Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures
Abstract
1. Introduction
2. Simulation Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, J.; Huang, X.; Shao, Q. Emerging two dimensional metastable-phase oxides: Insights and prospects in synthesis and catalysis. Angew. Chem. Int. Ed. 2024, 63, e202318028. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lee, J.; Lee, G.; Lee, J.; Song, H.; Jho, J.Y.; Lee, H.H.; Kim, Y.H. Synthesis of a Carbonaceous Two-Dimensional Material. ACS Appl. Mater. Interfaces 2019, 11, 21308–21313. [Google Scholar] [CrossRef] [PubMed]
- Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chhowalla, M.; Liu, Z.F. 2D nanomaterials: Graphene and transition metal dichalcogenides. Chem. Soc. Rev. 2018, 47, 3015–3017. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Huang, K.; Zhou, K.-G. Lifting the mist of flatland: The recent progress in the characterizations of two-dimensional materials. Prog. Cryst. Growth Charact. Mater. 2017, 63, 72–93. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Huang, J.X.; Wang, L.L.; Yu, X.H.; Sun, J.F.; Tang, H. Unraveling the Roles of Hot Electrons and Cocatalyst toward Broad Spectrum Photocatalytic H2 Generation of g-C3N4 Nanotube. Sol. RRL 2021, 5, 2000504. [Google Scholar] [CrossRef]
- Sun, L.J.; Su, H.W.; Liu, Q.Q.; Hu, J.; Wang, L.L.; Tang, H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022, 41, 2387–2404. [Google Scholar] [CrossRef]
- Tang, L.Y.; Hu, Y.J.; Tang, H.; Sun, L.J.; Jiang, H.P.; Wang, W.K.; Su, H.W.; Hu, J.; Wang, L.L.; Liu, Q.Q. Incorporating Ni-Polyoxometalate into the S-Scheme Heterojunction to Accelerate Charge Separation and Resist Photocorrosion for Promoting Photocatalytic Activity and Stability. J. Phys. Chem. Lett. 2022, 13, 11778–11786. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wang, R.; Zhao, C.; Chen, Z.; Yang, X.; Bukhvalov, D.; Lin, Z.; Liu, Q. Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis. Chem. Eng. J. 2019, 374, 1064–1075. [Google Scholar] [CrossRef]
- Zhan, D.; Yan, J.X.; Ni, Z.H.; Sun, L.; Lai, L.F.; Liu, L.; Liu, X.Y.; Shen, Z.X. Bandgap-Opened Bilayer Graphene Approached by Asymmetrical Intercalation of Trilayer Graphene. Small 2014, 11, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Yoon, Y.S.; Kim, D.-J. Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sens. 2018, 3, 2045–2060. [Google Scholar] [CrossRef] [PubMed]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fu, L.; Zhao, S.; Zhou, Y.; Peng, H.; Liu, Z. Controllable Co-segregation Synthesis of Wafer-Scale Hexagonal Boron Nitride Thin Films. Adv. Mater. 2013, 26, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ren, K.; Zhang, G.; Wan, J.; Zhang, H.; Zhang, G.; Qin, H. Tunable Thermal Conductivity of Two-Dimensional SiC Nanosheets by Grain Boundaries: Implications for the Thermo-Mechanical Sensor. ACS Appl. Nano Mater. 2024, 7, 15078–15085. [Google Scholar] [CrossRef]
- Li, J.; Lv, P.; Cao, Y.; Ye, J.; Li, F.; Ma, C.; Shi, L.; Tan, N. Photothermal evaporation of the ferromagnetic nanofluid droplets under a magnetic field. Case Stud. Therm. Eng. 2024, 56, 104300. [Google Scholar] [CrossRef]
- Chen, X.; McDonald, A.R. Functionalization of Two-Dimensional Transition-Metal Dichalcogenides. Adv. Mater. 2016, 28, 5738–5746. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.L.; Chou, J.P.; Ren, Q.Q.; Zhao, Y.M.; Yu, J.; Tang, W.C. Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN. Appl. Phys. Lett. 2017, 110, 173105. [Google Scholar] [CrossRef]
- Ren, K.; Sun, M.L.; Luo, Y.; Wan, S.K.; Yu, J.; Tang, W.C. First-principle study of electronic and optical properties of two-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide. Appl. Surf. Sci. 2019, 476, 70–75. [Google Scholar] [CrossRef]
- Ren, K.; Shu, H.B.; Wang, K.; Qin, H.S. Two-dimensional MX2Y4 systems: Ultrahigh carrier transport and excellent hydrogen evolution reaction performances. Phys. Chem. Chem. Phys. 2023, 25, 4519–4527. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Huang, J.W.; Windgaetter, L.; Ong, C.S.; Zhao, X.X.; Zhang, C.R.; Tang, M.; Li, Z.Y.; Qiu, C.Y.; Latini, S.; et al. Unconventional excitonic states with phonon sidebands in layered silicon diphosphide. Nat. Mater. 2022, 21, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ji, P.X.; Li, Y.Q.; Li, R.; Zhang, K.M.; Tian, H.; Yu, K.C.; Bian, B.Y.; Hao, L.Z.; Xiao, X.; et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 2024, 625, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Kashiwaya, S.; Shi, Y.; Lu, J.; Sangiovanni, D.G.; Greczynski, G.; Magnuson, M.; Andersson, M.; Rosen, J.; Hultman, L. Synthesis of goldene comprising single-atom layer gold. Nat. Synth. 2024, 3, 744–751. [Google Scholar] [CrossRef]
- Qin, H.S.; Pei, Q.X.; Liu, Y.L.; Zhang, Y.W. The mechanical and thermal properties of MoS2-WSe2 lateral heterostructures. Phys. Chem. Chem. Phys. 2019, 21, 15845–15853. [Google Scholar] [CrossRef] [PubMed]
- Momeni, F.; Mehrafrooz, B.; Montazeri, A.; Rajabpour, A. MD-based design of bilayer graphene-hBN heterostructures: An insight into enhanced thermal transport. Int. J. Heat Mass Transf. 2020, 150, 119282. [Google Scholar] [CrossRef]
- Li, R.; Cheng, Y.; Huang, W. Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. Small 2018, 14, 1802091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, Z.; Gong, T.; Pan, R.; Wang, H.; Guo, Z.; Zhang, H.; Fu, X. Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications. J. Mater. Chem. A 2020, 8, 8813–8830. [Google Scholar] [CrossRef]
- Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H. Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 2020, 7, 011311. [Google Scholar] [CrossRef]
- Ren, K.; Qin, H.S.; Liu, H.C.; Chen, Y.; Liu, X.J.; Zhang, G. Manipulating Interfacial Thermal Conduction of 2D Janus Heterostructure via a Thermo-Mechanical Coupling. Adv. Funct. Mater. 2022, 32, 2110846. [Google Scholar] [CrossRef]
- Ren, K.; Zhang, G.; Zhang, L.; Qin, H.; Zhang, G. Ultraflexible two-dimensional Janus heterostructure superlattice: A novel intrinsic wrinkled structure. Nanoscale 2023, 15, 8654–8661. [Google Scholar] [CrossRef] [PubMed]
- Dávila, M.E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002. [Google Scholar] [CrossRef]
- Gaddemane, G.; Vandenberghe, W.G.; Van de Put, M.L.; Chen, E.; Fischettit, M.V. Monte-Carlo study of electronic transport in non-σh-symmetric two-dimensionalmaterials: Silicene and germanene. J. Appl. Phys. 2018, 124, 044306. [Google Scholar] [CrossRef]
- Ni, Z.Y.; Liu, Q.H.; Tang, K.C.; Zheng, J.X.; Zhou, J.; Qin, R.; Gao, Z.X.; Yu, D.P.; Lu, J. Tunable Bandgap in Silicene and Germanene. Nano Lett. 2012, 12, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Stille, L.; Tabert, C.J.; Nicol, E.J. Optical signatures of the tunable band gap and valley-spin coupling in silicene. Phys. Rev. B 2012, 86, 195405. [Google Scholar] [CrossRef]
- Yan, J.A.; Stein, R.; Schaefer, D.M.; Wang, X.Q.; Chou, M.Y. Electron-phonon coupling in two-dimensional silicene and germanene. Phys. Rev. B 2013, 88, 121403. [Google Scholar] [CrossRef]
- Li, M.-Y.; Chen, C.-H.; Shi, Y.; Li, L.-J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335. [Google Scholar] [CrossRef]
- Ueno, N.; Sakuraba, M.; Osakabe, Y.; Akima, H.; Sato, S. Electronic properties of Si/Si-Ge Alloy/Si(100) heterostructures formed by ECR Ar plasma CVD without substrate heating. Mater. Sci. Semicond. Process. 2017, 70, 55–62. [Google Scholar] [CrossRef]
- Izhnin, I.I.; Kurbanov, K.R.; Lozovoy, K.A.; Kokhanenko, A.P.; Dirko, V.V.; Voitsekhovskii, A.V. Epitaxial fabrication of 2D materials of group IV elements. Appl. Nanosci. 2020, 10, 4375–4383. [Google Scholar] [CrossRef]
- Isella, G.; Chrastina, D.; Rössner, B.; Hackbarth, T.; Herzog, H.; König, U.; von Känel, H. Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid-State Electron. 2004, 48, 1317–1323. [Google Scholar] [CrossRef]
- Xu, H.; Meng, L.; Li, Y.; Yang, T.Z.; Bao, L.H.; Liu, G.D.; Zhao, L.; Liu, T.S.; Xing, J.; Gao, H.J.; et al. Applications of new exfoliation technique in study of two-dimensional materials. Acta Phys. Sin. 2018, 67, 218201. [Google Scholar]
- Du, B.J.; Zhao, Z.Y.; Xin, Y.; Ren, Z.H.; Xing, F.; Zhang, F. Effect of different exfoliation solvents on the saturable absorption properties of germanene and silicene nanosheets prepared by the liquid-phase exfoliation. Opt. Mater. 2023, 136, 113411. [Google Scholar] [CrossRef]
- Dhungana, K.B.; Jaishi, M.; Pati, R. Unlocking the Origin of Superior Performance of a Si–Ge Core–Shell Nanowire Quantum Dot Field Effect Transistor. Nano Lett. 2016, 16, 3995–4000. [Google Scholar] [CrossRef] [PubMed]
- Meddeb, H.; Götz-Köhler, M.; Flathmann, C.; Seibt, M.; Gehrke, K.; Vehse, M. Novel semi-transparent solar cell based on ultrathin multiple Si/Ge quantum wells. Prog. Photovolt. Res. Appl. 2022, 31, 1396–1408. [Google Scholar] [CrossRef]
- Adabifiroozjaei, E.; Mofarah, S.S.; Ma, H.; Jiang, Y.; Assadi, M.H.N.; Suzuki, T.S. Molecular dynamics simulation of vacancy cluster formation in β- and α-Si3N4. Comput. Mater. Sci. 2020, 178, 109632. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Hu, M.; Bao, H.; Yue, S.; Qin, G.; Su, G. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys. Rev. B 2014, 89, 054310. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; In’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Huang, L.; Ren, K.; Zhang, H.P.; Qin, H.S. Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence. Chin. Phys. B 2023, 32, 076103. [Google Scholar] [CrossRef]
- Pun, G.P.P.; Mishin, Y. Optimized interatomic potential for silicon and its application to thermal stability of silicene. Phys. Rev. B 2017, 95, 224103. [Google Scholar] [CrossRef]
- Mahdizadeh, S.J.; Akhlamadi, G. Optimized Tersoff empirical potential for germanene. J. Mol. Graph. Model. 2017, 72, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M. A new look at the atomic level virial stress: On continuum-molecular system equivalence. Proc. R. Soc. A Math. Phys. Eng. Sci. 2003, 459, 2347–2392. [Google Scholar] [CrossRef]
- Chung, J.Y.; Sorkin, V.; Pei, Q.X.; Chiu, C.H.; Zhang, Y.W. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures. J. Phys. D Appl. Phys. 2017, 50, 345302. [Google Scholar] [CrossRef]
- Chen, J.Y.; Fang, T.H.; Lin, M.H.; Hsu, K.C. Effects of temperature and thickness on the fracture and mechanical properties of Si/Ge multilayers using molecular dynamics. Phys. E-Low-Dimens. Syst. Nanostruct. 2020, 123, 114198. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Zhang, Y.-W. Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance. Nano Lett. 2016, 16, 4954–4959. [Google Scholar] [CrossRef]
- Qin, H.; Chen, Y.; Wu, Y.; Li, M.; Liu, Y.; Pei, Q.-X. Defect-Engineered Thermal Transport in Wrinkled Graphene: A Comprehensive Molecular Dynamics Study. J. Phys. Chem. C 2022, 126, 5759–5766. [Google Scholar] [CrossRef]
- Schelling, P.K.; Phillpot, S.R.; Keblinski, P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 2002, 65, 144306. [Google Scholar] [CrossRef]
- Ding, Z.W.; Jiang, J.W.; Pei, Q.X.; Zhang, Y.W. In-plane and cross-plane thermal conductivities of molybdenum disulfide. Nanotechnology 2015, 26, 065703. [Google Scholar] [CrossRef] [PubMed]
- Lü, X.; Chu, J. Lattice thermal conductivity in a Si∕Ge∕Si heterostructure. J. Appl. Phys. 2007, 101, 114323. [Google Scholar] [CrossRef]
- Hinsche, N.F.; Mertig, I.; Zahn, P. Thermoelectric transport in strained Si and Si/Ge heterostructures. J. Phys. Condens. Matter. 2012, 24, 275501. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Poulikakos, D. Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity. Nano Lett. 2012, 12, 5487–5494. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Huang, L.; Wang, K.; Mu, W.; Wu, Q.; Ma, Z.; Ren, K. Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures. Molecules 2024, 29, 3823. https://doi.org/10.3390/molecules29163823
Zhao L, Huang L, Wang K, Mu W, Wu Q, Ma Z, Ren K. Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures. Molecules. 2024; 29(16):3823. https://doi.org/10.3390/molecules29163823
Chicago/Turabian StyleZhao, Liuhuan, Lei Huang, Ke Wang, Weihua Mu, Qiong Wu, Zhen Ma, and Kai Ren. 2024. "Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures" Molecules 29, no. 16: 3823. https://doi.org/10.3390/molecules29163823
APA StyleZhao, L., Huang, L., Wang, K., Mu, W., Wu, Q., Ma, Z., & Ren, K. (2024). Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures. Molecules, 29(16), 3823. https://doi.org/10.3390/molecules29163823