Theoretical Analysis of Superior Photodegradation of Methylene Blue by Cerium Oxide/Reduced Graphene Oxide vs. Graphene
Abstract
:1. Introduction
2. Results and Discussions
2.1. Adsorption Behavior of Graphene and Reduced Graphene Oxide toward Methylene Blue
2.2. Interaction between Graphene and Reduced Graphene Oxide with Ceria Cluster
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.A.K.; Reddy, P.V.L.; Kwon, E.; Kim, K.-H.; Akter, T.; Kalagara, S. Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 2016, 91, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.M.; Rani, S.; Ansari, A.A.; Ahamed, M.; Ahmed, J.; Kumar, S.; Rana, A.U.H.S. Anchoring Ceria Nanoparticles on Reduced Graphene Oxide and Their Enhanced Photocatalytic and Electrochemical Activity for Environmental Remediation. J. Electron. Mater. 2023, 53, 930–944. [Google Scholar] [CrossRef]
- Barik, M.; Das, D.; Satapathy, P.K.; Mohapatra, P. Graphene supported ceria-titania mixed oxide composite-An effective photo catalyst for methylene blue (MB) dye degradation. Environ. Eng. Res. 2023, 28, 220586. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, M.; Khajuria, H.; Tashi, L.; Sheikh, H.N. Nitrogen-doped graphene-cerium oxide (NG-CeO2) photocatalyst for the photodegradation of methylene blue in waste water. J. Chin. Chem. Soc. 2018, 66, 467–473. [Google Scholar] [CrossRef]
- Shabil Sha, M.; Anwar, H.; Musthafa, F.N.; Al-Lohedan, H.; Alfarwati, S.; Rajabathar, J.R.; Khalid Alahmad, J.; Cabibihan, J.-J.; Karnan, M.; Kumar Sadasivuni, K. Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO). Sci. Rep. 2024, 14, 3608. [Google Scholar] [CrossRef] [PubMed]
- Kamedulski, P.; Skorupska, M.; Binkowski, P.; Arendarska, W.; Ilnicka, A.; Lukaszewicz, J.P. High surface area micro-mesoporous graphene for electrochemical applications. Sci. Rep. 2021, 11, 22054. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Das, M.; Sil, S.; Sahu, P.; Ray, P.P. Effect of Higher Carrier Mobility of the Reduced Graphene Oxide–Zinc Telluride Nanocomposite on Efficient Charge Transfer Facility and the Photodecomposition of Rhodamine B. ACS Omega 2022, 7, 26483–26494. [Google Scholar] [CrossRef]
- Yang, H.; Hu, H.; Ni, Z.; Poh, C.K.; Cong, C.; Lin, J.; Yu, T. Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces. Carbon 2013, 62, 422–429. [Google Scholar] [CrossRef]
- Hidayah, N.M.S.; Liu, W.-W.; Lai, C.-W.; Noriman, N.Z.; Khe, C.-S.; Hashim, U.; Lee, H.C. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conf. Proc. 2017, 1892, 150002. [Google Scholar] [CrossRef]
- Kim, H.; Kang, S.-O.; Park, S.; Park, H.S. Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure. J. Ind. Eng. Chem. 2015, 21, 1191–1196. [Google Scholar] [CrossRef]
- Leão, M.B.; Vendrame, L.F.O.; Fagan, S.B.; Zanella, I.; Jauris, I.M.; Bordin, J.R.; De Matos, C.F. Combining multi-scale simulations and experiments to unveil the adsorption of methylene blue in graphene tridimensional-based materials. Mol. Syst. Des. Eng. 2023, 8, 666–680. [Google Scholar] [CrossRef]
- Xiao, J.; Lv, W.; Xie, Z.; Tan, Y.; Song, Y.; Zheng, Q. Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions. J. Mater. Chem. A 2016, 4, 12126–12135. [Google Scholar] [CrossRef]
- Minitha, C.R.; Lalitha, M.; Jeyachandran, Y.L.; Senthilkumar, L.; Rt, R.K. Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: Co-action of electrostatic and π–π interactions. Mater. Chem. Phys. 2017, 194, 243–252. [Google Scholar] [CrossRef]
- Sharma, P.; Hussain, N.; Borah, D.J.; Das, M.R. Kinetics and Adsorption Behavior of the Methyl Blue at the Graphene Oxide/Reduced Graphene Oxide Nanosheet–Water Interface: A Comparative Study. J. Chem. Eng. Data 2013, 58, 3477–3488. [Google Scholar] [CrossRef]
- Jahan, N.; Roy, H.; Reaz, A.H.; Arshi, S.; Rahman, E.; Firoz, S.H.; Islam, M.S. A comparative study on sorption behavior of graphene oxide and reduced graphene oxide towards methylene blue. Case Stud. Chem. Environ. Eng. 2022, 6, 100239. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Du, Q.; Sun, J.; Jiao, Y.; Yang, G.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B Biointerfaces 2012, 90, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Qu, C.; Gao, S.; Liang, Z.; Zhang, H.; Zou, R. Ultralow Loading Ruthenium Nanoparticles on Nitrogen-Doped Graphene Aerogel for Trifunctional Electrocatalysis. ChemCatChem 2018, 10, 1113–1121. [Google Scholar] [CrossRef]
- Albers, P.W.; Leich, V.; Ramirez-Cuesta, A.J.; Cheng, Y.; Hönig, J.; Parker, S.F. The characterisation of commercial 2D carbons: Graphene, graphene oxide and reduced graphene oxide. Mater. Adv. 2022, 3, 2810–2826. [Google Scholar] [CrossRef]
- Jin, Y.; Zheng, Y.; Podkolzin, S.G.; Lee, W. Band gap of reduced graphene oxide tuned by controlling functional groups. J. Mater. Chem. C 2020, 8, 4885–4894. [Google Scholar] [CrossRef]
- Van Khai, T.; Viet Hai, L.; Thi Thu Ha, N.; Thi Thom, N.; Van Trang, N.; Thi Nam, P.; Ngoc Ha, N.; Dai Lam, T. Combined experimental and theoretical studies on enlarged bandgap and improved photoelectrochemical properties of reduced graphene oxide film by hydrogen annealing. J. Electroanal. Chem. 2021, 900, 115722. [Google Scholar] [CrossRef]
- Liu, H.; An, Q.; Deng, Q.; Ming, J.; Xu, H. Adsorption behavior of methylene blue on graphene and hexagonal boron nitride monolayers in aqueous solution: A first-principles treatment. J. Phys. Chem. Solids 2023, 174, 111151. [Google Scholar] [CrossRef]
- Björk, J.; Hanke, F.; Palma, C.-A.; Samori, P.; Cecchini, M.; Persson, M. Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through π−π Stacking. J. Phys. Chem. Lett. 2010, 1, 3407–3412. [Google Scholar] [CrossRef]
- Cao, M.; Fu, A.; Wang, Z.; Liu, J.; Kong, N.; Zong, X.; Liu, H.; Gooding, J.J. Electrochemical and Theoretical Study of π–π Stacking Interactions between Graphitic Surfaces and Pyrene Derivatives. J. Phys. Chem. C 2014, 118, 2650–2659. [Google Scholar] [CrossRef]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 21, 2832. [Google Scholar] [CrossRef] [PubMed]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Klein, J.; Khartabil, H.; Boisson, J.-C.; Contreras-García, J.; Piquemal, J.-P.; Hénon, E. New Way for Probing Bond Strength. J. Phys. Chem. A 2020, 124, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Mao, K.; Li, J.; Duan, D.; Li, J.; Wang, X.; Zhong, Y.; Zhang, C.; Liu, H.; Gong, W.; et al. Pushing the Performance Limit of Cu/CeO2 Catalyst in CO2 Electroreduction: A Cluster Model Study for Loading Single Atoms. ACS Nano 2023, 17, 2620–2628. [Google Scholar] [CrossRef]
- Bjerregaard, J.D.; Mikkelsen, K.V.; Johnson, M.S. Hybrid DFT small-cluster model of CO oxidation on CeO2/(110). Chem. Phys. Lett. 2022, 793, 139436. [Google Scholar] [CrossRef]
- Pandey, M.; Deshmukh, K.; Dhandapani, K.; Singh, R.S. Influence of Nano-CeO2 and Graphene Nanoplatelets on the Conductivity and Dielectric Properties of Poly(vinylidene fluoride) Nanocomposite Films. Langmuir 2024, 40, 1909–1921. [Google Scholar] [CrossRef]
- Balsamo, S.A.; La Greca, E.; Calà Pizzapilo, M.; Sciré, S.; Fiorenza, R. CeO2-rGO Composites for Photocatalytic H2 Evolution by Glycerol Photoreforming. Materials 2023, 16, 747. [Google Scholar] [CrossRef] [PubMed]
- Sagadevan, S.; Johan, M.R.; Lett, J.A. Fabrication of reduced graphene oxide/CeO2 nanocomposite for enhanced electrochemical performance. Appl. Phys. A 2019, 125, 315. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Be, P.T.; Lan, P.T.; Mo, N.T.; Cam, L.M.; Ha, N.N. Whether planar or corrugated graphitic carbon nitride combined with titanium dioxide exhibits better photocatalytic performance? RSC Adv. 2021, 11, 16351–16358. [Google Scholar] [CrossRef] [PubMed]
- Louis, E.; San-Fabián, E.; Díaz-García, M.A.; Chiappe, G.; Vergés, J.A. Are Electron Affinity and Ionization Potential Intrinsic Parameters to Predict the Electron or Hole Acceptor Character of Amorphous Molecular Materials? J. Phys. Chem. Lett. 2017, 8, 2445–2449. [Google Scholar] [CrossRef] [PubMed]
- Bredas, J.L. Mind the gap! Mater. Horiz. 2014, 1, 17–19. [Google Scholar] [CrossRef]
- Khan, M.E.; Khan, M.M.; Cho, M.H. Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures. Sci. Rep. 2017, 7, 5928. [Google Scholar] [CrossRef] [PubMed]
- Jupp, A.R.; Johnstone, T.C.; Stephan, D.W. The global electrophilicity index as a metric for Lewis acidity. Dalton Trans. 2018, 47, 7029–7035. [Google Scholar] [CrossRef] [PubMed]
- Jupp, A.R.; Johnstone, T.C.; Stephan, D.W. Improving the Global Electrophilicity Index (GEI) as a Measure of Lewis Acidity. Inorg. Chem. 2018, 57, 14764–14771. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.M.; Ahmed, A.I.; Mannaa, M.A. Surface acidity, catalytic and photocatalytic activities of new type H3PW12O40/Sn-TiO2 nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 147–157. [Google Scholar] [CrossRef]
- Cui, H.; Dwight, K.; Soled, S.; Wold, A. Surface Acidity and Photocatalytic Activity of Nb2O5/TiO2 Photocatalysts. J. Solid State Chem. 1995, 115, 187–191. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Hamann, D.R.; Schlüter, M.; Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494–1497. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M.H. Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 2631–2638. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurateab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 33, 580–592. [Google Scholar] [CrossRef]
Parameter | Eads, kJ mol−1 | dmin, Å | q(MB), au | BO |
---|---|---|---|---|
MB/GP | −102.72 | 2.640 (H–C) | 0.249 | <0.10 |
MB/rGO | −405.78 | 1.996 (H···O) | 0.411 | <0.10 |
System | Dij, Å | χ, eV | GEI, eV | Eg, eV |
---|---|---|---|---|
(CeO2)6 | 0.023 | 5.3792 | 3.4417 | - |
GP | 0.029 | 5.0983 | 8.7913 | - |
rGO | 8.181 | 5.4622 | 10.0683 | - |
CeO2/GP | 3.472 | 8.7657 | 26.6079 | 1.4439 |
CeO2/rGO | 9.666 | 7.6218 | 20.7440 | 1.4001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, N.H.; Lan, P.T.; Ha, N.N.; Cam, L.M.; Ha, N.T.T. Theoretical Analysis of Superior Photodegradation of Methylene Blue by Cerium Oxide/Reduced Graphene Oxide vs. Graphene. Molecules 2024, 29, 3821. https://doi.org/10.3390/molecules29163821
Hao NH, Lan PT, Ha NN, Cam LM, Ha NTT. Theoretical Analysis of Superior Photodegradation of Methylene Blue by Cerium Oxide/Reduced Graphene Oxide vs. Graphene. Molecules. 2024; 29(16):3821. https://doi.org/10.3390/molecules29163821
Chicago/Turabian StyleHao, Nguyen Hoang, Phung Thi Lan, Nguyen Ngoc Ha, Le Minh Cam, and Nguyen Thi Thu Ha. 2024. "Theoretical Analysis of Superior Photodegradation of Methylene Blue by Cerium Oxide/Reduced Graphene Oxide vs. Graphene" Molecules 29, no. 16: 3821. https://doi.org/10.3390/molecules29163821
APA StyleHao, N. H., Lan, P. T., Ha, N. N., Cam, L. M., & Ha, N. T. T. (2024). Theoretical Analysis of Superior Photodegradation of Methylene Blue by Cerium Oxide/Reduced Graphene Oxide vs. Graphene. Molecules, 29(16), 3821. https://doi.org/10.3390/molecules29163821