Chalcones—Features, Identification Techniques, Attributes, and Application in Agriculture
Abstract
:1. Introduction
2. Characteristic
3. Chalcones Identification
3.1. Sample Preparation
3.2. Liquid Chromatography Coupled with Absorbance Detectors
3.3. Two-Dimensional High-Performance Liquid Chromatography (2D-HPLC)
3.4. Infrared Spectroscopy, FTIR, and HNMR
3.5. Liquid Chromatography Coupled with Mass Spectrometry
3.6. MALDI Technique
4. Properties
4.1. Chalcones Biological Activities and Their Applications in Agriculture
4.2. Herbicides and Plant Growth Regulators
4.3. Fungicides
4.4. Antiviral Agents
4.5. Nematicides
4.6. Insecticides
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jash, S.K. Chemistry and Role of Flavonoids in Agriculture: A Recent Update. In Flavonoid Metabolism-Recent Advances and Applications in Crop Breeding; book chapter; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Clifford, M.N. Flavanones, chalcones and dihydrochalcones—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1073–1080. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, M.; Feng, S.; Gong, C.; Zhou, Y.; Xing, L.; He, B.; Wub, Y.; Xue, W. Design, synthesis and biological activity of chalcone derivatives containing pyridazine. Arab. J. Chem. 2023, 16, 104852. [Google Scholar] [CrossRef]
- Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2014, 15, 87–120. [Google Scholar] [CrossRef]
- Díaz-Tielas, C.; Graña, E.; Reigosa, M.J.; Sánchez-Moreiras, A.M. Biological Activities and Novel Applications of Chalcones. Planta Daninha 2016, 34, 607–616. [Google Scholar] [CrossRef]
- Zhou, B.; Xing, C. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem. 2015, 5, 388–404. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Shard, A.; Tewary, D.K.; Nadda, G.; Sinha, A.K. Chalcones as promising pesticidal agents against diamondback moth (Plutella xylostella): Microwave assisted synthesis and structure-activity relationship. Med. Chem. Res. 2012, 21, 922–931. [Google Scholar] [CrossRef]
- Díaz-Tielas, C.; Sotelo, T.; Graña, E.; Reigosa, M.J.; Sánchez-Moreiras, A.M. Phytotoxic potential of trans-chalcone on crop plants and model species. J. Plant Growth Regul. 2014, 33, 181–194. [Google Scholar] [CrossRef]
- Chotsaeng, N.; Laosinwattana, C.; Charoenying, P. Herbicidal Activity of Flavokawains and Related trans-Chalcones against Amaranthus tricolor L. and Echinochloa crus-galli (L.) Beauv. ACS Omega 2019, 4, 20748–20755. [Google Scholar] [CrossRef]
- Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010, 5, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Sandjo, L.P. Isobavachalcone: An Overview. Chin. J. Integr. Med. 2012, 18, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Aljamali, N.M.; Hamzah Daylee, S.; Jaber Kadhium, A. Review on Chemical-Biological Fields of Chalcone Compounds. Forefr. J. Eng. Technol. 2020, 2, 33–44. [Google Scholar]
- Jasim, H.A.; Nahar, L.; Jasim, M.A.; Moore, S.A.; Ritchie, K.J.; Sarker, S.D. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.T.; Linthorst, H.J.; Verpoorte, R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 2011, 10, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Jiwrajka, M.; Phillips, A.; Butler, M.; Rossi, M.; Pocock, J.M. The plant-derived chalcone 2, 2′, 5′-trihydroxychalcone provides neuroprotection against toll-like receptor 4 triggered inflammation in microglia. Oxidative Med. Cell. Longev. 2016, 2016, 6301712. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, A. (Ed.) Biology and Biotechnology of Environmental Stress Tolerance in Plants: Volume 1: Secondary Metabolites in Environmental Stress; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015, 101, 496–524. [Google Scholar] [CrossRef]
- Morsy, N.M.; Hassan, A.S. Synthesis, reactions, and applications of chalcones: A review. Eur. J. Chem. 2022, 13, 241–252. [Google Scholar] [CrossRef]
- Balan-Porcăraşu, M.; Roman, G. Novel chalcone analogs derived from 4-(benzyloxy)benzaldehyde. Ovidius Univ. Ann. Chem. 2023, 34, 112–120. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, R.Y.; Meng, T.; Lou, Z.C. Determination of nine flavonoids and coumarins in licorice root by high-performance liquid chromatography. J. Chromatogr. 1990, 513, 247–254. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W.; Lee, C.Y. Phenolic compounds and their changes in apples during maturation and cold storage. J. Agric. Food Chem. 1998, 38, 945–948. [Google Scholar] [CrossRef]
- Suaârez, B.; Picinelli, A.; Moreno, J.; Mangas, J.J. Changes in phenolic composition of apple juices by HPLC with direct injection. J. Sci. Food Agric. 1998, 78, 461–465. [Google Scholar] [CrossRef]
- Zou, H.; Han, L.; Yuan, M.; Zhang, M.; Zhou, L.; Wang, Y. Sequence Analysis and Functional Verification of the Effects of Three Key Structural Genes, PdTHC2′GT, PdCHS and PdCHI, on the Isosalipurposide Synthesis Pathway in Paeonia delavayi var. lutea. Int. J. Mol. Sci. 2022, 23, 5696. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Pobłocka-Olech, M.; Głód, D.; Wiwart, M.; Zieliński, J.; Migas, P. HPLC of Flavanones and Chalcones in different species and clones of Salix. Acta Pol. Pharm.—Drug Res. 2013, 70, 27–34. [Google Scholar]
- Guvenalp, Z.; Ozbek, H.; Karadayi, M.; Gulluce, M.; Kuruuzum-Uz, A.; Salih, B.; Demirezer, O. Two antigenotoxic chalcone glycosides from Mentha longifolia subsp. Longifolia. Pharm. Biol. 2015, 53, 888–896. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Y.; Chen, Z. Separation, identification, and quantification of active constituents in Fructus Psoraleae by high-performance liquid chromatography with UV, ion trap mass spectrometry, and electrochemical detection. J. Pharm. Anal. 2012, 2, 143–151. [Google Scholar] [CrossRef]
- Pobłocka-Olech, L. Zastosowanie Metod Chromatograficznych w Badaniach Składu Chemicznego Kory Niektórych Gatunków i Klonów Wierzby. Ph.D. Dissertation, Medical University of Gdańsk, Gdańsk, Poland, 2006. [Google Scholar]
- Dhaliwal, J.S.; Moshawih, S.; Goh, K.W.; Loy, M.J.; Hossain, M.S.; Hermansyah, A.; Kotra, V.; Kifli, N.; Goh, H.P.; Dhaliwal, S.K.S.; et al. Pharmacotherapeutics Applications and Chemistry of Chalcone Derivatives. Molecules 2022, 27, 7062. [Google Scholar] [CrossRef]
- Hassan, S.M.; Hassan, S.A.; Abbas, A.K.; Najem, M.R.; Jber, N.R. Synthesis of heterocyclic and study activities in agriculture as anti-dubas on date palm trees via cholinesterase inhibitors. GSC Adv. Res. Rev. 2023, 16, 94–101. [Google Scholar] [CrossRef]
- Ma, T.; Nie, L.J.; Li, H.M.; Huo, Q.; Zhang, Y.X.; Wu, C.Z. Determination of isobavachalcone in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2015, 107, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Krittanai, S.; Pichetpongtorn, P.; Sakamoto, S.; Putalun, W. Monoclonal antibody-based immunoassay for the specific quantification of licochalcone A: An active chalcone in licorice. Food Agric. Immunol. 2022, 33, 220–234. [Google Scholar] [CrossRef]
- Yerragunta, V.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T. A review on chalcones and its importance. PharmaTutor 2013, 1, 54–55. [Google Scholar]
- Perera, H.; Meepagala, K.M.; Fronczek, F.R.; Cook, D.D.; Wedge, D.E.; Duke, S.O. Bioassay-Guided Isolation and Structure Elucidation of Fungicidal and Herbicidal Compounds from Ambrosia salsola (Asteraceae). Molecules 2019, 24, 835. [Google Scholar] [CrossRef]
- Yun, M.S.; Chen, W.; Deng, F.; Yogo, Y. Selective growth suppression of five annual plant species by chalcone and naringenin correlates with the total amount of 4-coumarate: Coenzyme A ligase. Weed Biol. Manag. 2009, 9, 27–37. [Google Scholar] [CrossRef]
- Nguyen, G.T.T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G. Chalcone-based selective inhibitors of a C4 plant key enzyme as novel potential herbicides. Sci. Rep. 2016, 6, 27333. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Tielas, C.; Graña, E.; Sotelo, T.; Reigosa, M.J.; Sánchez-Moreiras, A.M. The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant Cell Environ. 2012, 35, 1500–1517. [Google Scholar] [CrossRef]
- Smailagić, D.; Banjac, N.; Ninković, S.; Savić, J.; Ćosić, T.; Pěnčík, A.; Ćalić, D.; Bogdanović, M.; Trajković, M.; Stanišić, M. New insights into the activity of apple dihydrochalcone phloretin: Disturbance of auxin homeostasis as physiological basis of phloretin phytotoxic action. Front. Plant Sci. 2022, 13, 875528. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res. 2015, 6, 114–117. [Google Scholar] [CrossRef]
- Svetaz, L.; Tapia, A.; López, S.N.; Furlán, R.L.; Petenatti, E.; Pioli, R.; Schmeda-Hirschmann, G.; Zacchino, S.A. Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi. J. Agric. Food Chem. 2004, 52, 3297–3300. [Google Scholar] [CrossRef] [PubMed]
- Badaracco, P.; Sortino, M.; Pioli, R.N. Study plant-origin in compounds with potential antifungal action against pathogens of cultivated plants. Chil. J. Agric. Anim. Sci. 2020, 36, 244–252. [Google Scholar] [CrossRef]
- Oleszek, M.; Pecio, Ł.; Kozachok, S.; Lachowska-Filipiuk, Ż.; Oszust, K.; Frąc, M. Phytochemicals of apple pomace as prospect bio-fungicide agents against mycotoxigenic fungal species—In vitro experiments. Toxins 2019, 11, 361. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, X.; Chen, S.; Zhan, W.; Hu, D.; Zhou, R.; Sun, N.; YongJun, W.; Xue, W. Design, synthesis, and antifungal activity of novel chalcone derivatives containing a piperazine fragment. J. Agric. Food Chem. 2022, 70, 1029–1036. [Google Scholar] [CrossRef]
- Malhotra, B.; Onyilagha, J.C.; Bohm, B.A.; Towers GH, N.; James, D.; Harborne, J.B.; French, C.J. Inhibition of tomato ringspot virus by flavonoids. Phytochemistry 1996, 43, 1271–1276. [Google Scholar] [CrossRef]
- Onyilagha, J.C.; Malhotra, B.; Elder, M.; French, C.J.; Towers, G.N. Comparative studies of inhibitory activities of chalcones on tomato ringspot virus (ToRSV). Can. J. Plant Pathol. 1997, 19, 133–137. [Google Scholar] [CrossRef]
- Dong, L.R.; Hu, D.Y.; Wu, Z.X.; Chen, J.X.; Song, B.A. Study of the synthesis, antiviral bioactivity and interaction mechanisms of novel chalcone derivatives that contain the 1, 1-dichloropropene moiety. Chin. Chem. Lett. 2017, 28, 1566–1570. [Google Scholar] [CrossRef]
- Zhou, D.; Xie, D.; He, F.; Song, B.; Hu, D. Antiviral properties and interaction of novel chalcone derivatives containing a purine and benzenesulfonamide moiety. Bioorg. Med. Chem. Lett. 2018, 28, 2091–2097. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, P.; Yuan Ch Zhang, Y.; Zhang, T.; Liu, Y.; Tian, J.; Xue, W. Design, synthesis and antiviral activities of chalcone derivatives containing pyrimidine. J. Saudi Chem. Soc. 2023, 27, 101590. [Google Scholar] [CrossRef]
- Silva, F.J.; Campos, V.P.; Oliveira, D.F.; Gomes, V.A.; Barros, A.F.; Din, Z.U.; Rodrigues-Filho, E. Chalcone analogues: Synthesis, activity against Meloidogyne incognita, and in silico interaction with cytochrome P450. J. Phytopathol. 2019, 167, 197–208. [Google Scholar] [CrossRef]
- Cao, X.; Qiu, D.; Zhang, R.; Li, Z.; Xu, X. Synthesis, nematicidal evaluation, and SAR study of benzofuran derivatives containing 2-carbonyl thiophene. Chin. Chem. Lett. 2023, 34, 107800. [Google Scholar] [CrossRef]
- Attar, S.; O’Brien, Z.; Alhaddad, H.; Golden, M.L.; Calderón-Urrea, A. Ferrocenyl chalcones versus organic chalcones: A comparative study of their nematocidal activity. Bioorg. Med. Chem. 2011, 19, 2055–2073. [Google Scholar] [CrossRef]
- Stompor, M.; Dancewicz, K.; Gabrys, B.; Anioł, M. Insect antifeedant potential of xanthohumol, isoxanthohumol, and their derivatives. J. Agric. Food Chem. 2015, 63, 6749–6756. [Google Scholar] [CrossRef]
- Shakil, N.A.; Saxena, D.B. Isolation and structure of cordifolin, a novel insecticidal oxygenated chalcone, from the stem of Tinospora cordifolia Miers. Nat. Prod. Commun. 2006, 1, 553–556. [Google Scholar] [CrossRef]
- Hidalgo, J.R.; Santillán, M.; Parellada, E.A.; Khyaliya, P.; Neske, A.; Ameta, K.L. Synthetic bis-and mono-chalcones with insecticide effects on Spodoptera frugiperda (Lepidoptera: Noctuidae). Int. J. Pest. Manag. 2020, 66, 116–121. [Google Scholar] [CrossRef]
- Devi, A.P.; Alsulimani, A.; Hidalgo, J.R.; Neske, A.; Sayyed, R.Z.; Hassan, M.; Elshazly, H. Bis-and mono-substituted Chalcones exert anti-feedant and toxic effects on fall armyworm Spodoptera frugiperda. Saudi J. Biol. Sci. 2021, 28, 5754–5759. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziągwa-Becker, M.; Oleszek, M.; Zielińska, S.; Oleszek, W. Chalcones—Features, Identification Techniques, Attributes, and Application in Agriculture. Molecules 2024, 29, 2247. https://doi.org/10.3390/molecules29102247
Dziągwa-Becker M, Oleszek M, Zielińska S, Oleszek W. Chalcones—Features, Identification Techniques, Attributes, and Application in Agriculture. Molecules. 2024; 29(10):2247. https://doi.org/10.3390/molecules29102247
Chicago/Turabian StyleDziągwa-Becker, Magdalena, Marta Oleszek, Sylwia Zielińska, and Wiesław Oleszek. 2024. "Chalcones—Features, Identification Techniques, Attributes, and Application in Agriculture" Molecules 29, no. 10: 2247. https://doi.org/10.3390/molecules29102247
APA StyleDziągwa-Becker, M., Oleszek, M., Zielińska, S., & Oleszek, W. (2024). Chalcones—Features, Identification Techniques, Attributes, and Application in Agriculture. Molecules, 29(10), 2247. https://doi.org/10.3390/molecules29102247