Construction of a Wood Nanofiber–Bismuth Halide Photocatalyst and Catalytic Degradation Performance of Tetracycline from Aqueous Solutions
Abstract
:1. Introduction
2. Results
2.1. Characterization of BiOBr/CNF Composite Materials
2.2. Adsorption and Synergistic Adsorption and Photodegradation Activities
2.3. Analysis of Effect Factors on Tetracycline Degradation
2.4. Photocatalytic Degradation Mechanism
2.5. Analysis of Intermediate Products and Photocatalytic Degradation Mechanism
3. Materials and Methods
3.1. Preparation of BiOBr
3.2. Preparation of BiOBr/CNF Composite Materials
3.3. Photocatalytic Degradation of Tetracycline
3.4. Free Radical Trapping Experiment
3.5. Detection Method
3.5.1. Catalyst Characterization
3.5.2. Analysis of the Degradation Product
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Li, J.; Yao, Z.; Li, M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Sci. Total Environ. 2024, 926, 171757. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Duan, Y.; Zhang, Z.; Gao, Y.; Dai, C.; Tu, Y.; Gao, J. Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: Emission, multimedia fate and risk assessment. J. Hazard. Mater. 2024, 465, 133247. [Google Scholar] [CrossRef]
- Su, Z.; Wang, K.; Yang, F.; Zhuang, T. Antibiotic pollution of the Yellow River in China and its relationship with dissolved organic matter: Distribution and Source identification. Water Res. 2023, 235, 119867. [Google Scholar] [CrossRef]
- Leng, Y.; Bao, J.; Xiao, H.; Song, D.; Du, J.; Mohapatra, S.; Werner, D.; Wang, J. Transformation mechanisms of tetracycline by horseradish peroxidase with/without redox mediator ABTS for variable water chemistry. Chemosphere 2020, 258, 127306. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, T.; Zhang, S.; Hou, J.; Cheng, L.; Chen, W.; Zhang, Q. Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: A review. J. Hazard. Mater. 2024, 463, 132862. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, P.; Duan, M.; He, B.; Li, X.; Xin, X. Preparation of direct Z-scheme heterojunction la-doped Bi2WO6/CdS with enhanced visible light absorption and its photocatalytic degradation of antibiotics. Sep. Purif. Technol. 2024, 338, 126524. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Ammar, S.H.; Sabit, D.A.; Najim, A.A.; Radeef, A.Y.; Taher, A.G. The latest progress in the design and application of semiconductor photocatalysis systems for degradation of environmental pollutants in wastewater: Mechanism insight and theoretical calculations. Mat. Sci. Semicon Proc. 2024, 173, 108153. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Y.; Da, Z.; Shi, W.; Ma, C.; Lv, P.; Tang, Y.; Yao, G.; Wu, Y.; Huo, P.; et al. Significantly enhanced photocatalytic performance of CdS coupled WO3 nanosheets and the mechanism study. Chem. Eng. J. 2014, 241, 243–250. [Google Scholar] [CrossRef]
- Cao, Q.; Che, R.; Chen, N. Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity. Appl. Catal. B Environ. 2015, 162, 187–195. [Google Scholar] [CrossRef]
- Gar Alalm, M.; Tawfik, A.; Ookawara, S. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J. Environ. Chem. Eng. 2016, 4, 1929–1937. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Saddique, Z.; Imran, M.; Javaid, A.; Kanwal, F.; Latif, S.; Santos, J.C.S.D.; Kim, T.H.; Boczkaj, G. Bismuth-based nanomaterials-assisted photocatalytic water splitting for sustainable hydrogen production. Int. J. Hydrogen Energy 2024, 52, 594–611. [Google Scholar] [CrossRef]
- Thakur, V.; Singh, S.; Kumar, P.; Rawat, S.; Chandra Srivastava, V.; Lo, S.; Lavrenčič Štangar, U. Photocatalytic behaviors of bismuth-based mixed oxides: Types, fabrication techniques and mineralization mechanism of antibiotics. Chem. Eng. J. 2023, 475, 146100. [Google Scholar] [CrossRef]
- Shu, S.; Wang, H.; Li, Y.; Liu, J.; Liu, J.; Yao, J.; Liu, S.; Zhu, M.; Huang, L. Fabrication of n-p β-Bi2O3@BiOI core/shell photocatalytic heterostructure for the removal of bacteria and bisphenol A under LED light. Colloids Surf. B Biointerfaces 2023, 221, 112957. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, Y.; Wang, K.; Liang, C.; Liu, C.; Li, X.; Jia, Y.; Liu, W. Bi2S3 nanorods obtained from the topotactic transformation of single-crystalline Bi2O2S achieving enhanced visible light-driven CO2 conversion. Sep. Purif. Technol. 2023, 309, 123039. [Google Scholar] [CrossRef]
- Song, Z.; Wang, C.; Shu, S.; Liu, J.; Liu, J.; Li, Y.; Huang, L.; Huang, L. Facile synthesis CQDs/SnO2-x/BiOI heterojunction photocatalyst to effectively degrade pollutants and antibacterial under LED light. J. Photochem. Photobiol. B Biol. 2022, 236, 112566. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Yuan, C.; Lv, H.; Zhang, K.; Chen, X.; Zhang, Y.; Zhang, Y. Fabrication of 2D/1D Bi2WO6/C3N5 heterojunctions for efficient antibiotics removal. Powder Technol. 2023, 413, 118083. [Google Scholar] [CrossRef]
- Wu, X.; Ng, Y.H.; Wen, X.; Chung, H.Y.; Wong, R.J.; Du, Y.; Dou, S.X.; Amal, R.; Scott, J. Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chem. Eng. J. 2018, 353, 636–644. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Lai, C.; Zeng, G.; Huang, D.; Cheng, M.; Wang, J.; Chen, F.; Zhou, C.; Xiong, W. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Adv. Colloid Interface Sci. 2018, 254, 76–93. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Lee, H.L. Comprehensive investigation of solvent effects on BiOBr synthesis: Understanding the photocatalytic mechanisms of enrofloxacin and its degradation pathway. Catal. Commun. 2024, 187, 106877. [Google Scholar] [CrossRef]
- Tong, Y.; Ma, Z.; He, Y. Boron nitride nanosheets modified BiOBr photocatalysts for promoting photocatalytic removal of tetracycline under visible light irradiation. Opt. Mater. 2024, 150, 115248. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Shen, X.; Duoerkun, G.; Zhu, B.; Zhang, L.; Li, M.; Chen, Z. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chem. Eng. J. 2020, 386, 124010. [Google Scholar] [CrossRef]
- Qu, S.; Xiong, Y.; Zhang, J. Graphene oxide and carbon nanodots co-modified BiOBr nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight. J. Colloid Interface Sci. 2018, 527, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Duo, F.; Wang, Y.; Fan, C.; Zhang, X.; Wang, Y. Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: The upconversion effect of CQDs. J. Alloys Compd. 2016, 685, 34–41. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Gao, M.; Guo, Y.; Xu, T.; Jiang, H.; Zhang, Z.; Ji, X.; Si, C. Nanocellulose-based functional materials for physical, chemical, and biological sensing: A review of materials, properties, and perspectives. Ind. Crop Prod. 2024, 212, 118326. [Google Scholar] [CrossRef]
- Zhang, Z.; Ahmed, A.I.S.; Malik, M.Z.; Ali, N.; Khan, A.; Ali, F.; Hassan, M.O.; Mohamed, B.A.; Zdarta, J.; Bilal, M. Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants. Chemosphere 2023, 313, 137483. [Google Scholar] [CrossRef] [PubMed]
- Karthik, P.; Ravichandran, S.; Sasikala, V.; Mukkannan, A.; Rajesh, J. Evaluation of MnO2 incorporated cellulose acetate membranes and their potential photocatalytic studies using Rhodamine-B dye. Process Saf. Environ. 2023, 179, 691–699. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, Y.; Wu, Y.; Shi, X.; Du, Y.; Luo, Y.; Deng, H. TiO2/rectorite-trapped cellulose composite nanofibrous mats for multiple heavy metal adsorption. Int. J. Biol. Macromol. 2021, 183, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, C.; Gao, Z.; Qi, X.; He, L.; Huang, W.; Wang, J.; Liu, Z. Photo-responsive Mn-doped TiO2-based superhydrophobic/underwater superoleophobicity membrane for efficient oil-water separation and photothermal decontamination. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131519. [Google Scholar] [CrossRef]
- Luo, Y.; Wei, X.; Gao, B.; Zou, W.; Zheng, Y.; Yang, Y.; Zhang, Y.; Tong, Q.; Dong, L. Synergistic adsorption-photocatalysis processes of graphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics, models, and mechanisms. Chem. Eng. J. 2019, 375, 122019. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, Y.; Wei, Y.; Che, C.; Xia, Z.; Li, G.; Zhang, X.; Shi, Y.; Tang, Z. In situ preparation of biochar/Bi4O5Br2 composite for ibuprofen removal under the synergistic effect of adsorption and photocatalysis and the underlying mechanism. J. Water Process Eng. 2024, 57, 104628. [Google Scholar] [CrossRef]
- Wang, M.; Guo, B.; Zhan, J.; Zhuang, Y.; Komarneni, S.; Ma, J. Mo doping of BiOBr nanoflowers for the degradation of tetracycline by heterogeneous activation of persulfate under visible light. Chem. Phys. Lett. 2022, 807, 140093. [Google Scholar] [CrossRef]
- Haounati, R.; El Guerdaoui, A.; Ouachtak, H.; El Haouti, R.; Bouddouch, A.; Hafid, N.; Bakiz, B.; Santos, D.M.F.; Labd Taha, M.; Jada, A.; et al. Design of direct Z-scheme superb magnetic nanocomposite photocatalyst Fe3O4/Ag3PO4@Sep for hazardous dye degradation. Sep. Purif. Technol. 2021, 277, 119399. [Google Scholar] [CrossRef]
- Haounati, R.; Ighnih, H.; Ouachtak, H.; Malekshah, R.E.; Hafid, N.; Jada, A.; Ait Addi, A. Z-Scheme g-C3N4/Fe3O4/Ag3PO4@Sep magnetic nanocomposites as heterojunction photocatalysts for green malachite degradation and dynamic molecular studies. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131509. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Song, Y.; Fan, J.; Sun, T.; Liu, E. S-scheme regulated Ni2P-NiS/twinned Mn0.5Cd0.5S hetero-homojunctions for efficient photocatalytic H2 evolution. J. Mater. Sci. Technol. 2024, 169, 148–157. [Google Scholar] [CrossRef]
- Ni, Q.; Ke, X.; Qian, W.; Yan, Z.; Luan, J.; Liu, W. Insight into tetracycline photocatalytic degradation mechanism in a wide pH range on BiOI/BiOBr: Coupling DFT/QSAR simulations with experiments. Appl. Catal. B Environ. 2024, 340, 123226. [Google Scholar] [CrossRef]
- Dang, J.; Zhang, J.; Shen, Y.; Wang, L.; Guo, F.; Li, Y.; Guan, W. Fabrication of magnetically recyclable Fe3O4/BiOCl/BiOBr nanocomposite with Z-scheme heterojunction for high-efficiency photocatalytic degradation of tetracycline. Mater. Sci. Semicond. Process. 2023, 158, 107371. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, W.; Sun, Y.; Li, J.; Cen, W.; Cui, Z.; Huang, H.; Dong, F. Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres. J. Catal. 2018, 357, 41–50. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X.; Tian, Q.; Pan, A.; Liu, X.; Yin, H.; Shi, Y.; Fang, G. Synergistic effect of adsorption and photocatalysis of BiOBr/lignin-biochar composites with oxygen vacancies under visible light irradiation. J. Ind. Eng. Chem. 2023, 117, 117–129. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, J.; Tian, C.; Qing, Y.; Wu, Y. Construction of a Wood Nanofiber–Bismuth Halide Photocatalyst and Catalytic Degradation Performance of Tetracycline from Aqueous Solutions. Molecules 2024, 29, 3253. https://doi.org/10.3390/molecules29143253
She J, Tian C, Qing Y, Wu Y. Construction of a Wood Nanofiber–Bismuth Halide Photocatalyst and Catalytic Degradation Performance of Tetracycline from Aqueous Solutions. Molecules. 2024; 29(14):3253. https://doi.org/10.3390/molecules29143253
Chicago/Turabian StyleShe, Jiarong, Cuihua Tian, Yan Qing, and Yiqiang Wu. 2024. "Construction of a Wood Nanofiber–Bismuth Halide Photocatalyst and Catalytic Degradation Performance of Tetracycline from Aqueous Solutions" Molecules 29, no. 14: 3253. https://doi.org/10.3390/molecules29143253
APA StyleShe, J., Tian, C., Qing, Y., & Wu, Y. (2024). Construction of a Wood Nanofiber–Bismuth Halide Photocatalyst and Catalytic Degradation Performance of Tetracycline from Aqueous Solutions. Molecules, 29(14), 3253. https://doi.org/10.3390/molecules29143253