Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery
Abstract
:1. Introduction
2. Adsorption of Rare-Earth Elements on Porous Materials
2.1. Carbon-Based Porous Materials
2.1.1. Activated Carbon (AC)
2.1.2. Graphene and Graphene Oxide
2.1.3. Carbon Nanotubes (CNTs)
2.2. Silicon-Based Materials
2.2.1. Silicon-Based Mesoporous Materials Containing Phosphate Groups
2.2.2. Silica-Based Mesoporous Materials Containing Amino Groups
2.2.3. Silica-Based Mesoporous Materials Containing Carboxyl Groups
2.2.4. Other Silicon–Based Mesoporous Materials
2.3. Porous Organic Polymer Materials
2.3.1. Porous Polymers Based on Chitosan and Cyclodextrins
2.3.2. Porous Polymers Based on Ion Imprinting
2.3.3. Porous Polymers Based on Phosphorylation
2.4. Metal–Organic Framework (MOF) Materials
2.4.1. MOF Material Profile
2.4.2. Rare Earth Separation with MOFs
3. Conclusions
Funding
Conflicts of Interest
References
- Lewicka, E.; Guzik, K.; Galos, K. On the possibilities of critical raw materials production from the EU’s primary sources. Resources 2021, 10, 50. [Google Scholar] [CrossRef]
- Wang, K.; Adidharma, H.; Radosz, M.; Wan, P.; Xu, X.; Russell, C.K.; Tian, H.; Fan, M.; Yu, J. Recovery of rare earth elements with ionic liquids. Green. Chem. 2017, 19, 4469–4493. [Google Scholar] [CrossRef]
- Wang, N.; Jin, T.; Sun, H.; Zhong, S.; Wen, G.; Yan, Z.; Xu, D. Exploring the trace rare earth Sm on the microstructure and mechanical performance of brazed diamonds by Ni–Cr filler alloy. J. Mater. Res. Technol. 2023, 26, 315–327. [Google Scholar] [CrossRef]
- Al-Samhan, M.; Al-Fadhli, J.; Al-Otaibi, A.M.; Al-Attar, F.; Bouresli, R.; Rana, M.S. Prospects of refinery switching from conventional to integrated: An opportunity for sustainable investment in the petrochemical industry. Fuel 2022, 310, 122161. [Google Scholar] [CrossRef]
- Essahili, O.; Ouafi, M.; Moudam, O. Recent progress in organic luminescent solar concentrators for agrivoltaics: Opportunities for rare-earth complexes. Sol. Energy 2022, 245, 58–66. [Google Scholar] [CrossRef]
- Ahmad, I.; Shukrullah, S.; Naz, M.Y.; Bhatti, H.N.; Ahmad, M.; Ahmed, E.; Hussien, M. Recent progress in rare earth oxides and carbonaceous materials modified ZnO heterogeneous photocatalysts for environmental and energy applications. J. Environ. Chem. Eng. 2022, 10, 107762. [Google Scholar] [CrossRef]
- Talan, D.; Huang, Q. A review of environmental aspect of rare earth element extraction processes and solution purification techniques. Miner. Eng. 2022, 179, 107430. [Google Scholar] [CrossRef]
- Qiao, J.; Li, L.; Liu, J.; Wu, N.; Liu, W.; Wu, F.; Zeng, Z. The vital application of rare earth for future high-performance electromagnetic wave absorption materials: A review. J. Mater. Sci. Technol. 2023, 176, 188–203. [Google Scholar] [CrossRef]
- Mi, C.; Zhang, X.; Yang, C.; Wu, J.; Chen, X.; Ma, C.; Wu, S.; Yang, Z.; Qiao, P.; Liu, Y.; et al. Bone disease imaging through the near-infrared-II window. Nat. Commun. 2023, 14, 6287. [Google Scholar] [CrossRef]
- Leventis, N.; Gao, X. Nd-Fe-B permanent magnet electrodes. theoretical evaluation and experimental demonstration of the paramagnetic body forces. J. Am. Chem. Soc. 2002, 124, 1079–1088. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2024.
- Shu, W.; Li, F.D.; Zhang, Q.Y.; Li, Z.; Qiao, Y.-F.; Audet, J.; Chen, G. Pollution caused by mining reshaped the structure and function of bacterial communities in China’s largest ion-adsorption rare earth mine watershed. J. Hazard. Mater. 2023, 451, 131221. [Google Scholar] [CrossRef] [PubMed]
- Li, T.J.; Yu, X.Y.; Li, M.; Rong, L.L.; Xiao, X.Y.; Zou, X.M. Ecological insight into antibiotic resistome of ion-adsorption rare earth mining soils from south China by metagenomic analysis. Sci. Total Environ. 2023, 872, 162265. [Google Scholar] [CrossRef] [PubMed]
- Yaftian, M.R.; Burgard, M.; Dieleman, C.B.; Matt, D. Rare-earth metal-ion separation using a supported liquid membrane mediated by a narrow rim phosphorylated calix-arene. J. Membr. Sci. 1998, 144, 57–64. [Google Scholar] [CrossRef]
- Artiushenko, O.; da Silva, R.F.; Zaitsev, V. Recent advances in functional materials for rare earth recovery: A review. Sustain. Mater. Technol. 2023, 37, e00681. [Google Scholar] [CrossRef]
- Chen, C.-L.; Wang, X.-K.; Nagatsu, M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ. Sci. Technol. 2009, 43, 2362–2367. [Google Scholar] [CrossRef] [PubMed]
- Asadollahzadeh, M.; Torkaman, R.; Torab-Mostaedi, M. Extraction and separation of rare earth elements by adsorption approaches: Current status and future trends. Sep. Purif. Rev. 2021, 50, 417–444. [Google Scholar] [CrossRef]
- Lu, T.; Pan, Y.-L.; Shi, M.-H.; Ding, D.; Ma, Z.-W.; Liu, J.-Y.; Yuan, Y.-P.; Fei, L.; Sun, Y.-Q.; Sun, Y.-B. Recovering rare earth elements via immobilized red algae from ammonium-rich wastewater. Environ. Sci. Ecotechnol. 2022, 12, 100204. [Google Scholar]
- Qi, X.-H.; Du, K.-Z.; Feng, M.-L.; Gao, Y.-J.; Huang, X.-H.; Kanatzidis, M.G. Layered A2Sn3S7· 1.25 H2O (A= Organic Cation) as efficient ion-exchanger for rare earth element recovery. J. Am. Chem. Soc. 2017, 139, 4314–4317. [Google Scholar] [CrossRef]
- Xu, L.; Xu, C.; Bao, H.-L.; Spanopoulos, L.; Ke, W.-J.; Dong, X.; Xiao, C.-L.; Kanatzidis, M.G. Selective capture mechanism of radioactive thorium from highly acidic solution by a layered metal sulfide. ACS Appl. Mater. Interfaces 2021, 13, 37308–37315. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, Y.; Zhang, T.; Jin, J.-C.; Li, J.-L.; Sun, Q.; Ai, Y.-J.; Feng, M.-L.; Huang, X.-Y. Ultrafast and selective uptake of Eu3+ from aqueous solutions by two layered sulfides. Chem. Eng. J. 2021, 420, 127613. [Google Scholar] [CrossRef]
- Yu, J.-M.; Luo, D.; Ma, Z.-J.; Zheng, B.; Cheng, F.-F.; Xiong, W.-W. Effective enrichment of low-concentration rare-earth ions by three-dimensional thiostannate K2Sn2S5. ACS Appl. Mater. Interfaces 2021, 13, 55188–55197. [Google Scholar] [CrossRef] [PubMed]
- Iannicellii-Zubiani, E.M.; Stampino, P.G.; Cristiani, C.; Dotelli, G. Enhanced lanthanum adsorption by amine modified activated carbon. Chem. Eng. J. 2018, 341, 75–82. [Google Scholar] [CrossRef]
- Saha, D.; Akkoyunlu, S.D.; Thorpe, R.; Hensley, D.K.; Chen, J. Adsorptive recovery of neodymium and dysprosium in phosphorous functionalized nanoporous carbon. J. Environ. Chem. Eng. 2017, 5, 4684–4692. [Google Scholar] [CrossRef]
- Han, J.; Song, Y.; Li, H.; Wang, Y.; Zhang, L.; Sun, P.; Fan, J.; Li, Y. Preparation of novel magnetic porous biochar and its adsorption mechanism on cerium in rare earth wastewater. Ceram. Int. 2023, 49, 9901–9908. [Google Scholar] [CrossRef]
- Kołczyk-Siedlecka, K.; Socha, R.P.; Yang, X.-G.; Eckert, K.; Wojnicki, M. Study on kinetics and mechanism of Re (VII) ion adsorption and desorption using commercially available activated carbon and solutions containing Se (VI) as an impurity. Hydrometallurgy 2023, 215, 105973. [Google Scholar] [CrossRef]
- Xiao, B.; Huang, L.H.; Huang, W.F.; Zhang, D.M.; Zeng, X.G.; Yao, X.H. Glycine functionalized activated carbon derived from navel orange peel for enhancement recovery of Gd (III). J. Rare Earths 2022, 40, 1794–1802. [Google Scholar] [CrossRef]
- Pinheiro, R.F.; Grimm, A.; Oliveira, M.L.S.; Vieillard, J.; Silva, L.F.O.; DeBrum, I.A.S.; Lima, É.C.; Naushadet, M.; Sellaoui, L.; Dotto, G.L.; et al. Adsorptive behavior of the rare earth elements Ce and La on a soybean pod derived activated carbon: Application in synthetic solutions, real leachate and mechanistic insights by statistical physics modeling. Chem. Eng. J. 2023, 471, 144484. [Google Scholar] [CrossRef]
- Pinheiro, R.F.; Grimm, A.; da Boit Martinello, K.; Khan, M.R.; Ahmad, N.; Silva, L.F.O.; Brum, I.A.S.D.; Dotto, G.L.; dos-Reis, G.S. Vine pruning waste-based activated carbon for cerium and lanthanum ad sorption from water and real leachate. J. Rare Earths 2023, in press. [Google Scholar] [CrossRef]
- Burakova, I.V.; Burakov, A.E.; Tkachev, A.G.; Troshkina, I.D.; Veselova, O.A.; Babkin, A.V.; Aung, W.M.; Ali, I. Kinetics of the adsorption of scandium and cerium ions in sulfuric acid solutions on a nanomodified activated carbon. J. Mol. Liq. 2018, 253, 277–283. [Google Scholar] [CrossRef]
- Dong, L.; Li, S.-B.; Jin, Y.-F.; Hu, B.-W.; Sheng, G.-D. Enhanced adsorption of Eu (III) from wastewater using Solidago canadensis-derived biochar functionalized by Ca/Al-LDH and hydroxyapatite. Appl. Surf. Sci. 2021, 567, 150794. [Google Scholar] [CrossRef]
- Pei, X.; Gao, H.; Shang, C.; Huang, J.; Ge, M.; Xie, H.; Feng, Y.; Wang, B. One-step synthesis of phytic acid-assisted hydrochar boost selective sorption and in situ passivation of lanthanum. Sci. Total Environ. 2024, 917, 170419. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Zeng, X.; Hu, L.; Huang, L.; Huang, Y.; Zhou, Y.; Liu, D.-L.; Huang, W. Activated carbon from Camellia oleifera shells for adsorption of Y (III): Experimental and DFT studies. RSC Adv. 2024, 14, 4252–4263. [Google Scholar] [CrossRef] [PubMed]
- Serra-Ventura, J.; Vidal, M.; Rigol, A. Examining samarium sorption in biochars and carbon-rich materials for water remediation: Batch vs. continuous-flow methods. Chemosphere 2022, 287, 132138. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, E.; Ioannidis, I.; Pashalidis, I.; Viet, D.D.; Tsubota, T.; Kalderis, D. Europium removal from aqueous solutions by oxidized biochar prepared from waste palm tree fronds. Sustain. Chem. Environ. 2023, 4, 100040. [Google Scholar] [CrossRef]
- Yang, X.W.; Debeli, D.K.; Shan, G.R.; Pan, P.J. Selective adsorption and high recovery of La3+ using graphene oxide/poly (N-isopropyl acrylamide-maleic acid) cryogel. Chem. Eng. J. 2020, 379, 122335. [Google Scholar] [CrossRef]
- Ali, I.; Babkin, A.V.; Burakova, I.V.; Burakova, I.V.; Burakov, A.E.; Neskoromnaya, E.A.; Tkachev, A.G.; Panglisch, S.; AlMasoud, N.; Alomar, T.S. Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: Isotherms, kinetics, thermodynamics and desorption. J. Mol. Liq. 2021, 329, 115584. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Z.-M.; Qin, C.-K.; Chen, Z.-M.; Gao, M.-M.; He, N.; Qian, X.; Zhou, Z.-D.; Li, G.-Y. Preparation and application of iron oxide/persimmon tannin/graphene oxide nanocomposites for efficient adsorption of erbium from aqueous solution. J. Rare Earths 2020, 38, 1344–1353. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Fekry, N.A.; Abdelfattah, A.M. A novel nanobiosorbent of functionalized graphene quantum dots from rice husk with barium hydroxide for microwave enhanced removal of lead (II) and lanthanum (III). Bioresour. Technol. 2020, 298, 122514. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.-X.; Zhang, X.; Li, Z.; Liang, Q.; Wu, J.-S.; Yuan, Y.-L.; Cao, S.-W.; Chen, J.; Liu, J.-W.; Qiu, H.-D. Nitrogen-doped nanoporous graphene induced by a multiple confinement strategy for membrane separation of rare earth. iScience 2021, 24, 101920. [Google Scholar] [CrossRef]
- Liao, C.; Zhao, X.-R.; Jiang, X.-Y.; Teng, J.; Yu, J.-G. Hydrothermal fabrication of novel three-dimensional graphene oxide-pentaerythritol composites with abundant oxygen-containing groups as efficient adsorbents. Microchem. J. 2020, 152, 104288. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, X.-Y.; Jiao, F.-P.; Chen, X.-Q.; Yu, J.-G. Tunable assembly of porous three-dimensional graphene oxide-corn zein composites with strong mechanical properties for adsorption of rare earth elements. J. Taiwan Inst. Chem. Eng. 2018, 85, 106–114. [Google Scholar] [CrossRef]
- Liao, C.; Liu, Y.-P.; Ren, H.; Jiang, X.-Y.; Yu, J.-G.; Chen, X.-Q. Rational assembly of GO-based heterocyclic sulfur-and nitrogen-containing aerogels and their adsorption properties toward rare earth elementals. J. Hazard. Mater. 2021, 419, 126484. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Lan, X.-W.; Ren, H.; Li, W.-J.; Chen, J.; Jiang, X.-Y.; Yu, J.-G. Three-dimensional hybrid nitrogen/oxygen-containing components modified graphene oxide as a recyclable adsorbent for rapid adsorption of REEs. J. Environ. Chem. Eng. 2021, 9, 106500. [Google Scholar] [CrossRef]
- Ren, H.; Cao, Z.-F.; Chen, Y.-Y.; Jiang, X.-Y.; Yu, J.-G. Graphene oxide-Bicine composite as a novel adsorbent for removal of various contaminants from aqueous solutions. J. Environ. Chem. Eng. 2021, 9, 106769. [Google Scholar] [CrossRef]
- Ren, H.; Yang, X.-T.; Yu, J.-G. Highly-efficient and selective adsorption of phenols by GO-BT composite in the presence of rare earth elements. J. Environ. Chem. Eng. 2023, 11, 108991. [Google Scholar] [CrossRef]
- Bao, S.; Wang, Y.; Wei, Z.; Yang, W.; Yu, Y. Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance. J. Hazard. Mater. 2022, 424, 127370. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.P.; Khan, A.; Alam, M.M.; Asiri, A.M.; Uddin, J.; Rahman, M.M. SDBS-functionalized MWCNT/poly (o-toluidine) nanowires modified glassy carbon electrode as a selective sensing platform for Ce3+ in real samples. J. Mol. Liq. 2019, 279, 392–399. [Google Scholar] [CrossRef]
- Liu, E.-L.; Lin, X.; Zhang, D.; Xu, W.-B.; Shi, J.-Y.; Hong, Y.-Z. Ionic imprinted CNTs-chitosan hybrid sponge with 3D network structure for selective and effective adsorption of Gd (III). Sep. Purif. Technol. 2021, 269, 118792. [Google Scholar] [CrossRef]
- Guo, L.R.; Liu, Y.-Z.; Dou, J.-B.; Huang, Q.; Lei, Y.; Chen, J.-Y.; Wen, Y.-Q.; Li, Y.-X.; Zhang, X.-Y.; Wei, Y. Highly efficient removal of Eu3+ ions using carbon nanotubes-based polymer composites synthesized from the combination of Diels-Alder and multicomponent reactions. J. Mol. Liq. 2020, 308, 112964. [Google Scholar] [CrossRef]
- Samia, A.; Nolting, D.; Lapka, J.; Charlton, W. Neutron Activation Analysis of Rare Earth Element Extraction from Solution through a Surfactant-Assisted Dispersion of Carbon Nanotubes. Nanomaterials 2023, 14, 92. [Google Scholar] [CrossRef]
- Salish, K.A.M.; Hamza, M.F.; Mira, H.; Wei, Y.-Z.; Gao, F.; Atta, A.M.; Fujita, T.; Guibal, E. Nd(III) and Gd(III) sorption on mesoporous amine-functionalized polymer/SiO2 composite. Molecules 2021, 26, 1049. [Google Scholar] [CrossRef] [PubMed]
- Dudarko, O.; Kobylinska, N.; Mishra, B.; Kessler, V.G.; Tripathi, B.P.; Seisenbaeva, G.A. Facile strategies for synthesis of functionalized mesoporous silicas for the removal of rare-earth elements and heavy metals from aqueous systems. Microporous Mesoporous Mater. 2021, 315, 110919. [Google Scholar] [CrossRef]
- Dudarko, O.; Kobylinska, N.; Kessler, V.; Seisenbaeva, G. Recovery of rare earth elements from NdFeB magnet by mono- and bifunctional mesoporous silica: Waste recycling strategies and perspectives. Hydrometallurgy 2022, 210, 105855. [Google Scholar] [CrossRef]
- Boiko, Y.; Belikov, K.; Bryleva, E.; Bunina, Z.; Varchenko, V.; Rozhenko, A.B.; Drapailo, Z.; Rodik, R.; Golub, A.; Katz, A.; et al. Grafting of phosphorus-containing tetrahydroxy(thia)calixarenes on silica enhances europium(III) adsorption. Phosphorus Sulfur Silicon Relat. Elem. 2023, 198, 715–722. [Google Scholar] [CrossRef]
- Fan, J.; Duan, L.; Wang, Y.; Qiu, P.; Fan, M.; Shang, P.; He, Y.; Kang, T. Adsorption of actinides (III) and lanthanides (III) on silica-based BCPDTPA resin: Kinetics, thermodynamics, and isotherms. Colloids Surf. A 2023, 670, 131547. [Google Scholar] [CrossRef]
- Artiushenko, O.; Rojano, W.S.; Nazarkovsky, M.; Azevedo, M.F.; Saint’Pierre, T.D.; Kai, J.; Zaitsev, V. Recovery of rare earth elements from waste phosphors using phosphonic acid-functionalized silica adsorbent. Sep. Purif. Technol. 2024, 330, 125525. [Google Scholar] [CrossRef]
- Hu, Y.; Drouin, E.; Lariviere, D.; Kleitz, F.; Fontaine, F.-G. Highly Efficient and Selective Recovery of Rare Earth Elements Using Mesoporous Silica Functionalized by Preorganized Chelating Ligands. ACS Appl. Mater. Interfaces 2017, 9, 38584–38593. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Castro, L.C.M.; Drouin, E.; Florek, J.; Kählig, H.; Larivière, D.; Kleitz, F.; Fontaine, F.-G. Size-selective separation of rare earth elements using functionalized mesoporous silica materials. ACS Appl. Mater. Interfaces 2019, 11, 23681–23691. [Google Scholar] [CrossRef] [PubMed]
- Ravi, S.; Zhang, S.; Lee, Y.-R.; Kang, K.-K.; Kim, J.-M.; Ahn, J.-W.; Ahn, W.-S. EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. J. Ind. Eng. Chem. 2018, 67, 210–218. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Shi, M.; Qin, Y.; Li, X. Study on the adsorption of lanthanum ion imprinted on SBA-15/Y. J. Indian Chem. Soc. 2022, 99, 100425. [Google Scholar]
- Chen, L.; Xiang, Y.; Luo, J.; Chen, Y.; Guo, Z.; Lei, H.; Dan, H.; Ding, Y.; Duan, T. Efficient adsorption and in-situ ceramics immobilization of simulated trivalent actinides (Nd) by amino-functionalized mesoporous zirconia-silica. Ceram. Int. 2023, 49, 32549–32557. [Google Scholar] [CrossRef]
- Lakić, M.; Breijaert, T.C.; Daniel, G.; Svensson, F.G.; Kessler, V.G.; Seisenbaeva, G.A. Uptake and separation of rare earth elements and late transition metal cations by nanoadsorbent grafted with diamino ligands. Sep. Purif. Technol. 2023, 323, 124487. [Google Scholar] [CrossRef]
- Artiushenko, O.; Kostenko, L.; Zaitsev, V. Influence of competitive eluting agents on REEs recovery from silica gel adsorbent with immobilized aminodiphosphonic acid. J. Environ. Chem. Eng. 2020, 8, 103883. [Google Scholar] [CrossRef]
- Florek, J.; Chalifour, F.; Bilodeau, F.; Larivière, D.; Kleitz, F. Nanostructured hybrid materials for the selective recovery and enrichment of rare earth elements. Adv. Funct. Mater. 2014, 24, 2668–2676. [Google Scholar] [CrossRef]
- Florek, J.; Larivière, D.; Kählig, H.; Fiorilli, S.L.; Onida, B.; Fontaine, F.-G.; Kleitz, F. Understanding selectivity of mesoporous silica-grafted diglycolamide-type ligands in the solid-phase extraction of rare earths. ACS Appl. Mater. Interfaces 2020, 12, 57003–57016. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhang, Y.; Gui, X.; Tan, J.; Guo, Y.; Cheng, F. Surface structure regulating of silica adsorbent for the selective adsorption of heavy rare earth. J. Mol. Liq. 2023, 390, 122991. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Q.; Gao, J.; Gao, Y.; Cheng, F. The selective adsorption of rare earth elements by modified coal fly ash based SBA-15. Chin. J. Chem. Eng. 2022, 47, 155–164. [Google Scholar] [CrossRef]
- Iftekhar, S.; Srivastava, V.; Sillanpää, M. Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem. Eng. J. 2017, 320, 151–159. [Google Scholar] [CrossRef]
- Daulay, A.; Astuti, W.; Sumardi, S.; Mufakhir, F.R.; Supriyatna, Y.I.; Haryono, T.; Samada, L.H. Synthesis and characteristics of Na-A zeolite from coal fly ash and application for adsorption of cerium(III). J. Rare Earths 2024, in press. [Google Scholar] [CrossRef]
- Ramasamy, L.D.; Puhakka, V.; Repo, E.; Hammouda, S.-B.; Sillanpää, M. Two-stage selective recovery process of scandium from the group of rare earth elements in aqueous systems using activated carbon and silica composites: Dual applications by tailoring the ligand grafting approach. Chem. Eng. J. 2018, 341, 351–360. [Google Scholar] [CrossRef]
- Shahed, V.G.; Taherian, Z.; Khataee, A.; Meshkani, F.; Orooji, Y. Samarium-impregnated nickel catalysts over SBA-15 in steam reforming of CH 4 process. J. Ind. Eng. Chem. 2020, 86, 73–80. [Google Scholar] [CrossRef]
- Kore, A.; Subash, A.; Naebe, M.; Kandasubramanian, B. Application and implementation of chitosan as a potential and sustainable adsorbent for rare earth metal recovery: A review. Hybrid Adv. 2024, 5, 100175. [Google Scholar] [CrossRef]
- Ren, S.; Yang, X.; Tang, L.; Du, X.; Li, M.; Yin, X. A chitosan-based Y3+-imprinted hydrogel with reversible thermo-responsibility for the recovery of rare earth metal. Appl. Surf. Sci. 2023, 611, 155602. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, T.; Jiang, R.; Zhang, Y.; Zheng, X.; Li, Z. Bionic chitosan-carbon imprinted aerogel for high selective recovery of Gd(III) from end-of-life rare earth productions. J. Hazard. Mater. 2021, 407, 124347. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, K.; Liu, Z.Z.; Ding, W.T.; Ji, Y.L.; Gao, C.J. Facile preparation of nanochannel membrane based on polydopamine modified porous organic polymer nanoparticles for high-efficient dye desalination. Sep. Purif. Technol. 2024, 328, 125027. [Google Scholar] [CrossRef]
- Nkinahamira, F.; Alsbaiee, A.; Zeng, Q.; Li, Y.; Zhang, Y.; Feng, M.; Yu, C.P.; Sun, Q. Selective and fast recovery of rare earth elements from industrial wastewater by porous β-cyclodextrin and magnetic β-cyclodextrin polymers. Water Res. 2020, 181, 115857. [Google Scholar] [CrossRef] [PubMed]
- Nkinahamira, F.; Alsbaiee, A.; Wang, Y.; Yang, X.; Chen, T.Y.; Cao, M.; Feng, M.; Sun, Q.; Yu, C.P. Recovery and purification of rare earth elements from wastewater and sludge using a porous magnetic composite of β-cyclodextrin and silica doped with PC88A. Sep. Purif. Technol. 2021, 266, 118589. [Google Scholar] [CrossRef]
- Jemli, S.; Pinto, D.; Kanhounnon, W.G.; Amara, F.B.; Sellaoui, L.; Bonilla-Petriciolet, A.; Dhaouadi, F.; Ameri, R.; Silva, L.F.O.; Bejar, S.; et al. Green β-cyclodextrin nanosponges for the efficient adsorption of light rare earth elements: Cerium and lanthanum. Chem. Eng. J. 2023, 466, 143108. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, B.; Wang, R. Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep. Purif. Technol. 2022, 298, 121469. [Google Scholar] [CrossRef]
- Chen, L.; Dong, H.; Pan, W.; Dai, J.; Dai, X.; Pan, J. Poly(vinyl alcohol-co-ethylene) (EVOH) modified polymer inclusion membrane in heavy rare earths separation with advanced hydrophilicity and separation property. Chem. Eng. J. 2021, 426, 131305. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, Y.X.; Zhang, D.D.; Zhou, F.; Ning, H.; He, M.X.; Chi, R.A.; Yin, W.Y. Highly effective and selective recovery of Gd (III) from wastewater by defective MOFs-based ion-imprinted polymer: Performance and mechanism. Chem. Eng. J. 2023, 474, 145782. [Google Scholar] [CrossRef]
- Xu, W.J.; Yu, C.; Liu, L.; Zhai, Y.L.; Xu, R.X.; Hou, H.W. An O-modified coordination polymer for rapid and selective adsorption of rare earth elements from aqueous solution. Colloids Surf. A 2020, 607, 125464. [Google Scholar]
- Zheng, X.; Zhang, Y.; Zhang, F.; Li, Z.; Yan, Y. Dual-template docking oriented ionic imprinted bilayer mesoporous films with efficient recovery of neodymium and dysprosium. J. Hazard. Mater. 2018, 353, 496–504. [Google Scholar] [CrossRef]
- Han, L.; Peng, Y.; Ma, J.; Shi, Z.; Jia, Q. Construction of hypercrosslinked polymers with styrene-based copolymer precursor for adsorption of rare earth elements. Sep. Purif. Technol. 2022, 285, 120378. [Google Scholar] [CrossRef]
- Liu, L.; Bai, Y.; Ouyang, L.; Huang, L.; Shuai, Q. Magnetic phosphazene porous organic polymer for efficient and selective recovery of rare earth elements from acidic wastewater. Chem. Eng. J. 2023, 476, 146783. [Google Scholar] [CrossRef]
- Archer, W.R.; Iftekhar, N.; Fiorito, A.; Winn, S.A.; Schulz, M.D. Synthesis of phosphonated polymer resins for the extraction of rare-earth elements. ACS Appl. Polym. Mater. 2022, 4, 2506–2512. [Google Scholar] [CrossRef]
- Ni, C.; Liu, Q.; Ren, Z.; Hu, H.; Sun, B.; Liu, C.; Shao, P.; Yang, L.; Pavlostathis, S.G.; Lou, X. Selective removal and recovery of La (III) using a phosphonic-based ion imprinted polymer: Adsorption performance, regeneration, and mechanism. J. Environ. Chem. Eng. 2021, 9, 106701. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Xu, J.; Tian, C.; Matyjaszewski, K.; Tilton, R.D.; Lowry, G.V. Phosphate polymer nanogel for selective and efficient rare earth element recovery. Environ. Sci. Technol. 2021, 55, 12549–12560. [Google Scholar] [CrossRef]
- Rodrigues, D.G.; Monge, S.; Dacheux, N. Highlighting the selective properties of carbamoylmethylphosphonated hydrosoluble polymers for Gd (III)/Th (IV)/U (VI) separation. Sep. Purif. Technol. 2021, 254, 117260. [Google Scholar] [CrossRef]
- Liang, X.; Zeng, Q. Copolymers-functionalized metal-organic framework composite for efficient adsorption of rare-earth elements. Microporous Mesoporous Mater. 2024, 366, 112960. [Google Scholar] [CrossRef]
- Ravi, S.; Kim, S.Y.; Bae, Y.S. Novel benzylphosphate-based covalent porous organic polymers for the effective capture of rare earth elements from aqueous solutions. J. Hazard. Mater. 2022, 424, 127356. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.R.; Yu, K.; Ravi, S.; Ahn, W.S. Selective adsorption of rare earth elements over functionalized Cr-MIL-101. ACS Appl. Mater. Interfaces 2018, 10, 23918–23927. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Fonseka, C.; Naidu, G.; Loganathan, P.; Moon, H.; Kandasamy, J.; Vigneswaran, S. Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL-101 (Cr). Chemosphere 2021, 281, 130869. [Google Scholar] [CrossRef] [PubMed]
- Fonseka, C.; Ryu, S.; Choo, Y.; Mullett, M.; Thiruvenkatachari, R.; Naidu, G.; Vigneswaran, S. Selective recovery of rare earth elements from mine ore by Cr-MIL metal–organic frameworks. ACS Sustain. Chem. Eng. 2021, 9, 16896–16904. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, M.; Gai, H.; Wang, Y.; Liu, Z.; Huang, H.; Liu, B. Nanoporous Metal–Organic Framework Adsorbent Constructed via Ligand Tailoring for Rare-Earth Metal Ion Recovery. ACS Appl. Nano Mater. 2023, 6, 22865–22875. [Google Scholar] [CrossRef]
- Khalil, M.; Shehata, M.M.; Ghazy, O.; Waly, S.A.; Ali, Z.I. Synthesis, characterization and γ-rays irradiation of cobalt-based metal-organic framework for adsorption of Ce (III) and Eu (III) from aqueous solution. Radiat. Phys. Chem. 2022, 190, 109811. [Google Scholar] [CrossRef]
- Song, A.M.; Zhang, F.D.; Hu, Q.H.; Liang, R.P.; Li, L.H.; Zhao, W.W.; Liao, J.Z.; Ke, H.; Qiu, J.D. Rational design and synthesis of diimide-based metal-organic frameworks for lanthanides recovery from tailing wastewater. Cell Rep. Phys. Sci. 2022, 3, 101120. [Google Scholar] [CrossRef]
- Sinha, S.; De, S.; Mishra, D.; Shekhar, S.; Agarwal, A.; Sahu, K.K. Phosphonomethyl iminodiacetic acid functionalized metal organic framework supported PAN composite beads for selective removal of La (III) from wastewater: Adsorptive performance and column separation studies. J. Hazard. Mater. 2022, 425, 127802. [Google Scholar] [CrossRef] [PubMed]
- Allahyari, S.A.; Saberi, R.; Sepanloo, K.; Lashkari, A. Adsorptive separation of La (III) from aqueous solution via the synthesized [Zn(bim)2(bdc)]n metal-organic framework. J. Rare Earths 2021, 39, 742–748. [Google Scholar] [CrossRef]
- Paz, R.; Viltres, H.; Gupta, N.K.; Leyva, C.; Dhavale, R.P.; Park, H.H.; Adolfo, R.G.; Rajabzadeh, A.R.; Srinivasan, S. High-capacity adsorptive removal and recovery of trivalent europium ions using zinc-based metal–organic frameworks: Adsorption and mechanism study. Inorg. Chem. Commun. 2023, 155, 111049. [Google Scholar] [CrossRef]
- Li, W.H.; Huang, L.; Xiao, B.; Duan, X.; Li, H.; Li, L.; Huang, W. Efficient and selective recovery of Gd (III) via polyethyleneimine modification of lanthanum-based metal–organic frameworks. J. Rare Earths 2022, 42, 210–219. [Google Scholar] [CrossRef]
- Li, W.; Huang, L.; Li, X.; Li, H.; Li, L.; Huang, W. Adsorption of Gd3+ in water by N, S Co-doped La-based metal organic frameworks: Experimental and theoretical calculation. J. Solid State Chem. 2023, 321, 12386. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Chen, J.; Tan, H.; Wu, J.; Qiu, H. Selective adsorption of rare earth elements by Zn-BDC MOF/graphene oxide nanocomposites synthesized via in situ interlayer-confined strategy. Ind. Eng. Chem. Res. 2022, 61, 1841–1849. [Google Scholar] [CrossRef]
Carbon Source | Preparation and Modification Method | pH | Adsorption Capacity (mg/g) | Detection Methods | References |
---|---|---|---|---|---|
Navel orange peel | H3PO4 activation Functionalized with glycine. | 7 | Gd(III) = 48.5 | ICP-OES | [27] |
Soybean pod | High-temperature pyrolysis ZnCl2 activation | 2 6 | Ce(III) = 107.7 La(III) = 127.2 | ICP-OES | [28] |
Grape pruning waste | High-temperature pyrolysis ZnCl2 activation | 4–6 | Ce(III) = 48.45 La(III) = 53.65 | ICP-OES | [29] |
Palm leaves | HNO3 activation | 3 | Eu (III) = 810 | Arsenazo (III) method | [35] |
Solidago canadensis | Co-precipitation High-temperature pyrolysis Composite with other materials | 6 | Eu(III) = 714 | Ultraviolet spectrophotometry | [31] |
GO-PER | Hydrothermal-assisted assembly Freeze-dried | 5.5 | La(III) = 27.92 Y(III) = 30.44 Nd(III) = 43.2 Er(III) = 48.08 Yb(III) = 52.4 | ICP-OES | [41] |
GO-CZ | Hydrothermal self-assembly | 4.0–5.0 | Y(III) = 14.2 Nd(III) = 9.68 | ICP-OES | [42] |
GO-ABT | Hydrothermal self-assembly 2-Aminobenzothiazole | 4.5 | La(III) = 23.36 Er(III) = 32.23 Yb(III) = 30.95 Nd(III) = 30.92 Y(III) = 12.97 Eu(III) = 42.53 | ICP-OES | [43] |
GO-ZG | Hydrothermal self-assembly N-Benzoxycarbonyl glycine | 5.27 | La(III) = 44.56 Er(III) = 50.48 Yb(III) = 53.64 Nd(III) = 45.96 Y(III) = 30.63 | ICP-OES | [44] |
GO-Bicine | Covalent coupling N,N-Bis(2-hydroxyethyl) glycine | 4.5 | Eu(III) = 3.62 Nd(III) = 5.09 Y(III) = 24.40 | ICP-OES | [45] |
GO-BT | Covalent grafting Bis(2-hydroxyethyl)amino-2-(hydroxymethyl)−1,3-propanediol | Unknown | Y(III) = 24.89 Yb(III) = 28.13 Eu(III) = 18.77 Sm(III) = 57.46 Nd(III) = 26.25 La(III) = 33.12 Er(III) = 22.64 Pr(III) = 6.529 | ICP-OES | [46] |
GO-APTS | Covalent grafting 3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane | 6.0 | Er(III) = 93.4 Eu(III) = 103.2 Lu(III) = 83.7 Tm(III) = 97.2 Y(III) = 48.3 Yb(III) = 92.8 Ho(III) = 110.0 | ICP-OES | [47] |
Adsorbent | Preparation and Modification Method | pH | Adsorption Capacity (mg/g) | Detection Methods | References |
---|---|---|---|---|---|
MWCNT@Fe3O4 | Fe3O4 wrap | Unknown | La(III) = 23.23 | ICP-AES HPLC | [48] |
COOH-CNTs/CS-IIS | Graft modification | 7.0 | Gd(III) = 71.95 | ICP-AES | [49] |
CNT-FFA-PAA | Graft modification | 6.0 | Eu(III) = 130.8 | Unknown | [50] |
CT-CNTs SA-CNTs | Purchased | 9.37 | REE mass >90% | Neutron Activation Analysis | [51] |
Ligand | Preparation and Modification Method | pH | Adsorption Capacity (mg/g) | Detection Methods | References |
---|---|---|---|---|---|
KIT-6-1,2-PDDA KIT-6-1,3-PDDA | Group graft | 6.33 5.0 | Lu(III) = 19.8 Ce(III) = 12.5 | ICP-MS ICP-MS | [58] |
DTPADA PAA | Group graft | 2.06 | Nd(III) > Gd(III) > Ho(III) | ICP-MS | [59] |
EDTA | Group graft | 6.0 | Nd(III) = 109.8 | ICP-AAS | [60] |
0.2ZNSi | APTES modification | 6.0 | Nd(III) = 31.6 | ICP-OES | [62] |
Ions | Phosphorylated Porous Polymers | pH | Adsorption Capacity (mg/g) | Detection Methods | References |
---|---|---|---|---|---|
REEs | Rare-earth chelate polymer resins | Unknown | unknown | ICP-MS | [87] |
La(III) | Phosphonic-based ion-imprinted polymer | 3.0–7.0 | 62.8 | Unknown | [88] |
Nd, Gd, Ho (III) | Phosphate polymer nanogels | 7.0 | Nd = 311 ± 28 Gd = 316 ± 38 Ho = 249 ± 29 | ICP-MS | [89] |
Gd(III)/Th(IV)/U(VI) | Carbamoylmethylphosphonated water-soluble polymers | 1.0 | P(CPAAm 6C): >1.5 mmol/g HP(CPAAm 6C): >2.75 mmol/g | ICP-OES | [90] |
Nd(III) Eu(III) | MIL-101(Cr)-SMA-ED-PMG | 5.0 | 102.7 110.4 | ICP-OES | [91] |
Adsorbent | Preparation and Modification Method | pH | Adsorption Capacity (mg/g) | Detection Methods | References |
---|---|---|---|---|---|
G-IIP-3 | Mediating ligand | unknown | Gd(III) = 181.75 | ICP-OES | [82] |
MIL-101(Cr)-SMA-ED-PMG | Condensation reaction | 5.0 | Nd(III) = 102.7 Eu(III) = 110.4 | ICP-OES | [91] |
MIL-101-PMIDA | PMIDA-modified Cr-MIL-NH2 | 5.0 ± 0.2 | Lu(III) = 63.4 Sc = 25.3 | ICP-MS | [94] |
Cr-MIL-PMIDA | Hydrothermal synthesis | 5.5 | Eu(III) = 69.14 | ICP-MS | [95] |
UiO-66-H1/H2-a | Self-organization | unknown | Sm(III)Eu(III)Gd(III) Tb(III) Dy(III)Ho(III)Er(III)Tm(III)Yb(III) = 150~250 | ICP-OES | [96] |
Co-MOF | Self-organization | 5.1 | Ce(III) = 74.65 | UV–visible spectrophotometer | [97] |
PMIDA@FeBTC MOF | Complexation reaction | unknown | La(III) = 232.5 | ICP-AES | [99] |
[Zn(bim)2(BDC)]n | High-temperature self-assembly | 7 | La(III) = 156.7 | ICP-AES | [100] |
(Zn-BDC) MOF | High-temperature self-assembly | 7 | Eu(III) = 598.0 | ICP-AES | [101] |
LaBDC@50%PEI | Maceration | 5.5 | Gd(III) = 181.77 | ICP-AES | [102] |
LaBDC@60%DMP | Maceration | 5.5 | Gd(III) = 241.4 | ICP-AES | [103] |
2D Zn-BDC MOF/GO | Dissolution Thermal Interlayer Closure Strategy | 4 | (Sc, Y, La, Ce, Pr, Nd, Eu, Gd, Dy, Er, Tm) = 344.48 | ICP-AES | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhu, P.; Zou, Y.; Gao, Q.; Xiong, S.; Liang, B.; Xiao, B. Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery. Molecules 2024, 29, 2824. https://doi.org/10.3390/molecules29122824
Peng Y, Zhu P, Zou Y, Gao Q, Xiong S, Liang B, Xiao B. Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery. Molecules. 2024; 29(12):2824. https://doi.org/10.3390/molecules29122824
Chicago/Turabian StylePeng, Yong, Pingxin Zhu, Yin Zou, Qingyi Gao, Shaohui Xiong, Binjun Liang, and Bin Xiao. 2024. "Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery" Molecules 29, no. 12: 2824. https://doi.org/10.3390/molecules29122824
APA StylePeng, Y., Zhu, P., Zou, Y., Gao, Q., Xiong, S., Liang, B., & Xiao, B. (2024). Overview of Functionalized Porous Materials for Rare-Earth Element Separation and Recovery. Molecules, 29(12), 2824. https://doi.org/10.3390/molecules29122824