
- Angeloni, S.; Zengin, G.; Sinan, K.I.; Ak, G.; Maggi, F.; Caprioli, G.; Kaplan, A.; Bahşi, M.; Çakılcıoğlu, U.; Bouyahya, A. An insight into verbascum bombyciferum extracts: Different extraction methodologies, biological abilities and chemical profiles. Ind. Crops Prod. 2021, 161, 113201. [Google Scholar] [CrossRef]
- Herzi, N.; Bouajila, J.; Camy, S.; Romdhane, M.; Condoret, J.-S. Comparison of different methods for extraction from Tetraclinis articulata: Yield, chemical composition and antioxidant activity. Food Chem. 2013, 141, 3537–3545. [Google Scholar] [CrossRef]
- Kıralan, M.; Bayrak, A. Oxidative and antiradical stabilities of two important virgin olive oils from Ayvalik and Memecik olive cultivars in Turkey. Int. J. Food Prop. 2013, 16, 649–657. [Google Scholar] [CrossRef]
- Gökmen, A.; Kúsz, N.; Karaca, N.; Demirci, F.; Hohmann, J.; Kırmızıbekmez, H. Secondary metabolites from Verbascum bugulifolium Lam. and their bioactivities. Nat. Prod. Res. 2021, 35, 5294–5298. [Google Scholar] [CrossRef] [PubMed]
- Wisuitiprot, V.; Ingkaninan, K.; Chakkavittumrong, P.; Wisuitiprot, W.; Neungchamnong, N.; Chantakul, R.; Waranuch, N. Effects of Acanthus ebracteatus Vahl. extract and verbascoside on human dermal papilla and murine macrophage. Sci. Rep. 2022, 12, 1491. [Google Scholar] [CrossRef]
- Vo, T.N.; Nguyen, P.L.; Tuong, L.T.; Vo, P.N.; Nguyen, K.P.P.; Nguyen, N.S. Constituents of the leaves of Pseuderanthemum carruthersii (Seem.) Guill. var. atropurpureum (Bull.) Fosb. Phytochem. Lett. 2012, 5, 673–676. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Khongkow, M.; Lourith, N. Wound healing and photoprotection properties of Acanthus ebracteatus Vahl. extracts standardized in verbascoside. Sci. Rep. 2024, 14, 1904. [Google Scholar] [CrossRef] [PubMed]
- Harput, U.; Genc, Y.; Saracoglu, I. Cytotoxic and antioxidative activities of Plantago lagopus L. and characterization of its bioactive compounds. Food Chem. Toxicol. 2012, 50, 1554–1559. [Google Scholar] [CrossRef]
- Dardavila, M.M.; Pappou, S.; Savvidou, M.G.; Louli, V.; Katapodis, P.; Stamatis, H.; Magoulas, K.; Voutsas, E. Extraction of bioactive compounds from C. vulgaris biomass using deep eutectic solvents. Molecules 2023, 28, 415. [Google Scholar] [CrossRef] [PubMed]
Run | UAE | WBE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 (min) | X2 (mL/g) | X3 (%) | TPC (mg GAE/g) | VAY (%) | X1 (s) | X2 (mL/g) | X3 (%) | TPC (mg GAE/g) | VAY (%) | |
1 | 50 (0) | 200 (0) | 20(0) | 150.69 | 1.48 | 150 (0) | 200 (0) | 30 (0) | 195.64 | 1.29 |
2 | 60 (+1) | 100 (−1) | 20 | 164.36 | 1.37 | 120 (−1) | 100 (−1) | 30 | 130.79 | 1.12 |
3 | 50 | 100 | 30 (+1) | 163.13 | 1.33 | 150 | 200 | 30 | 104.64 | 1.29 |
4 | 40 (−1) | 100 | 20 | 132.12 | 1.29 | 150 | 200 | 30 | 91.97 | 1.29 |
5 | 40 | 300 (+1) | 20 | 192.70 | 1.35 | 120 | 300 (+1) | 30 | 129.85 | 1.19 |
6 | 50 | 300 | 10 (−1) | 178.25 | 1.33 | 150 | 100 | 40 (+1) | 117.41 | 1.05 |
7 | 50 | 200 | 20 | 201.68 | 1.48 | 180 (+1) | 100 | 30 | 209.28 | 1.04 |
8 | 60 | 300 | 20 | 176.83 | 1.36 | 180 | 200 | 40 | 124.51 | 1.02 |
9 | 50 | 200 | 20 | 154.50 | 1.49 | 150 | 300 | 20 (−1) | 207.32 | 1.13 |
10 | 60 | 200 | 10 | 202.43 | 1.34 | 150 | 100 | 20 | 128.73 | 0.94 |
11 | 60 | 200 | 30 | 175.54 | 1.27 | 120 | 200 | 40 | 111.38 | 1.13 |
12 | 50 | 100 | 10 | 200.59 | 1.23 | 150 | 200 | 30 | 128.70 | 1.30 |
13 | 40 | 200 | 30 | 201.02 | 1.30 | 180 | 200 | 20 | 118.42 | 1.05 |
14 | 40 | 200 | 10 | 164.26 | 1.21 | 120 | 200 | 20 | 107.44 | 1.07 |
15 | 50 | 200 | 20 | 161.27 | 1.48 | 150 | 300 | 40 | 202.08 | 1.07 |
16 | 50 | 200 | 20 | 178.15 | 1.48 | 150 | 200 | 30 | 129.39 | 1.27 |
17 | 50 | 300 | 30 | 164.51 | 1.25 | 180 | 300 | 30 | 212.98 | 1.17 |
Source | UAE | WBE | ||||||
---|---|---|---|---|---|---|---|---|
TPC | VAY | TPC | VAY | |||||
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Model | 26.08 | <0.0001 *** | 357.36 | <0.0001 *** | 101.64 | <0.0001 *** | 154.48 | <0.0001 *** |
X1-time | 15.25 | 0.0059 * | 100.86 | <0.0001 *** | 0.29 | 0.6061 | 44.75 | 0.0003 ** |
X2-ratio | 6.10 | 0.0429 * | 15.16 | 0.0059 ** | 0.03 | 0.8682 | 144.06 | <0.0001 *** |
X3-moisture | 4.97 | 0.061 | 5.62 | 0.0495 * | 4.00 | 0.0855 | 7.21 | 0.0313 * |
X1X2 | 20.88 | 0.0026 * | 22.37 | 0.0021 ** | 12.75 | 0.0091 * | 6.55 | 0.0376 * |
X1X3 | 1.76 | 0.2259 | 146.43 | <0.0001 *** | 2.69 | 0.1448 | 16.05 | 0.0051 * |
X2X3 | 5.71 | 0.0483 * | 152.07 | <0.0001 *** | 20.64 | 0.0027 * | 51.61 | 0.0002 ** |
X12 | 100.99 | <0.0001 *** | 486.17 | <0.0001 *** | 174.06 | <0.0001 *** | 138.42 | <0.0001 *** |
X22 | 36.09 | 0.0005 | 444.94 | <0.0001 *** | 344.97 | <0.0001 *** | 233.26 | <0.0001 *** |
X32 | 26.14 | 0.0014 | 1583.95 | <0.0001 *** | 265.47 | <0.0001 *** | 645.58 | <0.0001 *** |
Lack of Fit | 2.74 | 0.1775 ns | 1.91 | 0.2696 | 0.25 | 0.8581 ns | 0.6349 | 0.6306 ns |
R2 | 0.971 | 0.9978 | 0.9924 | 0.995 | ||||
R2adj | 0.9338 | 0.995 | 0.9826 | 0.9885 | ||||
C.V.% | 3.01 | 0.4937 | 3.86 | 1.06 |
Factors | UAE | WBE | ||||||
---|---|---|---|---|---|---|---|---|
OC-TPC | AOC-TPC | OC-VAY | AOC-VAY | OC-TPC | AOC-TPC | OC-VAY | AOC-TPC | |
Time | 51.14 min | 55 min | 55 min | 55 min | 150.31 s | 140 s | 140 s | 140 s |
Ratio (mL/g) | 190.20 | 200 | 200 | 200 | 190.92 | 230 | 210 | 210 |
Moisture (%) | 18.76 | 20 | 20 | 20 | 29.55 | 30 | 30 | 30 |
Yield | 206.23 ± 0.58 mg GAE/g | 1.59 ± 0.04% | 210.69 ± 0.97 mg GAE/g | 1.33 ± 0.2% |
Compound | Linear Calibration Range (mg/mL) | Calibration Equation | Regression Coefficient (R2) | Retention Time (min) |
---|---|---|---|---|
TPC | 0.005–0.70 | y = 0.1698x + 0.1622 | 0.9994 | — |
1 | 0.001–0.0045 | y = 13,217x + 17.106 | 0.9961 | 11.224 |
2 | 0.01–0.09 | y = 5073.7x + 2.85 | 0.9976 | 11.772 |
3 | 0.005–0.035 | y = 23,387x + 5.4543 | 0.9923 | 11.96 |
4 | 0.05–0.35 | y = 16,378x − 77.557 | 0.9998 | 14.942 |
5 | 0.0015–0.005 | y = 31,410x + 9.419 | 0.9962 | 19.128 |
6 | 0.0015–0.005 | y = 26,441x + 8.913 | 0.9923 | 19.347 |
Varieties | Leaf Age | UAE | ||||||
---|---|---|---|---|---|---|---|---|
TPC (mg GAE/g) | 1 (%) | 2 (%) | 3 (%) | 4 (%) | 5 (%) | 6 (%) | ||
Kor | YL | 180.72 ± 4.09 a | 0.22 ± 0.005 d | 0.91 ± 0.03 g | 0.46 ± 0.029 b | 3.23 ± 0.08 d | 0.025 ± 0.0043 c | 0.0212 ± 0.0036 abc |
AL | 134.40 ± 15.53 cd | 0.35 ± 0.014 c | 0.30 ± 0.03 i | 0.26 ± 0.007 d | 0.97 ± 0.01 g | 0.035 ± 0.0093 bc | 0.012 ± 0.0011 c | |
Arbe | YL | 145.70 ± 3.78 bc | 0.34 ± 0.006 c | 1.71 ± 0.02 c | 0.46 ± 0.009 b | 5.57 ± 0.09 c | 0.035 ± 0.0053 bc | 0.0236 ± 0.0065 abc |
AL | 128.39 ± 6.54 cde | 0.22 ± 0.014 d | 0.57 ± 0.02 h | 0.30 ± 0.015 d | 1.5 ± 0.04 f | 0.032 ± 0.0079 bc | 0.015 ± 0.001 bc | |
Che | YL | 171.09 ± 4.66 a | 0.07 ± 0.020 e | 3.51 ± 0.06 a | 0.38 ± 0.004 c | 7.46 ± 0.13 a | 0.055 ± 0.0132 ab | 0.0468 ± 0.0153 a |
AL | 108.33 ± 1.64 e | 0.05 ± 0.002 e | 2.34 ± 0.05 b | 0.40 ± 0.007 c | 5.39 ± 0.09 c | 0.07 ± 0.0067 a | 0.043 ± 0.0059 ab | |
Pic | YL | 165.08 ± 6.89 ab | 0.05 ± 0.003 e | 1.04 ± 0.03 f | 0.30 ± 0.009 d | 5.59 ± 0.18 c | 0.024 ± 0.0034 c | 0.0243 ± 0.0067 abc |
AL | 121.08 ± 6.14 de | 0.05 ± 0.003 e | 0.48 ± 0.02 h | 0.19 ± 0.007 e | 1.37 ± 0.04 f | 0.027 ± 0.0062 c | nd | |
Arbo | YL | 165.49 ± 0.53 ab | 0.8 ± 0.023 a | 1.14 ± 0.02 e | 0.47 ± 0.010 b | 2.58 ± 0.04 e | 0.042 ± 0.0034 bc | 0.0155 ± 0.0005 bc |
AL | 163.72 ± 6.01 ab | 0.47 ± 0.005 b | 1.46 ± 0.03 d | 0.66 ± 0.018 a | 5.97 ± 0.13 b | 0.036 ± 0.0066 bc | 0.0127 ± 0.0009 c | |
WBE | ||||||||
Kor | YL | 112.79 ± 1.97 f | 0.19 ± 0.022 d | 0.58 ± 0.06 g | 0.28 ± 0.016 e | 1.62 ± 0.38 de | 0.017 ± 0.0039 b | nd |
AL | 59.01 ± 5.09 h | 0.23 ± 0.008 c | 0.71 ± 0.03 f | 0.31 ± 0.006 d | 2.51 ± 0.09 c | 0.017 ± 0.0015 b | nd | |
Arbe | YL | 128.41 ± 0.98 e | 0.23 ± 0.010 c | 1.42 ± 0.06 c | 0.36 ± 0.004 b | 4.62 ± 0.04 b | 0.018 ± 0.0012 b | nd |
AL | 72.56 ± 2.12 g | 0.14 ± 0.005 e | 0.43 ± 0.02 h | 0.20 ± 0.019 f | 1.32 ± 0.20 e | 0.011 ± 0.0003 b | nd | |
Che | YL | 173.29 ± 4.35 b | 0.01 ± 0.001 g | 2.89 ± 0.03 a | 0.28 ± 0.004 e | 6.09 ± 0.06 a | 0.027 ± 0.0004 b | 0.0057 ± 0.0004 b |
AL | 158.30 ± 1.73 c | 0.05 ± 0.007 f | 2.04 ± 0.02 b | 0.32 ± 0.004 cd | 4.85 ± 0.07 b | 0.028 ± 0.0005 b | 0.0057 ± 0.0007 b | |
Pic | YL | 163.63 ± 2.65 c | 0.06 ± 0.004 f | 1.04 ± 0.04 d | 0.28 ± 0.011 e | 5.65 ± 0.20 a | 0.08 ± 0.0102 ab | 0.0256 ± 0.0019 a |
AL | 142.04 ± 1.72 d | 0.05 ± 0.002 f | 0.47 ± 0.01 h | 0.16 ± 0.008 g | 1.38 ± 0.02 e | 0.017 ± 0.0008 b | nd | |
Arbo | YL | 217.40 ± 1.26 a | 0.54 ± 0.004 a | 1.11 ± 0.01 d | 0.46 ± 0.007 a | 4.6 ± 0.04 b | 0.021 ± 0.0012 b | nd |
AL | 110.26 ± 4.06 f | 0.36 ± 0.005 b | 0.89 ± 0.01 e | 0.35 ± 0.006 bc | 1.94 ± 0.01 d | 0.199 ± 0.1115 a | nd |
Independent Variable | Symbols | Factor Level of UAE | Factor Level of WBE | ||||
---|---|---|---|---|---|---|---|
−1 | 0 | 1 | −1 | 0 | 1 | ||
Extraction time | X1 | 40 min | 50 min | 60 min | 120 s | 150 s | 180 s |
Concentration (%) | X2 | 10 | 20 | 30 | 20 | 30 | 40 |
Liquid–solid ratio (mL/g) | X3 | 100 | 200 | 300 | 100 | 200 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zhou, J.; Wang, B.; Xu, X.; Huang, T.; Xu, Z.; Zhao, C. Optimization of Different Extraction Methods for Phenolic Compound Verbascoside from Chinese Olea europaea Leaves Using Deep Eutectic Solvents: Impact on Antioxidant and Anticancer Activities. Molecules 2024, 29, 4219. https://doi.org/10.3390/molecules29174219
Deng Y, Zhou J, Wang B, Xu X, Huang T, Xu Z, Zhao C. Optimization of Different Extraction Methods for Phenolic Compound Verbascoside from Chinese Olea europaea Leaves Using Deep Eutectic Solvents: Impact on Antioxidant and Anticancer Activities. Molecules. 2024; 29(17):4219. https://doi.org/10.3390/molecules29174219
Chicago/Turabian StyleDeng, Yan, Junlin Zhou, Bixia Wang, Xiao Xu, Tingyu Huang, Zhou Xu, and Chunyan Zhao. 2024. "Optimization of Different Extraction Methods for Phenolic Compound Verbascoside from Chinese Olea europaea Leaves Using Deep Eutectic Solvents: Impact on Antioxidant and Anticancer Activities" Molecules 29, no. 17: 4219. https://doi.org/10.3390/molecules29174219
APA StyleDeng, Y., Zhou, J., Wang, B., Xu, X., Huang, T., Xu, Z., & Zhao, C. (2024). Optimization of Different Extraction Methods for Phenolic Compound Verbascoside from Chinese Olea europaea Leaves Using Deep Eutectic Solvents: Impact on Antioxidant and Anticancer Activities. Molecules, 29(17), 4219. https://doi.org/10.3390/molecules29174219