Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors
Abstract
:1. Background
2. Calculation of Kinetic Parameters
2.1. Kinetic Parameters Determination
2.2. Flow Manipulation Method for Kinetic Parameters Determination in a Microfluidic System
2.3. Michaelis–Menten Equation and the Kinetic Parameters
2.3.1. Michaelis–Menten, Lineweaver–Burk Kinetic Models
2.3.2. Ping Pong Bi Bi Mechanism Kinetic Model
3. Kinetic of Esterification and Transesterification in Microrstructured-Reactors
3.1. Kinetic of Esterification
3.1.1. Liquid Acid or Base-Catalyzed Esterification
3.1.2. Wall-Coated Catalyst for Esterification
3.1.3. Biocatalytic Esterification
3.1.4. Solid Acid- or Base-Catalyzed Esterification in Packed-Bed Reactors (PBRs)
3.1.5. Catalyst-Free Esterification
3.2. Kinetic of Transesterification
3.2.1. Liquid Acid- or Base-Catalyzed Transesterification
The Synthesis of Biodiesel
The Synthesis of Ethylene Carbonate and Urethane Derivative
3.2.2. Biocatalytic Transesterification
3.2.3. Solid Acid- or Base-Catalyzed Transesterification in Micro-PBR
3.2.4. Catalyst-Free Transesterification
4. Software Simulation
5. Microreactions Online
6. Automation and Digitization Reaction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Acetic acid | MAP | maximum a posteriori |
Ea | activation energy | MNPs | magnetic nanoparticles |
BOH | n-butanol | MIR | miniaturized intensified reactor |
Ci, i = A, B, C… | Concentration of Component i | MCP | monobutyl chlorophosphate |
CAPE | caffeic acid phenethyl ester | PPBB | Ping Pong Bi Bi |
CA | caffeic acid | PBR | packed-bed reactor |
CALB | Candida Antarctica lipase B | PES | polyethersulfone |
CFD | computational fluid dynamics | PE | 2-phenylethanol |
DCP | dibutyl chlorophosphate | PEEK | polyether ether ketone |
DoE | Design of Experiments | P | Pressure |
DMC | dimethyl carbonate | PTFE | polytetrafluoroethylene |
EG | ethylene glycol | PerFluoroAlkoxy | PFA |
EC | ethylene carbonate | PTSA | p-toluene sulfonic acid monohydrate |
FAME | fatty acids methyl esters | PTC | phase transfer catalyst |
FIM | Fischer information matrix | RD | reactive distillation |
FBR | Fixed-bed reactor | RTD | residence time distribution |
FFA | free fatty acid | SciPy | the scientific Python |
GC | gas chromatography | SNOBFIT | the stable noisy optimization by branch and fit |
GITT | Generalized Integral Transform Technique | SMSIM | the super modified simplex algorithm |
HA | Hexanoic Acid | A | pre-exponential factor |
Lipolase L100 | thermomyces lanuginosus | SAXS | small-angle X-ray scattering |
LA | levulinic acid | SQP | sequential quadratic programming |
MBDoE | Model-Based Design of Experiments | SA | salicylic acid |
MBDoE-PE | MBDoE methods for improving parameter estimation | sc CO2 | Supercritical CO2 |
MBDoE-MO | multi-objective MBDoE | T | Temperature |
MOAL | the multi objective active learner | TBP | tri-n-butyl phosphate |
MLE | maximum likelihood estimation | TsOH | 4-methylbenzenesulfonic acid |
References
- Khan, Z.; Javed, F.; Shamair, Z.; Hafeez, A.; Fazal, T.; Aslam, A.; Zimmerman, W.B.; Rehman, F. Current developments in esterification reaction: A review on process and parameters. J. Ind. Eng. Chem. 2021, 103, 80–101. [Google Scholar] [CrossRef]
- Patel, V. Chemical Kinetics; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Santana, H.S.; Silva, J.L.; Taranto, O.P. Development of microreactors applied on biodiesel synthesis: From experimental investigation to numerical approaches. J. Ind. Eng. Chem. 2019, 69, 1–12. [Google Scholar] [CrossRef]
- Hommes, A.; Heeres, H.J.; Yue, J. Catalytic Transformation of Biomass Derivatives to Value-Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem 2019, 11, 4671–4708. [Google Scholar] [CrossRef]
- Reizman, B.J.; Jensen, K.F. An Automated Continuous-Flow Platform for the Estimation of Multistep Reaction Kinetics. Org. Process Res. Dev. 2012, 16, 1770–1782. [Google Scholar] [CrossRef]
- Žnidaršič-Plazl, P. The Promises and the Challenges of Biotransformations in Microflow. Biotechnol. J. 2019, 14, 1800580. [Google Scholar] [CrossRef] [PubMed]
- Russo, D. Kinetic Modeling of Advanced Oxidation Processes Using Microreactors: Challenges and Opportunities for Scale-Up. Appl. Sci. 2021, 11, 19. [Google Scholar] [CrossRef]
- Yan, Z.F.; Tian, J.X.; Du, C.C.; Deng, J.; Luo, G.S. Reaction kinetics determination based on microfluidic technology. Chin. J. Chem. Eng. 2022, 41, 49–72. [Google Scholar] [CrossRef]
- Waldron, C.; Pankajakshan, A.; Quaglio, M.; Cao, E.H.; Galvanin, F.; Gavriilidis, A. Closed-Loop Model-Based Design of Ex-periments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous Cata-lyst. Ind. Eng. Chem. Res. 2019, 58, 22165–22177. [Google Scholar] [CrossRef]
- Waldron, C.; Pankajakshan, A.; Quaglio, M.; Cao, E.; Galvanin, F.; Gavriilidis, A. Model-based design of transient flow ex-periments for the identification of kinetic parameters. React. Chem. Eng. 2020, 5, 112–123. [Google Scholar] [CrossRef]
- Duan, X.N.; Tu, J.C.; Teixeira, A.R.; Sang, L.; Jensen, K.F.; Zhang, J.S. An automated flow platform for accurate determination of gas-liquid-solid reaction kinetics. React. Chem. Eng. 2020, 5, 1751–1758. [Google Scholar] [CrossRef]
- Waldron, C.; Pankajakshan, A.; Quaglio, M.; Cao, E.H.; Galvanin, F.; Gavriilidis, A. An autonomous microreactor platform for the rapid identification of kinetic models. React. Chem. Eng. 2019, 4, 1623–1636. [Google Scholar] [CrossRef]
- Sans, V.; Cronin, L. Towards dial-a-molecule by integrating continuous flow, analytics and self-optimisation. Chem. Soc. Rev. 2016, 45, 2032–2043. [Google Scholar] [CrossRef] [PubMed]
- Durand, T.; Henry, C.; Bolien, D.; Harrowven, D.C.; Bloodworth, S.; Franck, X.; Whitby, R.J. Thermolysis of 1,3-dioxin-4-ones: Fast generation of kinetic data using in-line analysis under flow. React. Chem. Eng. 2016, 1, 82–89. [Google Scholar] [CrossRef]
- Taylor, C.J.; Booth, M.; Manson, J.A.; Willis, M.J.; Clemens, G.; Taylor, B.A.; Chamberlain, T.W.; Bourne, R.A. Rapid, auto-mated determination of reaction models and kinetic parameters. Chem. Eng. J. 2021, 413, 127017. [Google Scholar] [CrossRef]
- Taylor, C.J.; Manson, J.A.; Clemens, G.; Taylor, B.A.; Chamberlain, T.W.; Bourne, R.A. Modern advancements in continuous-flow aided kinetic analysis. React. Chem. Eng. 2022, 7, 1037–1046. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chen, X.; Zhu, W.; Guo, X.; Zhao, F. Automated kinetics measurement for homogeneous photocatalytic reac-tions in continuous microflow. Artif. Chem. 2024, 2, 100066. [Google Scholar]
- Mozharov, S.; Nordon, A.; Littlejohn, D.; Wiles, C.; Watts, P.; Dallin, P.; Girkin, J.M. Improved Method for Kinetic Studies in Microreactors Using Flow Manipulation and Noninvasive Raman Spectrometry. J. Am. Chem. Soc. 2011, 133, 3601–3608. [Google Scholar] [CrossRef] [PubMed]
- Sokač Cvetnić, T.; Šalić, A.; Benković, M.; Jurina, T.; Valinger, D.; Gajdoš Kljusurić, J.; Zelić, B.; Jurinjak Tušek, A. A Systematic Review of Enzymatic Kinetics in Microreactors. Catalysts 2023, 13, 708. [Google Scholar] [CrossRef]
- Vlakh, E.G.; Tennikova, T.B. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and applica-tion. J. Sep. Sci. 2013, 36, 1149–1167. [Google Scholar]
- Jambovane, S.; Duin, E.C.; Kirn, S.K.; Hong, J.W. Determination of Kinetic Parameters, K-m and k(cat), with a Single Experiment on a Chip. Anal. Chem. 2009, 81, 3239–3245. [Google Scholar] [CrossRef]
- Chen, Y.; Carroll, A.; Scampavia, L.; Ruzicka, J. Automated Method, Based on Micro-Sequential Injection, for the Study of Enzyme Kinetics and Inhibition. Anal. Sci. 2006, 22, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Bellou, M.G.; Gkantzou, E.; Skonta, A.; Moschovas, D.; Spyrou, K.; Avgeropoulos, A.; Gournis, D.; Stamatis, H. Development of 3D Printed Enzymatic Microreactors for Lipase-Catalyzed Reactions in Deep Eutectic Solvent-Based Media. Micromachines 2022, 13, 1954. [Google Scholar] [CrossRef]
- Hommes, A.; de Wit, T.; Euverink, G.J.W.; Yue, J. Enzymatic Biodiesel Synthesis by the Biphasic Esterification of Oleic Acid and 1-Butanol in Microreactors. Ind. Eng. Chem. Res. 2019, 58, 15432–15444. [Google Scholar] [CrossRef]
- Yue, J.; Schouten, J.C.; Nijhuis, T.A. Integration of Microreactors with Spectroscopic Detection for Online Reaction Monitoring and Catalyst Characterization. Ind. Eng. Chem. Res. 2012, 51, 14583–14609. [Google Scholar] [CrossRef]
- Urban, P.L.; Goodall, D.M.; Bruce, N.C. Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol. Adv. 2006, 24, 42–57. [Google Scholar] [CrossRef]
- Stergiou, P.Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; Pan-dey, A.; Papamichael, E.M. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 2013, 31, 1846–1859. [Google Scholar] [CrossRef] [PubMed]
- Veluturla, S.; Narula, A.; Sharieff, S.; Ashwini, N. Continuous flow synthesis of Butyl Levulinate using a microreactor–RTD and kinetic studies. Curr. Res. Green Sustain. Chem. 2022, 5, 100281. [Google Scholar] [CrossRef]
- Gholamipour-Shirazi, A.; Rolando, C. Alkylation of Substituted Benzoic Acids in a Continuous Flow Microfluidic Microreactor: Kinetics and Linear Free Energy Relationships. Org. Process Res. Dev. 2012, 16, 811–818. [Google Scholar] [CrossRef]
- Delparish, A.; den Bouter, A.W.D.L.; Yercan, A.; van der Schaaf, J.; Fernanda Neira d’Angelo, M. Bringing the promises of microreactors and gold catalysis to lignocellulosic biomass valorization: A study on oxidative transformation of furfural. Chem. Eng. J. 2023, 452, 138903. [Google Scholar] [CrossRef]
- Swarts, J.W.; Vossenberg, P.; Meerman, M.H.; Janssen, A.E.M.; Boom, R.M. Comparison of two-phase lipase-catalyzed esterification on micro and bench scale. Biotechnol. Bioeng. 2008, 99, 855–861. [Google Scholar] [CrossRef]
- Pankajakshan, A.; Waldron, C.; Quaglio, M.; Gavriilidis, A.; Galvanin, F. A Multi-Objective Optimal Experimental Design Framework for Enhancing the Efficiency of Online Model Identification Platforms. Engineering 2019, 5, 20249–21059. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, Z.Q.; Lv, T.T.; Dong, J.X.; Shi, Q. Confinement effect and efficient adsorption of furfural onto ZIF-8-derived microporous carbon. J. Chem. Technol. Biotechnol. 2023, 98, 1166–1174. [Google Scholar] [CrossRef]
- Zhou, H.; Tang, X.; Wang, Z.; Sun, Y.; Ling, X. Process performance and kinetics of the esterification of diketene to methyl acetoacetate in helical continuous-flow microreactors. Chem. Eng. Sci. 2022, 262, 117970. [Google Scholar] [CrossRef]
- El-Zanati, E.; Abdallah, H. Esterification of ethyl hexanoic acid using flow-through catalytic membrane reactor. Catal. Ind. 2015, 7, 91–97. [Google Scholar] [CrossRef]
- Fang, X.; Ye, G.; Xu, J.; Lei, M. Kinetic of esterification of ethylene glycol and acetic acid in tubular microreactor. High. Edu. Chem. Eng. 2022, 39, 142–147. [Google Scholar]
- Šinkovec, E.; Pohar, A.; Krajnc, M. Phase transfer catalyzed esterification: Modeling and experimental studies in a microreac-tor under parallel flow conditions. Microfluid. Nanofluid. 2013, 14, 489–498. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Cao, Z.; Yang, G.D.; Zhou, A.D.; Zhou, Z. Thermodynamic and Kinetic Study on the Catalysis of Isoamyl Acetate by a Cation-Exchange Resin in an Intensified Fixed-Bed Reactor. ACS Omega 2020, 5, 25810–25818. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Yan, H.Z.; Zhou, Z.; Zhou, A.D. Kinetic Study on Esterification of Acetic Acid with Isopropyl Alcohol Catalyzed by Ion Exchange Resin. ACS Omega 2019, 4, 19462–19468. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.W.; Zaki, A.H.; Wu, H.T.; Lin, H.M.; Lee, M.J. Kinetics study on esterification of acrylic acid and ethanol over acidic cation-exchange resin beads Amberlyst 35. J. Taiwan Inst. Chem. Eng. 2019, 102, 44–50. [Google Scholar] [CrossRef]
- Salvi, H.M.; Kamble, M.P.; Yadav, G.D. Synthesis of Geraniol Esters in a Continuous-Flow Packed-Bed Reactor of Immobilized Lipase: Optimization of Process Parameters and Kinetic Modeling. Appl. Biochem. Biotechnol. 2018, 184, 630–643. [Google Scholar] [CrossRef]
- Taddeo, F.; Vitiello, R.; Tesser, R.; Melchiorre, M.; Eranen, K.; Salmi, T.; Russo, V.; Di Serio, M. Nonanoic acid esterification with 2-ethylhexanol: From batch to continuous operation. Chem. Eng. J. 2022, 444, 136572. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Bian, Y.; Li, C.; Li, Z.; Li, J. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies. Chin. J. Chem. Eng. 2023, 58, 1–10. [Google Scholar] [CrossRef]
- Bhavsar, K.; Yadav, G. n-Butyl levulinate synthesis using lipase catalysis: Comparison of batch reactor versus continuous flow packed bed tubular microreactor. J. Flow Chem. 2018, 8, 97–105. [Google Scholar] [CrossRef]
- Santacesaria, E.; Tesser, R.; Di Serio, M.; Guida, M.; Gaetano, D.; Garcia Agreda, A. Kinetics and Mass Transfer of Free Fatty Acids Esterification with Methanol in a Tubular Packed Bed Reactor: A Key Pretreatment in Biodiesel Production. Ind. Eng. Chem. Res. 2007, 46, 5113–5121. [Google Scholar] [CrossRef]
- Yang, G.D.; Chen, S.; Li, X.B.; Liu, C.Z.; He, J.; Ding, W.P.; Zhou, Z.; Zhang, Z.B. Study on Methyl Esterification of Salicylic Acid Using an Intensified Fixed Bed Reactor. Int. J. Chem. React. Eng. 2019, 17, 20180210. [Google Scholar] [CrossRef]
- Zanati, E.E.; Abdallah, H.; Elnahas, G. Micro-reactor for Non-catalyzed Esterification Reaction: Performance and Modeling. Int. J. Chem. React. Eng. 2017, 15, 20160099. [Google Scholar] [CrossRef]
- Ajani, O.O.; Jolayemi, E.G.; Owolabi, F.E.; Aderohunmu, D.V.; Akinsiku, A.A.; Owoeye, F.T. Dimethylformamide-mediated synthesis and characterization of novel pyrazole- and pyrimidine-based 3,4-dihydropyrimidine-2(1H)-thione derivatives. J. Phys. Conf. Ser. 2019, 1299, 012117. [Google Scholar] [CrossRef]
- Yue, J. Green process intensification using microreactor technology for the synthesis of biobased chemicals and fuels. Chem. Eng. Process. 2022, 177, 109002. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Q.; Shao, L.; Jia, Y.; Zhang, X. Microfluidic immobilized enzyme reactors for continuous biocatalysis. React. Chem. Eng. 2020, 5, 9–32. [Google Scholar] [CrossRef]
- Patel, M.K.; Davis, B.G. Flow chemistry kinetic studies reveal reaction conditions for ready access to unsymmetrical trehalose analogues. Org. Biomol. Chem. 2010, 8, 4232–4235. [Google Scholar] [CrossRef]
- Kundu, S.; Bhangale, A.S.; Wallace, W.E.; Flynn, K.M.; Guttman, C.M.; Gross, R.A.; Beers, K.L. Continuous Flow Enzyme-Catalyzed Polymerization in a Microreactor. J. Am. Chem. Soc. 2011, 133, 6006–6011. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, S.S.; Cui, H.S.; Wu, X.Y.; Wu, F.A. A novel continuous flow biosynthesis of caffeic acid phenethyl ester from alkyl caffeate and phenethanol in a packed bed microreactor. Bioresour. Technol. 2014, 158, 39–47. [Google Scholar] [CrossRef]
- Lim, R.; Kim, D.-K.; Lee, J.-S. Reutealis Trisperma Oil Esterification: Optimization and Kinetic Study. Energies 2020, 13, 1513. [Google Scholar] [CrossRef]
- Russo, V.; Tesser, R.; Rossano, C.; Cogliano, T.; Vitiello, R.; Leveneur, S.; Di Serio, M. Kinetic study of Amberlite IR120 cata-lyzed acid esterification of levulinic acid with ethanol: From batch to continuous operation. Chem. Eng. J. 2020, 401, 12126. [Google Scholar] [CrossRef]
- Cheng, Y.; Feng, Y.; Ren, Y.; Liu, X.; Gao, A.; He, B.; Yan, F.; Li, J. Comprehensive kinetic studies of acidic oil continuous es-terification by cation-exchange resin in fixed bed reactors. Bioresour. Technol. 2012, 113, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Huang, X.; Choi, S.; Zhu, R.; Tang, S.; Bond, J.Q.; Tavlarides, L.L. Heterogeneous catalytic esterification of oleic acid under sub/supercritical methanol over γ-Al2O3. Fuel 2020, 268, 117359. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Li, J.; Jin, Y.; Chen, M.; Wang, Y.B. Determination of kinetic parameters of homogenous continuous flow esteri-fication of monobutyl chlorophosphate in a microreactor. Can. J. Chem. Eng. 2020, 98, 1139–1147. [Google Scholar] [CrossRef]
- Lee, C.S.; Vorwerk, C.; Azudin, N.Y.; Ahmad, N.A.; Shukor, S.R.A. Kinetics Modelling of Uncatalyzed Esterification of Acetic- Anhydride with Isoamyl Alcohol in a Microreactor System. J. Environ. Chem. Eng. 2021, 9, 105219. [Google Scholar] [CrossRef]
- Benito-Lopez, F.; Tiggelaar, R.; Salbut, K.; Huskens, J.; Egberink, R.; Reinhoudt, D.; Gardeniers, H.; Verboom, W. Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor. Lab Chip 2007, 7, 1345–1351. [Google Scholar] [CrossRef]
- Carlucci, C. An Overview on the Production of Biodiesel Enabled by Continuous Flow Methodologies. Catalysts 2022, 12, 717. [Google Scholar] [CrossRef]
- Bannatham, P.; Banthaothook, C.; Limtrakul, S.; Vatanatham, T.; Jaree, A.; Ramachandran, P.A. Two-Scale Model for Kinetics, Design, and Scale-Up of Biodiesel Production. Ind. Eng. Chem. Res. 2021, 60, 15972–15988. [Google Scholar] [CrossRef]
- Schwarz, S.; Borovinskaya, E.S.; Reschetilowski, W. Base catalyzed ethanolysis of soybean oil in microreactors: Experiments and kinetic modeling. Chem. Eng. Sci. 2013, 104, 610–618. [Google Scholar] [CrossRef]
- Santacesaria, E.; Di Serio, M.; Tesser, R.; Turco, R.; Tortorelli, M.; Russo, V. Biodiesel process intensification in a very simple microchannel device. Chem. Eng. Process. 2012, 52, 47–54. [Google Scholar] [CrossRef]
- Santacesaria, E.; Di Serio, M.; Tesser, R.; Tortorelli, M.; Turco, R.; Russo, V. A simple device to test biodiesel process intensifi-cation. Chem. Eng. Process. 2011, 50, 1085–1094. [Google Scholar] [CrossRef]
- Wang, X.D.; Xu, X.; Wang, Q.L.; Huang, Z.X.; He, J.Y.; Qiu, T. Fatty Acid Methyl Ester Synthesis through Transesterification of Palm Oil with Methanol in Microchannels: Flow Pattern and Reaction Kinetics. Energ. Fuel. 2020, 34, 3628–3639. [Google Scholar] [CrossRef]
- Pontes, P.C.; Chen, K.; Naveira-Cotta, C.P.; Costa Junior, J.M.; Tostado, C.P.; Quaresma, J.N.N. Mass transfer simulation of biodiesel synthesis in microreactors. Comput. Chem. Eng. 2016, 93, 36–51. [Google Scholar] [CrossRef]
- Wang, T.; Li, W.; Ge, X.; Qiu, T.; Wang, X. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors. Chin. J. Chem. Eng. 2023, 53, 243–250. [Google Scholar] [CrossRef]
- Lopez, C.O.C.; Fejes, Z.; Viskolcz, B. Microreactor assisted method for studying isocyanate-alcohol reaction kinetics. J. Flow Chem. 2019, 9, 199–204. [Google Scholar] [CrossRef]
- Trentin, C.M.; Lima, A.P.; Alkimim, I.P.; da Silva, C.; de Castilhos, F.; Mazutti, M.A.; Oliveira, J.V. Continuous catalyst-free production of fatty acid ethyl esters from soybean oil in microtube reactor using supercritical carbon dioxide as co-solvent. J. Supercrit. Fluid. 2011, 56, 283–291. [Google Scholar] [CrossRef]
- Dennis, B.H.; Jin, W.Y.; Cho, J.; Timmons, R.B. Inverse determination of kinetic rate constants for transesterification of vegetable oils. Inverse Probl. Sci. Eng. 2008, 16, 693–704. [Google Scholar] [CrossRef]
- Ji, G.J.; Ding, J.; Zhong, Q. Microreactor technology for synthesis of ethyl methyl oxalate from diethyl oxalate with methanol and its kinectics. Can. J. Chem. Eng. 2020, 98, 2321–2329. [Google Scholar] [CrossRef]
- Richard, R.; Thiebaud-Roux, S.; Prat, L. Modelling the kinetics of transesterification reaction of sunflower oil with ethanol in microreactors. Chem. Eng. Sci. 2013, 87, 258–269. [Google Scholar] [CrossRef]
- Soyer Malyemez, A.; Giwa, A.; Bayraktar, E.; Mehmetoglu, U. Mathematical modeling of a continuous-flow packed-bed reac-tor with immobilized lipase for kinetic resolution of (R,S)-2-pentanol. Turk. J. Chem. 2020, 44, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Santiago, L.E.P.; Reboucas, E.G.; Silva, M.G.; Oliveira, K.C.; Jesus, A.A.; Aguiar, E.M.; Oliveira, J.A.; Souza, D.F.S. Influence of Porosity in a Packed-Bed Tubular Reactor on Biodiesel Production from Soybean Oil and Supercritical Ethanol: An Experimental and Phenomenological Investigation. Energy Fuel 2019, 33, 8649–8656. [Google Scholar] [CrossRef]
- Dencic, I.; de Vaan, S.; Noel, T.; Meuldijk, J.; de Croon, M.; Hessel, V. Lipase-Based Biocatalytic Flow Process in a Packed-Bed Microreactor. Ind. Eng. Chem. Res. 2013, 52, 10951–10960. [Google Scholar] [CrossRef]
- Zik, N.; Sulaiman, S.; Jamal, P. Biodiesel production from waste cooking oil using calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed reactor. Renew. Energy 2020, 155, 267–277. [Google Scholar] [CrossRef]
- Rade, L.L.; Lemos, C.O.T.; Barrozo, M.A.D.; Ribas, R.M.; Monteiro, R.D.; Hori, C.E. Optimization of esterification reaction over niobium phosphate in a packed bed tubular reactor. Renew. Energy 2019, 131, 348–355. [Google Scholar] [CrossRef]
- Serri, N.A.; Kamaruddin, A.H.; Len, K.Y.T. A continuous esterification of malonic acid with citronellol using packed bed reactor: Investigation of parameter and kinetics study. Food Bioprod. Process. 2010, 88, 327–332. [Google Scholar] [CrossRef]
- Gojun, M.; Ljubic, A.; Bacic, M.; Tusek, A.J.; Salic, A.; Zelic, B. Model-to-model: Comparison of mathematical process models of lipase catalysed biodiesel production in a microreactor. Comput. Chem. Eng. 2021, 145, 107200. [Google Scholar] [CrossRef]
- Gojun, M.; Pustahija, L.; Tusek, A.J.; Salic, A.; Valinger, D.; Zelic, B. Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor. Micromachines 2019, 10, 759. [Google Scholar] [CrossRef]
- Heils, R.; Niesbach, A.; Wierschem, M.; Claus, D.; Soboll, S.; Lutze, P.; Smirnova, I. Integration of Enzymatic Catalysts in a Continuous Reactive Distillation Column: Reaction Kinetics and Process Simulation. Ind. Eng. Chem. Res. 2014, 53, 19612–19619. [Google Scholar] [CrossRef]
- Wang, J.; Gu, S.S.; Cui, H.S.; Yang, L.Q.; Wu, X.Y. Rapid synthesis of propyl caffeate in ionic liquid using a packed bed enzyme microreactor under continuous-flow conditions. Bioresour. Technol. 2013, 149, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Andreo-Martínez, P.; García-Martínez, N.; Durán-del-Amor, M.d.M.; Quesada-Medina, J. Advances on kinetics and thermo-dynamics of non-catalytic supercritical methanol transesterification of some vegetable oils to biodiesel. Energy Convers. Manag. 2018, 173, 187–196. [Google Scholar] [CrossRef]
- Firdaus, M.Y.; Brask, J.; Nielsen, P.M.; Guo, Z.; Fedosov, S. Kinetic model of biodiesel production catalyzed by free liquid lipase from Thermomyces lanuginosus. J. Mol. Catal. B Enzym. 2016, 133, 55–64. [Google Scholar] [CrossRef]
- Akkarawatkhoosith, N.; Srichai, A.; Kaewchada, A.; Ngamcharussrivichai, C.; Jaree, A. Evaluation on safety and energy requirement of biodiesel production: Conventional system and microreactors. Process Saf. Environ. 2019, 132, 294–302. [Google Scholar] [CrossRef]
- He, R.N.; Zou, Y.; Dong, Y.B.; Muhammad, Y.; Subhan, S.; Tong, Z.F. Kinetic study and process simulation of esterification of acetic acid and ethanol catalyzed by HSO3-bmim HSO4. Chem. Eng. Res. Des. 2018, 137, 235–245. [Google Scholar] [CrossRef]
- Hussain, Z.; Kumar, R. Kinetics & Simulation of Non-catalytic Esterification. Mater. Today Proc. 2018, 5 Pt 3, 18287–18296. [Google Scholar]
- Schwolow, S.; Braun, F.; Rädle, M.; Kockmann, N.; Röder, T. Fast and Efficient Acquisition of Kinetic Data in Microreactors Using In-Line Raman Analysis. Org. Process Res. Dev. 2015, 19, 1286–1292. [Google Scholar] [CrossRef]
- McMullen, J.P.; Jensen, K.F. Rapid Determination of Reaction Kinetics with an Automated Microfluidic System. Org. Process Res. Dev. 2011, 15, 398–407. [Google Scholar] [CrossRef]
- Schorn, F.; Aubermann, M.; Zeltner, R.; Haumann, M.; Joly, N.Y. Online Monitoring of Microscale Liquid-Phase Catalysis Using in-Fiber Raman Spectroscopy. ACS Catal. 2021, 11, 6709–6714. [Google Scholar] [CrossRef]
- Richard, R.; Dubreuil, B.; Thiebaud-Roux, S.; Prat, L. On-line monitoring of the transesterification reaction carried out in mi-croreactors using near infrared spectroscopy. Fuel 2013, 104, 318–325. [Google Scholar] [CrossRef]
- von Harbou, E.; Behrens, R.; Berje, J.; Brächer, A.; Hasse, H. Studying Fast Reaction Kinetics with Online NMR Spectroscopy. Chem. Ing. Tech. 2017, 89, 369–378. [Google Scholar] [CrossRef]
- Frey, T.; Schlütemann, R.; Schwarz, S.; Biessey, P.; Hoffmann, M.; Grünewald, M.; Schlüter, M. CFD analysis of asymmetric mixing at different inlet configurations of a split-and-recombine micro mixer. J. Flow Chem. 2021, 11, 599–609. [Google Scholar] [CrossRef]
- Stefan, L. Integration of sensors and process analytical techniques. In Micro Process Engineering. Fundamentals, Devices, Fabrication, and Applications; Wiley-VCH Verlag GmbH: Pfinztal, Germany, 2008. [Google Scholar]
- Muller, S.T.R.; Murat, A.; Maillos, D.; Lesimple, P.; Hellier, P.; Wirth, T. Rapid Generation and Safe Use of Carbenes Enabled by a Novel Flow Protocol with In-line IR spectroscopy. Chem.-Eur. J. 2015, 21, 7016–7020. [Google Scholar] [CrossRef]
- Khder, A.E.R.S. Preparation, characterization and catalytic activity of tin oxide-supported 12-tungstophosphoric acid as a solid catalyst. Appl. Catal. A Gen. 2008, 343, 109–116. [Google Scholar] [CrossRef]
- Houben, C.; Lapkin, A.A. Automatic discovery and optimization of chemical processes. Curr. Opin. Chem. Eng. 2015, 9, 1–7. [Google Scholar] [CrossRef]
- Granda, J.M.; Donina, L.; Dragone, V.; Long, D.L.; Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 2018, 559, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Quaglio, M.; Waldron, C.; Pankajakshan, A.; Cao, E.; Gavriilidis, A.; Fraga, E.S.; Galvanin, F. An online reparametrisation ap-proach for robust parameter estimation in automated model identification platforms. Comput. Chem. Eng. 2019, 124, 270–284. [Google Scholar] [CrossRef]
- McMullen, J.P. Automated Microreactor System for Reaction Development and Online Optimization of Chemical Processes. Ph.D. Thesis, Massachusetts Institute of Technology, Boston, MA, USA, 2010. [Google Scholar]
- Li, J.; Li, J.; Liu, R.; Tu, Y.; Li, Y.; Cheng, J.; He, T.; Zhu, X. Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nat. Commun. 2020, 11, 2046. [Google Scholar] [CrossRef]
- Aroh, K.C.; Jensen, K.F. Efficient kinetic experiments in continuous flow microreactors. React. Chem. Eng. 2018, 3, 94–101. [Google Scholar] [CrossRef]
- Domokos, A.; Nagy, B.; Szilágyi, B.; Marosi, G.; Nagy, Z.K. Integrated Continuous Pharmaceutical Technologies—A Review. Org. Process Res. Dev. 2021, 25, 721–739. [Google Scholar] [CrossRef]
- Nagy, B. Mathematical Modeling for the Quality Assurance of Continuous Pharmaceutical Manufacturing Processes. Ph.D. Thesis, Budapest University, Budapest, Hungary, 2021. [Google Scholar]
Ref | Model | Equation | Description |
---|---|---|---|
[20,21] | Michaelis– Menten | V0, reaction rate; Vmax, the maximum rate; [S], substrate concentration; [E], enzyme concentration; Kcat, the turnover number; Km, Michaelis–Menten constant; Q, flow rate; C, reaction capacity of the continuous-flow packed-bed microreactor; [A], [B] is the substrate A, B concentration; k1, the rate constant; f, the fraction of the substrate converted to the final product during the reaction. | |
[22] | Lineweaver–Burk | ||
[23] | Lilly–Hornby | ||
[24] | Ping Pong Bi Bi |
Entry | Reactants | Catalyst | Kinetic Equation | Microreactor | Ea/kJmol−1 |
---|---|---|---|---|---|
[31] | Propionic acid, 1-butanol | Lipase | Microchips | 22 | |
[32] | Benzoic acid, ethanol | Sulfuric acid | Microreactor platforms | 78.5 | |
[33] | Benzoic acid, ethanol | Sulfuric acid | rBA = −kCBA rBA = −kCBA2 | PEEK tube | 79.8 |
[34] | 4-ethyl-neoxetan-2-one, methanol | TsOH | Helical microreactor | - | |
[35] | Ethanol, hexanoic Acid | H+ membrane | r = kCHACEthanol | Membrane Reactor | - |
[36] | Ethylene glycol and acetic acid | Amberlyst 15 | r = kCEGCAC | Tubular reactor | 53.21 |
[37] | sodium 4-tbutylphenolate, 4-methoxybenzoyl chloride | PTC (1 M NaOH, CH2Cl2) | PEEK microtube | - | |
[9] | Benzoic acid, ethanol | Sulfuric acid | PBR | 79.9 | |
[38] | Acetic acid, Isoamyl alcohol | NKC-9 | PBR | PH model, 58.6, 65.3 | |
[39] | Acetic acid, isopropyl alcohol | Amberlyst 36 Wet | PBR | LHHW model, 64.56, 66.94 | |
[40] | Acrylic acid Ethanol | Amberlyst 35 | IQH, NIQH, ER, LHHW, modified ER, modified LHHW models | PBR | 78.72, 73.23 59.26, 62.34 53.89, 59.6 |
[41] | Geraniol, propionic acid | Novozym 435 | PBR | 2.4 kcal/mol | |
[42] | Nonanoic acid esterification 2-ethylhexanol | Amberlyst-15, IR120 | PBR | 91.2, 57.7 | |
[43] | Methacrylic acid, methanol | NKC-9 resin | PBR | P-H 50.25 E-R 53.42 L-H 56.71 | |
[44] | n-Butanol, levulinic acid | lipases | Lilly-Hornby model | PBR | 7.07 kcal/mol |
[45] | Oleic acid, methanol | alkaline | PBR | 14 kcal/mol | |
[46] | Salicylic acid methanol | NKC-9 | PH, ER, LHWW | PBR | 39.24, 41.22; 44.83, 46.81 |
[47] | 2-ethylhexanoic acid, ethanol | None | Unsteady-state diffusion model | microchannel | - |
Entry | Reactants | Catalyst | Kinetic Equation | Microreactor | Ea/(kJ/mol) |
---|---|---|---|---|---|
[70] | Soybean oil, ethanol | Catalyst-free | Microtube reactor | - | |
[63] | Soybean oil, ethanol | KOH | Mixer, PTFE tube | - | |
[71] | Methanol, soybean oil | NaOH | Single-channel microreactor | - | |
[72] | Diethyl oxalate methanol | K2CO3 | Micromixer, tail tube | 31.86 | |
[73] | Vegetable oil, ethanol | EtONa | PFA tubes | - | |
[74] | (R,S)-2-pentanol, acyl donor | Novozyme 435 | continuous- flow reactor | - | |
[75] | Soybean oil, ethanol | Supercritical conditions | Tubular reactor | 32.8 39.98 | |
[76] | Propylene glycol, methyl ether, ethyl acetate | Amberlitetm IRA904 | Chromatogra- phic reactors | - | |
[77] | Waste cooking oil, methanol | Calcium oxide | PBR | 45.72 | |
[78] | Oleic acid, ethanol | Niobium phosphate | PBR | - | |
[79] | Malonic acid, citronellol | Amberlite MB-1 | Lilly-Hornby | PBR | - |
[23] | Ethyl ferulate glycerol | CALB lipase | 3D-printed polylactic acid | Km(app) 3.68 mM | |
[55] | Palm oil methanol | NaOH | Microchannel | 76.97 106.23 | |
[59] | DMC ethylene glycol | Sodium methoxide | Tube reactor | 4.294 × 104 3.668 × 104 | |
[69] | PhNCO, alcohol | Microchannel | 30.4, 38.1, 30.2, 38.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Wang, Z.; Qian, M.; Deng, Q.; Sun, P. Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors. Molecules 2024, 29, 3651. https://doi.org/10.3390/molecules29153651
Yao X, Wang Z, Qian M, Deng Q, Sun P. Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors. Molecules. 2024; 29(15):3651. https://doi.org/10.3390/molecules29153651
Chicago/Turabian StyleYao, Xingjun, Zhenxue Wang, Ming Qian, Qiulin Deng, and Peiyong Sun. 2024. "Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors" Molecules 29, no. 15: 3651. https://doi.org/10.3390/molecules29153651
APA StyleYao, X., Wang, Z., Qian, M., Deng, Q., & Sun, P. (2024). Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors. Molecules, 29(15), 3651. https://doi.org/10.3390/molecules29153651