Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC/MS Analysis of the Essential Oil of B. multiflora
2.2. Larvicidal and Adulticidal Activity
2.3. Molecular Docking
2.4. Prediction of the ADMET Properties of the Main Substances of the EO of B. multiflora
3. Materials and Methods
3.1. Reagent and Chemicals
3.2. Plant Material and Extraction of Essential Oil
3.3. Rearing of Mosquitoes
3.4. Larvicidal Bioassay
3.5. Adulticidal Bioassay
3.6. Essential Oil Analysis Using Gas Chromatography/Mass Spectrometry (GC/MS)
3.7. Acquiring Protein Structures
3.8. Selection and Construction of 3D Ligand Structures
3.9. Molecular Docking
Analysis of Intermolecular Interactions and Figure Construction
3.10. Prediction of Properties of ADMET
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jobe, N.B.; Huijben, S.; Paaijmans, K.P. Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors. Lancet Planet. Health 2023, 7, e706–e717. [Google Scholar] [CrossRef] [PubMed]
- WHO. Vector-Borne Diseases. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 16 February 2024).
- Laporta, G.Z.; Potter, A.M.; Oliveira, J.F.A.; Bourke, B.P.; Pecor, D.B.; Linton, Y.M. Global Distribution of Aedes Aegypti and Aedes Albopictus in a Climate Change Scenario of Regional Rivalry. Insects 2023, 14, 49. [Google Scholar] [CrossRef]
- World Health Organization—WHO. Available online: https://www.who.int/publications/m/item/zika-epidemiology-update---february-2022 (accessed on 20 February 2024).
- Moore, C.A.; Staples, J.E.; Dobyns, W.B.; Pessoa, A.; Ventura, C.V.; Da Fonseca, E.B.; Ribeiro, E.M.; Ventura, L.O.; Neto, N.N.; Arena, J.F.; et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 2017, 171, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Halani, S.; Tombindo, P.E.; O’reilly, R.; Miranda, R.N.; Erdman, L.K.; Whitehead, C.; Bielecki, J.M.; Ramsay, L.; Ximenes, R.; Boyle, J.; et al. Clinical manifestations and health outcomes associated with Zika virus infections in adults: A Systematic Review. PLoS Negl. Trop. Dis. 2021, 15, e0009516. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization—WHO. Available online: https://cdn.who.int/media/docs/default-source/documents/emergencies/zika/zika-epidemiology-update_february-2022_clean-version.pdf?sfvrsn=c4cec7b7_13&download=true (accessed on 20 February 2024).
- World Health Organization—WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/chikungunya (accessed on 20 February 2024).
- Epidemiological Alert: Chikungunya Increase in the Region of the Americas. Available online: https://www.paho.org/en/documents/epidemiological-alert-chikungunya-increase-region-americas#:~:text=In%202022%2C%20the%20number%20of,and%20deaths%20becoming%20more%20evident (accessed on 20 February 2024).
- Oneda, R.M.; Basso, S.R.; Frasson, L.R.; Mottecy, N.M.; Saraiva, L.; Bassani, C. Epidemiological profile of dengue in Brazil between the years 2014 and 2019. Rev. Assoc. Med. Bras. 2021, 67, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Alves, L. Brazil to Start Widespread Dengue Vaccinations. Lancet 2024, 403, 133. [Google Scholar] [CrossRef] [PubMed]
- Juache-Villagrana, A.E.; Pando-Robles, V.; Garcia-Luna, S.M.; Ponce-Garcia, G.; Fernandez-Salas, I.; Lopez-Monroy, B.; Rodriguez-Sanchez, I.P.; Flores, A.E. Assessing the impact of insecticide resistance on vector competence: A review. Insects 2022, 13, 377. [Google Scholar] [CrossRef]
- Rivero, A.; Vézilier, J.; Weill, M.; Read, A.F.; Gandon, S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLoS Pathog. 2010, 6, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Asgarian, T.S.; Vatandoost, H.; Hanafi-Bojd, A.A.; Nikpoor, F. Worldwide status of insecticide resistance of Aedes Aegypti and Ae. Albopictus, vectors of arboviruses of Chikungunya, Dengue, Zika and Yellow Fever. J. Arthropod Borne Dis. 2023, 17, 1–27. [Google Scholar] [CrossRef]
- Silva-Filha, M.H.N.L.; Romão, T.P.; Rezende, T.M.T.; Carvalho, K.D.S.; de Menezes, H.S.G.; Do Nascimento, N.A.; Soberón, M.; Bravo, A. Bacterial toxins active against mosquitoes: Mode of action and resistance. Toxins 2021, 13, 523. [Google Scholar] [CrossRef]
- Pitton, S.; Negri, A.; Pezzali, G.; Piazzoni, M.; Locarno, S.; Gabrieli, P.; Quadri, R.; Mastrantonio, V.; Urbanelli, S.; Porretta, D.; et al. MosChito Rafts as Effective and eco-friendly tool for the delivery of a Bacillus thuringiensis-based insecticide to Aedes albopictus Larvae. Sci. Rep. 2023, 13, 3041. [Google Scholar] [CrossRef] [PubMed]
- da Silva Sá, G.C.; Bezerra, P.V.V.; da Silva, M.F.A.; da Silva, L.B.; Barra, P.B.; de Fátima Freire de Melo Ximenes, M.; Uchôa, A.F. Arbovirus vectors insects: Are botanical insecticides an alternative for its management? J. Pest Sci. 2023, 96, 1–20. [Google Scholar] [CrossRef]
- Oliva, C.F.; Benedict, M.Q.; Matilda Collins, C.; Baldet, T.; Bellini, R.; Bossin, H.; Bouyer, J.; Corbel, V.; Facchinelli, L.; Fouque, F.; et al. Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects 2021, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- St. Leger, R.J. From the lab to the last mile: Deploying transgenic approaches against mosquitoes. Front. Trop. Dis. 2021, 2, 804066. [Google Scholar] [CrossRef]
- Dunan, L.; Malanga, T.; Benhamou, S.; Papaiconomou, N.; Desneux, N.; Lavoir, A.V.; Michel, T. Effects of essential oil-based formulation on biopesticide activity. Ind. Crops Prod. 2023, 202, 117006. [Google Scholar] [CrossRef]
- Vanegas-Estévez, T.; Duque, F.M.; Urbina, D.L.; Vesga, L.C.; Mendez-Sanchez, S.C.; Duque, J.E. Design and elucidation of an insecticide from natural compounds targeting mitochondrial proteins of Aedes Aegypti. Pestic. Biochem. Physiol. 2024, 198, 105721. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Bioinsecticides based on plant essential oils: A short overview. Z. Naturforschung C 2020, 75, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Bay, M.; Souza de Oliveira, J.V.; Sales Junior, P.A.; Fonseca Murta, S.M.; Rogério dos Santos, A.; dos Santos Bastos, I.; Puccinelli Orlandi, P.; Teixeira de Sousa Junior, P. In vitro trypanocidal and antibacterial activities of essential oils from four species of the family Annonaceae. Chem. Biodivers. 2019, 16, e1900359. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, L.M.; Menezes, L.R.A.; Rodrigues, A.C.B.C.; Dias, R.B.; Gurgel Rocha, C.A.; Soares, M.B.P.; Neto, A.F.S.; Nascimento, M.P.; Campos, A.F.; Silva, L.C.R.C.E.; et al. Antitumour activity of the microencapsulation of Annona vepretorum essential oil. Basic. Clin. Pharmacol. Toxicol. 2016, 118, 208–213. [Google Scholar] [CrossRef]
- de Lima Barros, A.; de Lima, E.J.S.P.; Faria, J.V.; Acho, L.R.D.; Lima, E.S.; Bezerra, D.P.; Soares, E.R.; de Lima, B.R.; Costa, E.V.; Pinheiro, M.L.B.; et al. Cytotoxicity and lipase inhibition of essential oils from Amazon Annonaceae species. Chemistry 2022, 4, 1208–1225. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2024. Available online: http://www.plantsoftheworldonline.org/ (accessed on 20 February 2024).
- Oliveira, E.S.C.; Amaral, A.C.F.; Lima, E.S.; Jefferson, J.R. Chemical composition and biological activities of Bocageopsis multiflora Essential Oil. J. Essent. Oil Res. 2014, 26, 161–165. [Google Scholar] [CrossRef]
- Soares, E.R.; da Silva, F.M.A.; de Almeida, R.A.; de Lima, B.R.; Koolen, H.H.F.; Lourenço, C.C.; Salvador, M.J.; Flach, A.; da Costa, L.A.M.A.; de Souza, A.Q.L.; et al. Chemical composition and antimicrobial evaluation of the essential oils of Bocageopsis Pleiosperma Maas. Nat. Prod. Res. 2015, 29, 1285–1288. [Google Scholar] [CrossRef]
- da Paz Lima, M.; De Lucena, J.M.V.M.; Alcântara, J.M.; Soares, P.I.L.; Marques, M.O.M. Essential oils from branches of Bocageopsis, Guatteria and Unonopsis species: Chemical composition and antibacterial activity. Concilium 2023, 23, 355–362. [Google Scholar] [CrossRef]
- Duque, J.E.; Urbina, D.L.; Vesga, L.C.; Ortiz-Rodríguez, L.A.; Vanegas, T.S.; Stashenko, E.E.; Mendez-Sanchez, S.C. Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): An introduction to their possible mechanism of action. Sci. Rep. 2023, 13, 2989. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, E.J.A.; Carvalho, F.C.; de Castro Oliveira, J.A.; Bertolucci, S.K.V.; Scotti, M.T.; Silveira, C.H.; Guedes, F.C.; Melo, J.O.F.; de Melo-Minardi, R.C.; de Lima, L.H.F. Elucidating the molecular mechanisms of essential oils’ insecticidal action using a novel cheminformatics protocol. Sci. Rep. 2023, 13, 4598. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, W.; Jian, R.; Ren, X.; Chen, X.; Hong, W.D.; Wu, M.; Cai, J.; Lao, C.; Xu, X.; et al. Larvicidal, acetylcholinesterase inhibitory activities of four essential oils and their constituents against Aedes Albopictus, and nanoemulsion preparation. J. Pest Sci. 2023, 96, 961–971. [Google Scholar] [CrossRef]
- Chaudhary, A.; Gupta, K.K. Potentials of plant-derived sterol carrier protein inhibitors in insect management. Acta Ecol. Sin. 2023, 43, 925–932. [Google Scholar] [CrossRef]
- Fernandes, D.A.; Barros, R.P.C.; Teles, Y.C.F.; Oliveira, L.H.G.; Lima, J.B.; Scotti, M.T.; Nunes, F.C.; Conceição, A.S.; Vanderlei de Souza, M.D.F. Larvicidal compounds extracted from Helicteres velutina K. Schum (Sterculiaceae) evaluated against Aedes aegypti L. Molecules 2019, 24, 2315. [Google Scholar] [CrossRef]
- Fu, Q.; Inankur, B.; Yin, J.; Striker, R.; Lan, Q. Sterol Carrier Protein 2, a Critical host factor for dengue virus infection, alters the cholesterol distribution in mosquito Aag2 Cells. J. Med. Entomol 2015, 52, 1124–1134. [Google Scholar] [CrossRef]
- Németh-Zámboriné, É. Natural variability of essential oil components. In Handbook of Essential Oils, 2nd ed.; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press-Taylor and Francis Group LLC: Boca Raton, FL, USA, 2016. [Google Scholar]
- Medbouhi, A.; Benbelaïd, F.; Djabou, N.; Beaufay, C.; Bendahou, M.; Quetin-Leclercq, J.; Tintaru, A.; Costa, J.; Muselli, A. Essential Oil of Algerian Eryngium campestre: Chemical variability and evaluation of biological activities. Molecules 2019, 24, 2575. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chang, H.T.; Chang, S.T.; Tsai, K.H.; Chen, W.J. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti Larvae. Bioresour. Technol. 2003, 89, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.N.; Moraes, D.F.C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: Review. Parasitol. Res. 2014, 113, 565–592. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Benelli, G. α-Humulene and β-Elemene from Syzygium zeylanicum (Myrtaceae) essential oil: Highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol. Res. 2016, 115, 2771–2778. [Google Scholar] [CrossRef] [PubMed]
- Luz, T.R.S.A.; de Mesquita, L.S.S.; do Amaral, F.M.M.; Coutinho, D.F. Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) Larvae. Acta Trop 2020, 212, 105705. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Jian, R.; Xie, F.; Chen, B.; Zhang, K.; Li, D.; Chen, W.; Huang, C.; Zhang, Y.; Hu, L.; et al. Screening of larvicidal activity of 53 essential oils and their synergistic effect for the improvement of deltamethrin efficacy against Aedes albopictus. Ind. Crops Prod. 2020, 145, 112131. [Google Scholar] [CrossRef]
- Gomes, P.R.B.; Silva, A.L.S.; Pinheiro, H.A.; Carvalho, L.L.; Lima, H.S.; Silva, E.F.; Silva, R.P.; Louzeiro, C.H.; Oliveira, M.B.; Filho, V.E.M. Avaliação da atividade larvicida do óleo essencial do Zingiber officinale Roscoe (Gengibre) frente ao mosquito Aedes aegypti. Rev. Bras. Plantas Med. 2016, 18, 597–604. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? challenges and constraints. Trends Plant Sci 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Hematpoor, A.; Liew, S.Y.; Azirun, M.S.; Awang, K. Insecticidal activity and the mechanism of action of three phenylpropanoids isolated from the roots of Piper sarmentosum Roxb. Sci. Rep. 2017, 7, 12576. [Google Scholar] [CrossRef]
- Priya, D.D.; Surendra, T.V.; Shajahan, S.; Muthuraja, S.; Roopan, S.M. Design and sustainable production of natural carbon incorporated CuO/C nanocomposite using Cyperus rotundus biomass. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Perera, H.; Wijerathna, T. Sterol Carrier Protein Inhibition-Based control of mosquito vectors: Current knowledge and future perspectives. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 7240356. [Google Scholar] [CrossRef]
- Chen, H.; Bhowmick, B.; Tang, Y.; Lozano-Fernandez, J.; Han, Q. Biochemical evolution of a potent target of mosquito larvicide, 3-Hydroxykynurenine Transaminase. Molecules 2022, 27, 4929. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Garavaglia, S.; Battista Giovenzana, G.; Arcà, B.; Li, J.; Rizzi, M. Crystal structure of the Anopheles gambiae 3-hydroxykynurenine transaminase. Proc. Natl. Acad. Sci. USA 2006, 103, 5711–5716. [Google Scholar] [CrossRef] [PubMed]
- Maciel, L.G.; Ferraz, M.V.F.; Oliveira, A.A.; Lins, R.D.; dos Anjos, J.V.; Guido, R.V.C.; Soares, T.A. Inhibition of 3-Hydroxykynurenine Transaminase from Aedes aegypti and Anopheles gambiae: A mosquito-specific target to combat the transmission of arboviruses. ACS Bio. Med. Chem. Au 2023, 3, 211–222. [Google Scholar] [CrossRef]
- Han, Q.; Beerntsen, B.T.; Li, J. The tryptophan oxidation pathway in mosquitoes with emphasis on xanthurenic acid biosynthesis. J. Insect Physiol. 2007, 53, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Lima, V.L.A.; Dias, F.; Nunes, R.D.; Pereira, L.O.; Santos, T.S.R.; Chiarini, L.B.; Ramos, T.D.; Silva-Mendes, B.J.; Perales, J.; Valente, R.H.; et al. The antioxidant role of xanthurenic acid in the Aedes aegypti midgut during digestion of a blood meal. PLoS ONE 2012, 7, e38349. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Peng, Y.; Song, X.; Wen, H.; An, Y.; Tang, H.; Wang, J. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota. Nat. Microbiol. 2022, 7, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Rajeswary, M.; Govindarajan, M. Towards green oviposition deterrents? effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ. Sci. Pollut. Res. 2018, 25, 10218–10227. [Google Scholar] [CrossRef] [PubMed]
- França, L.P.; Amaral, A.C.F.; Ramos, A.D.S.; Ferreira, J.L.P.; Maria, A.C.B.; Oliveira, K.M.T.; Araujo, E.S.; Branches, A.D.S.; Silva, J.N.; Silva, N.G.; et al. Piper capitarianum essential oil: A promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus. Environ. Sci. Pollut. Res. 2021, 28, 9760–9776. [Google Scholar] [CrossRef] [PubMed]
- Harel, M.; Kryger, G.; Rosenberry, T.L.; Mallender, W.D.; Lewis, T.; Fletcher, R.J.; Guss, J.M.; Silman, I.; Sussman, J.L. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 2000, 9, 1063–1072. [Google Scholar] [CrossRef]
- Protti, Í.F.; Rodrigues, D.R.; Fonseca, S.K.; Alves, R.J.; de Oliveira, R.B.; Maltarollo, V.G. Do drug-likeness rules apply to oral prodrugs? ChemMedChem 2021, 16, 1446–1456. [Google Scholar] [CrossRef]
- Qiu, F.; Dziegielewska, K.M.; Huang, Y.; Habgood, M.D.; Fitzpatrick, G.; Saunders, N.R. Developmental changes in the extent of drug binding to rat plasma proteins. Sci. Rep. 2023, 13, 1266. [Google Scholar] [CrossRef] [PubMed]
- Esteves, F.; Rueff, J.; Kranendonk, M. The Central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family. J. Xenobiot 2021, 11, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Gress, B.E.; Zalom, F.G. Identification and risk assessment of Spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 2019, 75, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.P.; Favero, S. Assessment of the insecticidal potential of Eucalyptus urograndis essential oil against Rhodnius neglectus Lent (Hemiptera: Reduviidae). Neotrop. Entomol. 2013, 42, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Demirak, M.Ş.Ş.; Canpolat, E. Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects 2022, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Silvério, M.R.S.; Espindola, L.S.; Lopes, N.P.; Vieira, P.C. Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules 2020, 25, 3484. [Google Scholar] [CrossRef]
- Roiz, D.; Wilson, A.L.; Scott, T.W.; Fonseca, D.M.; Jourdain, F.; Müller, P.; Velayudhan, R.; Corbel, V. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop Dis. 2018, 12, e0006845. [Google Scholar] [CrossRef]
- Okoli, B.J.; Ladan, Z.; Mtunzi, F.; Hosea, Y.C.; Vitex Negundo, L. Essential oil: Odorant binding protein efficiency using molecular docking approach and studies of the mosquito repellent. Insects 2021, 12, 1061. [Google Scholar] [CrossRef]
- Thanigaivel, A.; Senthil-Nathan, S.; Vasantha-Srinivasan, P.; Edwin, E.S.; Ponsankar, A.; Selin-Rani, S.; Pradeepa, V.; Chellappandian, M.; Kalaivani, K.; Abdel-Megeed, A.; et al. Chemicals isolated from Justicia adhatoda Linn reduce fitness of the mosquito, Aedes aegypti L. Arch. Insect Biochem. Physiol. 2017, 94, e21384. [Google Scholar] [CrossRef]
- WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. Available online: https://www.who.int/publications/i/item/WHO-CDS-WHOPES-GCDPP-2005.13 (accessed on 16 February 2024).
- Abbott, W.S. A Method of computing the effectiveness of an insecticide. J. Am. Mosq. Control Assoc. 1987, 3, 302–303. [Google Scholar] [CrossRef]
- Brogdon, W.; Chan, A. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay (with Inserts 1 (2012) and 2 (2014); CDC Technical Report; CDC: Atlanta, Georgia, 2010. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-193263321. [Google Scholar]
- Yang, X.; Liu, Y.; Gan, J.; Xiao, Z.X.; Cao, Y. FitDock: Protein–Ligand Docking by Template Fitting. Brief Bioinform. 2022, 23, bbac087. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.X.; Cao, Y. CB-Dock2: Improved Protein-Ligand Blind Docking by Integrating Cavity Detection, Docking and Homologous Template Fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.L.; Jones, M.M.; Olguin, E.; Alberts, B. Bioassays with Arthropods, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781315373775. [Google Scholar]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: New York, NY, USA, 1971. [Google Scholar]
Components a | RI b | RI c | Essential Oil (%) |
---|---|---|---|
Sesquiterpenes | |||
bicycloelemene | 1327 | 1323 | 6.21 |
isoledene | 1374 | 1371 | 0.16 |
cis-β-elemene | 1382 | 1381 | 2.07 |
β-elemene | 1389 | 1392 | 28.83 |
α-gurjunene | 1409 | 1407 | 0.55 |
α-bergamotene | 1411 | 1410 | 3.54 |
trans-caryophyllene | 1417 | 1418 | 1.46 |
γ-elemene | 1434 | 1433 | 4.83 |
aromadendrene | 1439 | 1437 | 1.21 |
α-humulene | 1452 | 1449 | 1.51 |
γ-gurjunene | 1475 | 1474 | 0.33 |
β-chamigrene | 1476 | 1477 | 3.78 |
germacrene D | 1480 | 1481 | 1.18 |
β-selinene | 1489 | 1486 | 8.64 |
ledene | 1496 | 1495 | 0.71 |
α-selinene | 1498 | 1499 | 9.84 |
β-bisabolene | 1505 | 1505 | 0.36 |
δ-guaiene | 1509 | 1508 | 2.51 |
β-sesquiphellandrene | 1521 | 1520 | 0.29 |
δ-cadinene | 1522 | 1522 | 0.65 |
globulol | 1590 | 1589 | 2.51 |
viridiflorol | 1592 | 1591 | 3.49 |
ledol | 1602 | 1603 | 1.52 |
γ-eudesmol | 1630 | 1631 | 0.76 |
neointermedeol | 1658 | 1655 | 7.94 |
eudesm-7(11)-en-4-ol | 1700 | 1701 | 0.29 |
Total | 95.17 |
Plant | 24 h | 48 h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B. multiflora | LC50 (µg/mL) | CI 95% (LCL–UCL) | LC90 (µg/mL) | CI 95% (LCL–UCL) | Slope | X2 | LC50 (µg/mL) | CI 95% (LCL–UCL) | LC90 (µg/mL) | CI 95% (LCL–UCL) | Slope | X2 |
40.8 | (35.1–51.3) | 71.5 | (55.4–127.0) | 5.260 | 150.81 | 39.4 | (34.3–47.8) | 68.7 | (54.4–111.6) | 5.307 | 133.20 |
Sterol Carrier Protein-2–AeSCP-2 (PDB = 1PZ4) | ||
---|---|---|
Compounds | Binding Affinity (kcal/mol) | Amino Acid Residues |
α-selinene | −8.0 | ARG15 LEU16 ILE19 VAL26 MET46 LEU48 LEU101 LEU 102 PHE105 ILE106 SER108 |
β-selinene | −9.1 | ARG15 LEU16 SER18 ILE19 ASP20 GLN25 VAL26 LEU48 LEU102 GLU103 PHE105 |
β-elemene | −6.5 | ARG15 LEU16 ILE19 ARG24 GLN25 VAL26 MET46 LEU48 LEU 102 PHE105 SER108 |
Temephos | −7.8 | ARG15 LEU16 SER18 ILE19 ASP20 ASN23 GLN25 VAL26 LEU48 LEU 102 PHE105 |
Deltamethrin | −8.9 | ARG15 LEU16 SER18 ILE19 ASP20 GLN25 VAL26 LEU48 LEU102 PHE105 LEU109 |
3-hydroxykynurenine transaminase (PDB = 6MFB) | ||
α-selinene | −7.9 | Chain A: SER43 ASN44 PHE45 HIS46 ASP47 Chain B: TRP328 TRP329 SER332 GLU342 GLN344 GLY345 PHE347 MET351 ARG356 |
β-selinene | −8.0 | Chain A: SER43 ASN44 PHE45 HIS46 ASP47 Chain B: ILE103 TRP328 TRP329 SER332 MET336 GLU342 GLN344 GLY345 PHE347 GLY348 MET351 ARG356 |
β-elemene | −5.9 | Chain C: TRP329 SER332 GLU342 GLN344 GLY345 GLY346 PHE347 MET351 ARG356 Chain D: SER43 PHE45 HIS46 PHE50 GLN253 |
Temephos | −7.4 | Chain A: SER43 ASN44 PHE45 HIS46 ASP47 PHE50 GLN253 LYS254 ARG255 TYR256 Chain B: ILE103 TRP104 LYS205 TRP328 TRP329 SER332 MET336 GLU342 GLN344 GLY345 PHE347 GLY348 |
Deltamethrin | −10 | Chain C: ILE103 TRP104 ARG107 TRP328 TRP329 SER332 MET336 GLU342 ILE343 Chain D: SER43 ASN44 PHE45 HIS46 ASP47 GLU48 PHE50 GLN253 LYS254 ARG255 |
Acetylcholinesterase (PDB = 6XYU) | ||
α-selinene | −9.7 | TYR71 TRP83 GLY149 GLY150 GLY151 THR154 SER238 PHE330 TYR370 PHE371 TYR374 HIS480 |
β-selinene | −8.2 | TYR71 GLY79 GLU80 TRP83 GLY149 GLY150 THR154 GLY155 TYR370 HIS480 |
β-elemene | −8.0 | TYR71 GLY79 GLU80 TRP83 ASN84 GLY149 TYR370 TYR374 |
Temephos | −6.0 | THR275 LYS278 LEU328 SER329 PHE330 ALA333 LYS403 GLU408 HIS438 PHE439 |
Deltamethrin | −10.9 | GLY155 LEU159 TYR162 GLU237 SER238 TYR324 PHE330 TYR370 PHE371 TYR374 |
Properties | Compounds | ||||
---|---|---|---|---|---|
α-Selinene | β-Selinene | β-Elemene | Temephos | Deltamethrin | |
Lipinski rule | Accepted | Accepted | Accepted | Accepted | Accepted |
Absorption | |||||
PPB (%) | 95.7 | 89.7 | 85.4 | 103.4 | 97.7 |
BBB permeation | No | No | No | No | Yes |
GI absorption | Low | Low | Low | Low | High |
Log Kp (skin permeation; cm/s) | −3.85 | −3.68 | −3.21 | −4.91 | −4.98 |
Physicochemical Properties | |||||
Molecular Weight (g/mol) | 204.35 | 204.35 | 204.35 | 466.47 | 505.20 |
Num. H-bond acceptors | 0 | 0 | 0 | 6 | 4 |
Num. H-bond donors | 0 | 0 | 0 | 0 | 0 |
logP | 5.19 | 4.757 | 4.998 | 5.734 | 6.337 |
Metabolism | |||||
CYP3A4 inhibitor | No | No | No | No | Yes |
CYP2D6 inhibitor | No | No | No | No | No |
CYP1A2 inhibitor | No | No | No | Yes | Yes |
CYP2C19 inhibitor | Yes | Yes | Yes | Yes | Yes |
CYP2C9 inhibitor | Yes | Yes | Yes | Yes | Yes |
Toxicity | |||||
AMES Toxicity | Negative | Negative | Negative | Medium risk | Negative |
Eye Irritation | Irritant | Irritant | Irritant | Irritant | Irritant |
Carcinogencity | Non-carcinogens | non-carcinogens | non-carcinogens | non-carcinogens | non-carcinogens |
Skin Sensitization | 0.583 | 0.274 | 0.225 | 0.936 | 0.874 |
Reproductive effects | Low risk. | Low risk. | Low risk. | High risk. | - |
Hepatotoxicity | Non toxic | Non toxic | Non toxic | Non toxic | toxic |
Plant Species | LC50 (µg/mL) | CI 95% (LCL–UCL) | LC90 (µg/mL) | CI 95% (LCL–UCL) | Slope | X2 |
---|---|---|---|---|---|---|
Bocageopsis multiflora | 12.5 | (11.6–13.3) | 17.1 | (15.7–19.3) | 9.258 | 5.911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.R.d.A.; Oliveira, A.A.d.; França, L.P.; da Cruz, J.D.; Amaral, A.C.F. Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora. Molecules 2024, 29, 2240. https://doi.org/10.3390/molecules29102240
Silva JRdA, Oliveira AAd, França LP, da Cruz JD, Amaral ACF. Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora. Molecules. 2024; 29(10):2240. https://doi.org/10.3390/molecules29102240
Chicago/Turabian StyleSilva, Jefferson Rocha de Andrade, Aimêe Almeida de Oliveira, Leandro Pereira França, Jefferson Diocesano da Cruz, and Ana Claudia Fernandes Amaral. 2024. "Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora" Molecules 29, no. 10: 2240. https://doi.org/10.3390/molecules29102240
APA StyleSilva, J. R. d. A., Oliveira, A. A. d., França, L. P., da Cruz, J. D., & Amaral, A. C. F. (2024). Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora. Molecules, 29(10), 2240. https://doi.org/10.3390/molecules29102240