The Influence of Ligands on the Pd-Catalyzed Diarylation of Vinyl Esters
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Details
3.2. General Procedure for α,β-Homodiarylation of Vinyl Esters
3.3. General Procedure for the Synthesis Catalysts PP01–PP15
3.4. Reusability and Recovery of the Catalyst
3.5. Determination of Palladium Leaching into Product 3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, L.; Liebscher, J. Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem. Rev. 2007, 107, 133–173. [Google Scholar] [CrossRef] [PubMed]
- Pink, C.J.; Wong, H.-t.; Ferreira, F.C.; Livingston, A.G. Organic Solvent Nanofiltration and Adsorbents; A Hybrid Approach to Achieve Ultra Low Palladium Contamination of Post Coupling Reaction Products. Org. Process Res. Dev. 2008, 12, 589–595. [Google Scholar] [CrossRef]
- Garrett, C.E.; Prasad, K. The Art of Meeting Palladium Specifications in Active Pharmaceutical Ingredients Produced by Pd-Catalyzed Reactions. Adv. Synth. Catal. 2004, 346, 889–900. [Google Scholar] [CrossRef]
- Koszelewski, D.; Paprocki, D.; Brodzka, A.; Kęciek, A.; Wilk, M.; Ostaszewski, R. The sustainable copper-catalyzed direct formation of highly functionalized p-quinols in water. Sustainable Chem. Pharm. 2022, 25, 100576. [Google Scholar] [CrossRef]
- Samsonowicz-Górski, J.; Hrunyk, A.; Brodzka, A.; Ostaszewski, R.; Koszelewski, D. Chemoenzymatic cascade reaction as a sustainable and scalable access to para-quinols. Green Chem. 2023, 25, 6306–6314. [Google Scholar] [CrossRef]
- Trzepizur, D.; Brodzka, A.; Koszelewski, D.; Wilk, M.; Ostaszewski, R. Selective Palladium-Catalyzed α,β-Homodiarylation of Vinyl Esters in Aqueous Medium. Eur. J. Org. Chem. 2021, 44, 6028–6036. [Google Scholar] [CrossRef]
- Singh, R.; Kaur, H. Advances in Synthetic Approaches for the Preparation of Combretastatin-Based Anti-Cancer Agents. Synthesis 2009, 15, 2471–2491. [Google Scholar] [CrossRef]
- Da Costa, L.; Scheers, E.; Coluccia, A.; Casulli, A.; Roche, M.; Di Giorgio, C.; Neyts, J.; Terme, T.; Cirilli, R.; La Regina, G. Structure-Based Drug Design of Potent Pyrazole Derivatives against Rhinovirus Replication. J. Med. Chem. 2018, 61, 8402–8416. [Google Scholar] [CrossRef] [PubMed]
- De Vita, D.; Pandolfi, F.; Cirilli, R.; Scipione, L.; Di Santo, R.; Friggeri, L.; Mori, M.; Fiorucci, D.; Maccari, G.; Christopher, R.S.A. Discovery of in vitro antitubercular agents through in silico ligand-based approaches. Eur. J. Med. Chem. 2016, 121, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Urra, L.; Bustillo Pérez, A.J.; Cruz-Monteagudo, M.; Pinedo-Rivilla, C.; Aleu, J.; Hernandez-Galan, R.; Collado, I.G. Global Antifungal Profile Optimization of Chlorophenyl Derivatives against Botrytis cinerea and Colletotrichum gloeosporioides. J. Agric. Food Chem. 2009, 57, 4838–4843. [Google Scholar] [CrossRef]
- Dampalla, C.S.; Rathnayake, A.D.; Perera, K.D.; Jesri, A.-R.M.; Nguyen, H.N.; Miller, M.J.; Thurman, H.A.; Zheng, J.; Kashipathy, M.M.; Battaile, K.P.; et al. Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies. J. Med. Chem. 2021, 64, 17846–17865. [Google Scholar] [CrossRef] [PubMed]
- Sikorski, W.; Zawartka, W.; Trzeciak, A.M. PEPPSI-type complexes with small NHC ligands obtained according to the new method efficiently catalyzed Suzuki-Miyaura reaction. J. Organomet. Chem. 2018, 867, 323–332. [Google Scholar] [CrossRef]
- Szulmanowicz, M.S.; Zawartka, W.; Gniewek, A.; Trzeciak, A.M. Structure, dynamics and catalytic activity of palladium(II) complexes with imidazole ligands. Inorg. Chim. Acta 2010, 363, 4346–4354. [Google Scholar] [CrossRef]
- Kocięcka, P.; Kochel, A.; Szymańska-Buzar, T. Photochemical synthesis, structure and spectroscopic properties of [W(CO)4(C5H10N)2CH2]. Inorg. Chem. Commun. 2014, 45, 105–107. [Google Scholar] [CrossRef]
- Mathews, C.J.; Smith, P.J.; Welton, T. N-donor complexes of palladium as catalysts for Suzuki cross-coupling reactions in ionic liquids. J. Mol. Catal. A Chem. 2004, 214, 27–32. [Google Scholar] [CrossRef]
- Augustyniak, A.W.; Trzeciak, A.M. Hydrogen production and transfer hydrogenation of phenylacetylene with ammonia borane in water catalyzed by the [Pd(2-pymo)2]n framework. Inorg. Chim. Acta 2022, 538, 120977. [Google Scholar] [CrossRef]
- Augustyniak, A.W.; Trzeciak, A.M. Phenylacetylene semihydrogenation over a palladium pyrazolate hydrogen-bonded network. Inorg. Chim. Acta 2021, 518, 120255. [Google Scholar] [CrossRef]
- Tăbăcaru, A.; Xhaferaj, N.; Martins, L.M.D.R.S.; Alegria, E.C.B.A.; Chay, R.S.; Giacobbe, C.; Domasevitch, K.V.; Pombeiro, A.J.L.; Galli, S.; Pettinari, C. Metal Azolate/Carboxylate Frameworks as Catalysts in Oxidative and C-C Coupling Reactions. Inorg. Chem. 2016, 55, 5804–5817. [Google Scholar] [CrossRef]
- Zakrzewska, J.; Uznanski, P. Synthesis and characterization of bis(amine)palladium(ii) carboxylate complexes as precursors of palladium nanoparticles. Dalton Trans. 2021, 50, 6933–6948. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.; Park, J. Synthesis of 2,5-Diaminoquinones by One-Pot Copper-Catalyzed Aerobic Oxidation of Hydroquinones and Addition Reaction of Amines. Adv. Synth. Catal. 2009, 351, 2573–2578. [Google Scholar] [CrossRef]
Entry | Catalyst | Yield of 3 [%] b | Yield of 4 [%] b | Yield of 5 [%] b,c | Selectivity [%] |
---|---|---|---|---|---|
1 | Pd(OAc)2 | 70 | 13 | 1 | 83 |
2 | PP01 | 32 | 17 | 6 | 58 |
3 | PP02 | 5 | 2 | 5 | 42 |
4 | PP03 | 49 | 13 | 3 | 75 |
5 | PP04 | 17 | 7 | 1 | 68 |
6 | PP05 | 65 | 14 | 3 | 79 |
7 | PP06 | 47 | 16 | 1 | 73 |
8 | PP07 | 38 | 7 | 10 | 69 |
9 | PP08 | 85 | 6 | 9 | 85 |
10 | PP09 | 54 | 13 | 2 | 78 |
11 | PP10 | 65 | 10 | 1 | 86 |
12 | PP11 | 14 | 2 | 1 | 82 |
13 | PP12 | 12 | 16 | 1 | 41 |
14 | PP13 | 76 | 4 | 0 | 95 |
15 | PP14 | 53 | 7 | 1 | 87 |
16 | PP15 | 73 | 12 | 1 | 85 |
Entry | Catalyst | Palladium Content [ppm] |
---|---|---|
1 | Pd(OAc)2 | 26 |
2 | PP05 | 4 |
3 | PP08 | 0.3 |
4 | PP10 | 12 |
5 | PP13 | 0.1 |
6 | PP15 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodzka, A.; Koszelewski, D.; Trzeciak, A.; Ruzik, L.; Grela, M.; Ostaszewski, R. The Influence of Ligands on the Pd-Catalyzed Diarylation of Vinyl Esters. Molecules 2024, 29, 2268. https://doi.org/10.3390/molecules29102268
Brodzka A, Koszelewski D, Trzeciak A, Ruzik L, Grela M, Ostaszewski R. The Influence of Ligands on the Pd-Catalyzed Diarylation of Vinyl Esters. Molecules. 2024; 29(10):2268. https://doi.org/10.3390/molecules29102268
Chicago/Turabian StyleBrodzka, Anna, Dominik Koszelewski, Anna Trzeciak, Lena Ruzik, Malgorzata Grela, and Ryszard Ostaszewski. 2024. "The Influence of Ligands on the Pd-Catalyzed Diarylation of Vinyl Esters" Molecules 29, no. 10: 2268. https://doi.org/10.3390/molecules29102268
APA StyleBrodzka, A., Koszelewski, D., Trzeciak, A., Ruzik, L., Grela, M., & Ostaszewski, R. (2024). The Influence of Ligands on the Pd-Catalyzed Diarylation of Vinyl Esters. Molecules, 29(10), 2268. https://doi.org/10.3390/molecules29102268