Effect of the Harvest Season of Anthyllis henoniana Stems on Antioxidant and Antimicrobial Activities: Phytochemical Profiling of Their Ethyl Acetate Extracts
Abstract
:1. Introduction
2. Results and Discussions
2.1. Total Phenolic and Flavonoid Contents of Various Anthyllis Henoniana Stem Extracts
2.2. Evaluation of the Antioxidant Activity of Stem Extracts
2.2.1. Free Radical Scavenging 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
2.2.2. Radical Scavenging Activity on 2,2′-Azinobis (3-ethylbenzothiazoline)-6-sulfonic Acid (ABTS)
2.2.3. Ferric Reducing Antioxidant Power (FRAP)
2.2.4. Total Antioxidant Activity (TAC)
2.2.5. Correlations between TFC, TPC and Antioxidant Activity
2.3. Evaluation of the Antimicrobial Activity of Stem Extracts
2.3.1. Inhibition Zones, MIC, MBC and MFC
2.3.2. Correlations among Phenolic Contents and Inhibition Zones Diameter
2.4. LC-MS-MS
2.4.1. Characterization of the Detected Compounds
- Compound 1 (TR = 9.89 min) showed a molecular ion at m/z 593. Its UV spectra (Table 8) showed characteristic absorption bands of flavonoids ranging between 240 and 285 nm and 300 and 385 nm [36]. It presented characteristic fragment ions at 575 [(M − H)-18] (dehydration), 503 [(M − H)-90] (loss of C3H6O3 from the sugar unit), 473 [(M − H)-30] (loss of CHOH), 383 [(M − H)-90] (loss of C3H6O3 from the sugar unit) and 353 [(M − H)-30] (loss of CHOH). This compound was identified as vicenin-2 [18].
- Compound 2 (TR = 10.47 min) generated a molecular ion at m/z 563. Its UV spectra presented characteristic absorption bands of flavonoids ranging between 282 and 283 nm. Its MS2 mode generated a fragmentation of a hexose and gave product ions 545 [(M − H)-18] (dehydration), 503 [(M − H)-42] (loss of C2H2O), 473 [(M − H)-30] (loss of CH2O) and 443 [(M − H)-30] (loss of CH2O). The ions 383 [(M − H)-60] and 353 [(M − H)-30] observed in both MS2 and MS3 are the result of the fragmentation of the pentose. This compound was identified as apigenin-6-C-glucoside-8-C-arabinoside (schaftoside) [19].
- Compound 3 (TR = 11.14 min) generated a molecular ion at m/z 533 which can be attributed to apigenin-C-pentoside-C-pentoside. The loss of a rhamnoside resulted in the apparition of a major MS2 fragment at m/z 443 [(M − H)-90] due to the fragmentation of the pentoside [20].
- Compound 4 (TR = 12.32 min) exhibited a molecular ion at m/z 769. The loss of a rhamnoside resulted in the apparition of a major MS2 fragment at m/z 623 [(M − H)-146]. The MS3 method generated m/z 357 [(M − H)-266] after the loss of C10H18O8, a characteristic fragment of a deprotonated isorhamnetin at m/z 315 [(M − H)-42] (loss of C2H2O), an m/z 300 [(M − H)-15] (loss of CH3) and an m/z 271 [(M − H)-29] (loss of CHO). Therefore, this compound was identified as isorhamnetin glucosyl-di-rhamnoside [21].
- Compound 5 (TR = 13.04 min) presented a molecular ion at m/z 623 with product ions at m/z 315 [(M − H)-308] (loss of disaccharide), m/z 300 [(M − H)-15] (loss of CH3) and m/z 271 [(M − H)-29] (loss of CH2O) and was identified as isorhamnetin-3-O-rutinoside [22].
- Compound 6 (TR = 14.33 min) showed a molecular ion at m/z 373. The obtained MS2 fragments were in good agreement with those of 7-Hydroxymatairesinol reported in the literature [23].
- Compound 7 (TR = 14.66 min) showed a molecular ion at m/z 473. The major ion generated at m/z 455 obtained in MS2 mode is the result of dehydration [24]. This compound was identified as an Asiatic acid/madecassic acid derivative.
- Compound 8 (TR = 15.92 min) at m/z 399 showed a prominent ion at m/z 381 after dehydration, suggesting the presence of a compound of benzofurane type [25].
- Compound 9 (TR = 16.18 min) at m/z 457 was identified as lucidenic acid A, taking into account the provided data from the literature. The MS2 showed a major fragment at m/z 439 due to dehydration. A second dehydration gave the fragment ion at m/z 421 [26].
- Compound 10 (TR = 16.45 min) showed a molecular ion at m/z 371 and was identified as a caffeoyl glucarate isomer. The major characteristic ion generated at m/z 353 obtained in MS2 mode is the result of dehydration [27].
- Compound 13 (TR = 19.00 min) showed a molecular ion at m/z 313. The major characteristic ion generated at m/z 298 obtained in MS2 mode is the result of demethylation and was identified as hedysarimpterocarpene A (HPA) [25].
- Compound 14 (TR = 19.27 min) showed a molecular ion at m/z 355 and can be identified as chebulic acid. The MS2 mode generated a major ion at m/z 337 [(M − H)-18] (dehydration). As for the MS3 mode, it presented a fragment ion at m/z 305 [(M − H)-32] (loss of O2) and a major ion at m/z 165 [(M − H)-140] (C7H8O3) [28].
- Compound 15 (TR = 20.51 min) showed a molecular ion at m/z 439 and can be identified as prenylated licoriphenone. The MS2 mode generated a major ion at m/z 421 [(M − H)-18] (dehydration) [29].
- Compound 16 (TR = 21.25 min) presented a deprotonated ion at m/z 341 and gave a major fragment at m/z 323 after the loss of H2O (dehydration). The fragment at m/z 297 appeared due to the loss of CO2. The fragment ion at m/z 151 [(M − H)-118] (loss of C7H2O2) is the result of a rupture of the liaison 1→3 from the sugar unit. These fragments appear to be the same as those found in caffeic acid-O-glycoside [30].
- Compound 27 (TR = 29.63 min) showed a molecular ion at m/z 425 and was identified as abscisic acid hexoside. The MS2 mode generated fragment ions at m/z 407 [(M − H)-18] (dehydration), m/z 353 [(M − H)-54] (loss of C3H2O) and a major m/z 219 [(M − H)-90] (loss of a sugar moiety) [31].
- Compound 28 (TR = 30.57 min) showed a molecular ion at m/z 421 and was identified as 6,8-diprenylkaempferol. The MS2 mode generated the same fragmentation pattern shown in the literature [32].
- Compound 29 (TR = 31.35 min) and compound 31 (TR = 32.55 min) generated a common molecular ion m/z (423) and an identical fragmentation pattern and were assigned to sophoraflavanone G. The difference in their retention time suggests the possibility of two isomers. The MS2 mode generated a major fragment ion at m/z 405 due to the loss of H2O [33].
- Compound 34 (TR = 35.62 min) generated a molecular ion at m/z 409 and was attributed to a dihydrochalcone known as Kanzonol Y. The MS2 mode presented a characteristic of the proposed compound at m/z 391 [(M − H)-18] (loss of H2O) [34].
- Compound 41 (TR = 46.83 min) showed a molecular ion at m/z 391 and was attributed to hispaglabridin A. The MS2 mode generated a major fragment ion at m/z 203 [(M − H)-188] (loss of C12H12O2), m/z 187 due to the loss of an oxygen radical and an m/z 159 after the loss of COH [35].
2.4.2. Findings Interpretation
3. Materials and Methods
3.1. Collection and Extraction of Plant Material
3.2. Total Phenolic and Total Flavonoid Contents
3.2.1. Total Phenolic Contents (TPC)
3.2.2. Total Flavonoid Contents (TFC)
3.3. Antioxidant Assay
3.3.1. Free Radical Scavenging 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
3.3.2. Radical Scavenging Activity on 2,2′-Azinobis (3-ethylbenzothiazoline)-6-sulfonic Acid (ABTS)
3.3.3. Ferric Reducing Antioxidant Power (FRAP)
3.3.4. Total Antioxidant Capacity (TAC)
3.4. Antimicrobial Activity
3.4.1. Microbial Strains
3.4.2. Well-Diffusion Agar Assay, Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC)
3.5. LC–MS Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouerfelli, M.; Majdoub, N.; Aroussi, J.; Almajano, M.P.; Bettaieb Ben Kaâb, L. Phytochemical screening and evaluation of the antioxidant and anti-bacterial activity of Woundwort (Anthyllis vulneraria L.). Rev. Bras. Bot. 2021, 44, 549–559. [Google Scholar] [CrossRef]
- Machmudah, S.; Wahyudiono, H.K.; Goto, M. Hydrolysis of Biopolymers in Near-Critical and Subcritical Water; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 69–107. [Google Scholar] [CrossRef]
- Herrero, M.; Castro-Puyana, M.; Ibáñez, E.; Cifuentes, A. Compositional Analysis of Foods. In Liquid Chromatography, 2nd ed.; Elsevier: Madrid, Spain, 2017; Volume 2, pp. 359–380. [Google Scholar] [CrossRef]
- Louhaichi, M.; Gamoun, M.; Hassan, S.; Abdallah, M.A.B. Characterizing biomass yield and nutritional value of selected indigenous range species from arid Tunisia. Plants 2021, 10, 2031. [Google Scholar] [CrossRef] [PubMed]
- Louhaichi, M.; Gamoun, M.; Ben Salem, F.; Belgacem, A.O. Rangeland biodiversity and climate variability: Supporting the need for flexible grazing management. Sustainability 2021, 13, 7124. [Google Scholar] [CrossRef]
- Pietrzak, W.; Nowak, R. Impact of harvest conditions and host tree species on chemical composition and antioxidant activity of extracts from Viscum album L. Molecules 2021, 26, 3741. [Google Scholar] [CrossRef]
- Ben Younes, A.; Ben Salem, M.; El Abed, H.; Jarraya, R. Phytochemical screening and antidiabetic, antihyperlipidemic, and antioxidant properties of Anthyllis henoniana (Coss.) flowers extracts in an alloxan-induced rats model of diabetes. Evidence-based Complement. Altern. Med. 2018, 2018, 14. [Google Scholar] [CrossRef]
- Bouzayani, B.; Koubaa, I.; Frikha, D.; Samet, S.; Ben Younes, A.; Chawech, R.; Maalej, S.; Allouche, N.; Jarraya, R. Spectrometric analysis, phytoconstituents isolation and evaluation of in vitro antioxidant and antimicrobial activities of Tunisian Cistanche violacea (Desf). Chem. Pap. 2022, 76, 3031–3050. [Google Scholar] [CrossRef]
- Affes, S.; Ben Younes, A.; Frikha, D.; Allouche, N.; Treilhou, M.; Tene, N.; Jarraya, R. ESI-MS/MS analysis of phenolic compounds from Aeonium arboreum leaf extracts and evaluation of their antioxidant and antimicrobial activities. Molecules 2021, 26, 4338. [Google Scholar] [CrossRef]
- Rastija, V.; Medić-Saric, M. QSAR study of antioxidant activity of wine polyphenols. Eur. J. Med. Chem. 2009, 44, 400–408. [Google Scholar] [CrossRef]
- Samet, S.; Ayachi, A.; Fourati, M.; Mallouli, L.; Allouche, N.; Treilhou, M.; Téné, N.; Mezghani-Jarraya, R. Antioxidant and antimicrobial activities of Erodium arborescens aerial part extracts and characterization by LC-HESI-MS2 of its acetone extract. Molecules 2022, 27, 4399. [Google Scholar] [CrossRef]
- Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 2001, 91, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Cueva, C.; Moreno-Arribas, V.; Martin-Alvarez, P.; Bills, G.; Vicente, F.; Basilio, A.; Concepcion Rivas, L.; Requena, T.; Juan, R.; Bartolome, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, P.; Sienkiewicz, P.; Pruss, M.; Lopusiewicz, A.; Arszynska, L.; Wojciechowska-Koszko, N.; Kilanowicz, I.; Kot, A.; Dolegowska, B. Antibacterial and anti-biofilm activities of essential oil compounds against new delhiMetallo-β-lactamase-1-producing uropathogenic klebsiella pneumoniae strains. Antibiotics 2022, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Zeroual, A.; Sakar, E.H.; Mahjoubi, F.; Chaouch, M.; Chaqroune, A.; Taleb, M. Effects of extraction technique and solvent on phytochemicals, antioxidant, and antimicrobial activities of cultivated and wild rosemary (Rosmarinus officinalis L.) from taounate region (northern morocco). Biointerface Res. Appl. Chem. 2022, 12, 8441–8452. [Google Scholar] [CrossRef]
- Ibrahima, R.M.; El-Halawany, A.M.; Saleh, D.O.; El Naggar, E.M.B.; EL-Shabrawy, A.E.R.O.; El-Hawary, S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farmacogn. 2015, 25, 134–141. [Google Scholar] [CrossRef]
- Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.; Guo, D. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 516–525. [Google Scholar] [CrossRef]
- Llorent-Martinez, E.J.; Spinolab, V.; Paula, C. Castilho. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry. Food Chem. Toxicol. 2017, 107, 609–619. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form Chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 2010, 23, 545–553. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, H.; Wu, H.; Pan, Y.; Wang, K.; Jin, Y.; Zhang, C. Characterization and quantification by LC-MS/MS of the chemical components of the heating products of the flavonoids extract in Pollen typhae for transformation rule exploration. Molecules 2015, 20, 18352–18366. [Google Scholar] [CrossRef]
- C. Eklund, P.; Josefin Backman, M.; Leif Kronberg, A.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization. J. Mass Spectrom. 2007, 43, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Bunse, M.; Lorenz, P.; Stintzing, F.C.; Kammerer, D.R. Insight into the secondary metabolites of Geum urbanum L. and Geum rivale L. seeds (Rosaceae). Plants 2021, 10, 1219. [Google Scholar] [CrossRef] [PubMed]
- Min Yang, W.W.; Sun, J.; Zhao, Y.; Liu, Y.; Liang, H.; De-an, G. Characterization of phenolic compounds in the crude extract of Hedysarum multijugum by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 24, 1457–1466. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Guan, S.; Xia, J.; Sun, J.; Guo, H.; Guo, D. Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 927–939. [Google Scholar] [CrossRef]
- Lorenz, P.; Conrad, J.; Bertrams, J.; Berger, M.; Duckstein, S.; Meyera, U.; Florian, C. Stintzinga. Investigations into the phenolic constituents of Dog’s mercury (Mercurialis perennis L.) by LC-MS/MS and GC-MS analyses. Phytochem. Anal. 2012, 23, 60–71. [Google Scholar] [CrossRef]
- Yang, B.; Kortesniemi, M.; Liu, P.; Karonen, M.; Salminen, J. Analysis of hydrolyzable tannins and other phenolic compounds. J. Agric. Food Chem. 2012, 60, 8672–8683. [Google Scholar] [CrossRef]
- Qiao, X.; Song, W.; Ji, S.; Wang, Q.; Guo, D.; Ye, M. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectromet. J. Chromatogr. A 2015, 1402, 36–45. [Google Scholar] [CrossRef]
- Clenilson, M.; Rinaldo, R.D.; Dos Santos, L.C.; Montoro, P.; Piacente, S.; Pizza, C.; Hiruma-Lima, C.A.; Vilegas, W. Metabolic fingerprinting using direct flow injection electrospray ionization tandem mass spectrometry for the characterization of proanthocyanidins from the barks of Hancornia speciosa. Rapid Commun. Mass Spectrom. 2007, 21, 1907–1914. [Google Scholar] [CrossRef]
- Shi, S.; Li, K.; Peng, J.; Li, J.; Luo, L.; Liu, M.; Chen, Y.; Xiang, Z.; Xiong, P.; Liu, L.; et al. Chemical characterization of extracts of leaves of Kadsua coccinea (Lem.) A.C. Sm. by UHPLC-Q-Exactive Orbitrap Mass spectrometry and assessment of their antioxidant and anti-inflammatory activities. Biomed. Pharmacother. 2022, 149, 112828. [Google Scholar] [CrossRef]
- Linyuan, W.; Zhengrui, H.; Xiaojia, S.; Yuhao, Z.; Wei, C.; Ji, Y.; Xike, X.; Xianpeng, Z.; Yun heng, S. Systematic analysis of chemical profiles of Sophorae tonkinensis Radix et Rhizoma in vitro and in vivo using UPLC-Q- TOF-MSE. Biomed. Chromatogr. 2022, 36, 6. [Google Scholar] [CrossRef]
- Hashemi, M.; Kharazian, N. Identification of Flavonoids from Marrubium and Ballota species (Lamiaceae) and Determination of Chemotaxonomic Markers Using High Performance Liquid Chromatography Mass Spectrometer. J. Sci. Islam. Repub. Iran. 2022, 32, 305–320. [Google Scholar] [CrossRef]
- Singh, V.K.; Koshy, R.; Mundkinajeddu, D.; Edwin, J.R. A comprehensive analytical approach for quality evaluation of flavonoid rich extract of Glycyrrhiza glabra ( GutGard ® ). RASAYAN J. Chem. 2022, 15, 1469–1480. [Google Scholar] [CrossRef]
- Rudy Simons, M.A.V.; Vincken, J.P.; Bakx, E.J.; Gruppen, H. A rapid screening method for prenylated flavonoids with ultra-high-performance liquid chromatography/electrospray ionisation mass spectrometry in licorice root extracts. Rapid Commun. Mass Spectrom. 2009, 23, 3083–3093. [Google Scholar] [CrossRef]
- Jurasekova, Z.; Garcia-Ramos, J.V.; Domingo, C.; Sanchez-Cortes, S. Surface-enhanced Raman scattering of flavonoids. J. Raman Spectrosc. 2006, 37, 1239–1241. [Google Scholar] [CrossRef]
- Park, C.H.; Ji Yeo, H.; Bastin Baskar, T.; Ye Eun Park, Y.E.; Park, J.S.; Lee, S.K.; Park, S.U. In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. Antioxidants 2019, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Ali Raza Naqvi, S.; Nadeem, S.; Komal, S.; Ali Asad Naqvi, S.; Samee Mubarik, M.; Yaqub Qureshi, S.; Ahmad, S.; Abbas, A.; Zahid, M.; Ul-Haq Khan, N.; et al. Antioxidants: Natural Antibiotics. In Antioxidants, Shalaby E., Ed.; IntechOpen: Faisalabad, Pakistan, 2019; pp. 1–17. [Google Scholar] [CrossRef]
- Koudokpon, H.; Armstrong, N.; Dougnon, T.V.; Fah, L.; Hounsa, E.; Bankolé, H.S.; Loko, F.; Chabrière, E.; Rolain, J.M. Antibacterial activity of chalcone and dihydrochalcone compounds from Uvaria chamae roots against multidrug-resistant bacteria. Biomed Res. Int. 2018, 2018, 1453173. [Google Scholar] [CrossRef]
- Kim, D.; Young Kim, K. Antibacterial effect of sophoraflavanone G by destroying the cell wall of Enterococcus faecium. J. Appl. Pharm. Sci. 2020, 10, 59–64. [Google Scholar] [CrossRef]
- Sakar, E.H.; Zeroual, A.; Kasrati, A.; Gharby, S. Combined Effects of Domestication and Extraction Technique on Essential Oil Yield, Chemical Profiling, and Antioxidant and Antimicrobial Activities of Rosemary (Rosmarinus officinalis L.). J. Food Biochem. 2023, 2023, 6308773. [Google Scholar] [CrossRef]
- Mhalla, D.; Bouasssisa, K.; Chawech, R.; Bouaziz, A.; Makni, S.; Jlail, L.; Tounsi, S.; Jarraya, R.; Trigui, M. Antioxidant, hepatoprotective, and antidepression effects of Rumex tingitanus extracts and identification of a novel bioactive compound. Biomed Res. Int. 2018, 59, 7295848. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1- picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Tagg, J.R.; McGiven, A.R. Assay system for bacteriocins. Appl. Microbiol. 1971, 21, 943. [Google Scholar] [CrossRef] [PubMed]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed]
Harvest Season | Extracts | TPC (mg GAE/g E) | TFC (mg QE/g E) |
---|---|---|---|
Winter | Hexane | 202.96 ± 0.70 c | 177.22 ± 0.44 c |
Ethyl acetate | 668.36 ± 0.67 a | 529.61 ± 0.92 a | |
Methanol | 568.58 ± 0.53 b | 402.73 ± 0.68 b | |
Spring | Hexane | 198.33 ± 0.71 c | 103.25 ± 0.44 c |
Ethyl acetate | 567.96 ± 0.82 b | 435.09 ± 0.68 b | |
Methanol | 751.77 ± 0.67 a | 514.20 ± 0.92 a |
Harvest Season | Extracts | IC50 (mg·mL−1) | AAI |
---|---|---|---|
Winter | Hexane | - | - |
Ethyl acetate | 0.038 ± 0.002 a | 1.01 | |
Methanol | 0.040 ± 0.001 b | 1.0 | |
Spring | Hexane | - | - |
Ethyl acetate | 0.050 ± 0.004 b | 0.8 | |
Methanol | 0.040 ± 0.002 a | 1.0 | |
Standard | Vitamin C | 0.030 ± 0.001 | 1.3 |
Harvest Season | Extracts | IC50 (mg·mL−1) |
---|---|---|
Winter | Hexane | - |
Ethyl acetate | 0.049 ± 0.001 a | |
Methanol | 0.053 ± 0.003 b | |
Spring | Hexane | - |
Ethyl acetate | 0.059 ± 0.004 b | |
Methanol | 0.051 ± 0.002 a | |
Standard | TROLOX | 0.047 ± 0.001 |
Variables | TPC | TFC | DPPH | FRAP | TAC | ABTS |
---|---|---|---|---|---|---|
TPC | 1 | |||||
TFC | 0.981 ** | 1 | ||||
DPPH | 0.949 ** | 0.980 ** | 1 | |||
FRAP | 0.992 ** | 0.986 ** | 0.952 ** | 1 | ||
TAC | 0.967 ** | 0.944 ** | 0.900 ** | 0.935 ** | 1 | |
ABTS | 0.941 ** | 0.950 ** | 0.943 ** | 0.922 ** | 0.939 ** | 1 |
Harvest Season | IZ (mm) Winter | IZ (mm) Spring | IZ (mm) Control | |||||
---|---|---|---|---|---|---|---|---|
Microorganisms | Hexane | EtOAc | MeOH | Hexane | EtOAc | MeOH | Gentamicin (c) | |
Gram-positive | ||||||||
B. subtilis | 7 ± 0.5 a | 9 ± 0 a | 11 ± 0.5 a | 0 b | 17 ± 0.3 a | 0 b | 20.5 ± 0.2 a | |
S. aureus | 0 b | 0 b | 0 b | 0 b | 14 ± 0.5 a | 12 ± 0.5 a | 25.5 ± 1.1 a | |
S. epidermidis | 11 ± 0.5 a | 9 ± 0.5 a | 12 ± 0.5 a | 0 b | 22 ± 0.6 a | 14 ± 0 a | 12 ± 0.2 a | |
E. faecalis | 0 b | 0 b | 0 b | 0 b | 9 ± 0.3 a | 0 b | 20 ± 0.2 a | |
M. luteus | 0 b | 0 b | 0 b | 0 b | 10 ± 0.5 a | 0 b | 20 ± 0.7 a | |
Gram-negative | ||||||||
E. coli | 0 b | 7 ± 0 a | 0 b | 0 b | 0 b | 0 b | 21 ± 1.2 a | |
P. aeruginosa | 0 b | 0 b | 0 b | 0 b | 0 b | 07± 0.33 a | 18 ± 0.6 a | |
K. pneumoniae | 0 b | 0 b | 0 b | 0 b | 14 ± 0.5 a | 0 b | 12 ± 0.5 a | |
S. enteritidis | 0 b | 0 b | 0 b | 0 b | 8 ± 0.3 a | 0 b | 18 ± 0.8 a | |
Fungi | Amphotericin B (d) (µg·mL−1) | |||||||
B. cinerea | 0 b | 0 b | 0 b | 0 b | 0 b | 0 b | 11.5 ± 0.5 a | |
F. oxysporum | 14 ± 0.5 a | 12 ± 0.5 a | 0 b | 13 ± 1.0 a | 19 ± 1.0 a | 10 ±0.3 a | 14 ± 0.2 a | |
A. alternata | 13 ± 0.6 a | 14 ± 0.5 a | 0 b | 12 ± 0.3 a | 13 ± 0.5 a | 18 ±1.0 a | 12 ± 0.6 a | |
A. niger | 12 ± 1.0 a | 9 ± 0.5 a | 12 ± 0.5 a | 0 b | 0 b | 13 ± 0.6 a | 15 ± 0.5 a |
Microbial Strains | A. henoniana EtOAc Extract (mg·mL−1) | Gentamicin (c) (µg·mL−1) | ||||
---|---|---|---|---|---|---|
MIC (a) | MBC (b) | MBC/MIC | MIC (a) | MBC (b) | MBC/MIC | |
Gram-positive | ||||||
B. subtilis | 1.25 | 1.25 | 1 | 2.5 | 5 | 2 |
S. aureus | 1.25 | 1.25 | 1 | 2.5 | 5 | 2 |
S. epidermis | 0.625 | 1.25 | 2 | 2.5 | 10 | 4 |
E. faecalis | 2.5 | 5 | 2 | 10 | 20 | 2 |
M. luteus | >10 | >10 | - | 2.5 | 5 | 2 |
Gram-negative | ||||||
E. coli | - | - | - | 2.5 | 5 | 2 |
P. aeruginosa | - | - | - | 5 | 20 | 4 |
K. pneumoniae | 5 | 5 | 1 | 5 | 10 | 2 |
S. enteritidis | 10 | 10 | 1 | 10 | >20 | >2 |
Fungi | Amphotericin B (d)(µg·mL−1) | |||||
MIC (a) | MFC (b) | MFC/MIC | MIC (a) | MFC (b) | MFC/MIC | |
F. oxysporum | 1.125 | 4.5 | 4 | 0.625 | 1.25 | 2 |
A. alternata | 2.25 | 9 | 4 | 0.156 | 0.625 | 4 |
Variables | TPC | TFC | B. subtilis | S. aureus | S. epidermis | E. faecalis | M. luteus | K. pneumoniae | S. enteritidis | F. oxysporum |
---|---|---|---|---|---|---|---|---|---|---|
TPC | 1 | |||||||||
TFC | 0.200 | 1 | ||||||||
B. subtilis | 0.908 * | −0.543 | 1 | |||||||
S. aureus | 0.327 | −0.982 * | 0.693 * | 1 | ||||||
S. epidermis | −0.693 * | 0.812 * | −0.932 * | −0.908 * | 1 | |||||
E. faecalis | 0.277 | −0.991 * | 0.655 * | −0.999 * | −0.885 * | 1 | ||||
M. luteus | −0.786 * | −0.500 | −0.454 | 0.327 | 0.099 | 0.376 | 1 | |||
K. pneumoniae | −0.982 * | 0.327 | −0.971 * | −0.500 | 0.817 * | −0.454 | 0.655 * | 1 | ||
S. enteritidis | −0.155 | −0.967 * | 0.312 | 0.901 * | −0.636 * | 0.923 * | 0.705 * | −0.075 | 1 | |
F. oxysporum | −0.277 | 0.991 * | −0.655 | −0.999 * | 0.885 * | −0.999 * | −0.376 | −0.454 | −0.923 * | 1 |
N | TR (min) Winter/Spring | UV (nm) | Area (%) | m/z | MS2 | MS3 | Attribution | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Winter | Spring | ||||||||
1 | 9.00/9.89 | 242–294 | 0.1 | 0.1 | 593 | 383/353(100) | 575/503/473(100)/441/383/353 | Vicenin-2 (Apigenin-6,8-di-C-glucoside) | [18] |
2 | 10.47/11.30 | 282–382 | 0.4 | 0.2 | 563 | 545/503/473/443(100)/383/353 | Apigenin-6-C-glucoside-8-C-arabinoside (schaftoside) | [19] | |
3 | 11.14/12.46 | 262 | 0.2 | 0.1 | 533 | 515/473/443(100)/383/353 | Apigenin-C-pentoside-C-pentoside | [20] | |
4 | -/12.49 | 266–326 | - | 0.3 | 769 | 623 | 357/315/300/271 | Isorhamnetin glucosyl-di-rhamnoside | [21] |
5 | -/13.04 | 258–294 | - | 0.1 | 623 | 357/315(100)/300/271 | Isorhamnetin-3-O-rutinoside | [22] | |
6 | 14.33/15.01 | 342–382 | 0.5 | 0.5 | 373 | 355(100)/337/301/263/151 | 7-Hydroxymatairesinol | [23] | |
7 | 14.66/15.27 | 282 | 1.0 | 1.5 | 473 | 455(100)/437/397/385/369/379/337 | 437(100)/419/379/367/165 | Asiatic acid/madecassic acid derivative | [24] |
8 | 15.92/16.51 | 274 | 0.7 | 1.0 | 399 | 381(100)/341/327 | 2-(2,6-Dihydroxy-4-methoxyphenyl)-4- hydroxy-3-(hydroxymethyl)-5,6- methoxy-6,5-(3-methylbut-2-enyl)- benzofuran | [25] | |
9 | 16.18/16.76 | 286–350 | 1.1 | 1.0 | 457 | 439(100)/421/381 | Lucidenic acid A | [26] | |
10 | 16.45/16.95 | 270–350 | 4.0 | 2.2 | 371 | 353(100)/341//299/165 | Caffeoyl glucarate (isomers) | [27] | |
11 | 17.07/17.58 | 338 | 1.9 | 1.3 | 455 | 437/385 (100) | 367(100)/313/165/150 | Unidentified | |
12 | 17.55/18.12 | 282 | 1.4 | 1.8 | 357 | 339/285 (100)/151 /109 | Unidentified | ||
13 | 19.00/19.12 | 262–346 | 3.4 | 1.2 | 313 | 298 (100)/269 | Hedysarimpterocarpene A (HPA)/ Wedelolactone | [25] | |
14 | 19.27/19.80 | 274–318 | 2.6 | 2.5 | 355 | 337(100) | 305/165(100)/150/136/108 | Chebulic acid | [28] |
15 | 20.51/20.59 | 270 | 2.3 | 1.3 | 439 | 421(100)/369/351 | Prenylated licoriphenone | [29] | |
16 | 21.25/21.78 | 274 | 0.9 | 1.4 | 341 | 323 (100)/297/269/151 | Caffeic acid-O-glycoside. | [30] | |
17 | 21.84/22.24 | 282–358 | 2.0 | 1.0 | 441 | 423(100)/371 | Unidentified | ||
18 | 22.07/22.54 | 286–382 | 1.8 | 2.0 | 425 | 407/355(100) | Unidentified | ||
19 | 22.52/22.94 | 282 | 2.5 | 1.6 | 439 | 369(100) | Unidentified | ||
20 | 24.80/- | 286–382 | 1.6 | - | 425 | 407/247/235(100)/217/165 | Unidentified | ||
21 | 25.41/25.72 | 274 | 1.4 | 1.1 | 439 | 421(100)/367/165 | Unidentified | ||
22 | -/25.93 | 270–302 | - | 1.0 | 339 | 307/269/165(100)/150/137 | Unidentified | ||
23 | 26.44/26.84 | 270–362 | 2.2 | 2.7 | 439 | 421(100)/367/165 | Unidentified | ||
24 | 27.09/27.40 | 270–342 | 4.0 | 2.0 | 425 | 407(100)/355 | 389(100)/335/217/151 | Unidentified | |
25 | -/29.13 | 278 | - | 3.1 | 425 | 407/353(100)/219/151 | Unidentified | ||
26 | 29.30/29.60 | 282 | 1.9 | 1.1 | 423 | 405/353(100)/233 | Unidentified | ||
27 | 29.63/29.97 | 282–362 | 4.3 | 4.0 | 425 | 407/353/219(100)177 | Abscisic acid hexoside | [31] | |
28 | 30.57/30.99 | 270–302 | 1.0 | 0.8 | 421 | 403/351(100)/165 | 6,8-Diprenylkaempferol | [32] | |
29 | 31.35/31.40 | 278 | 1.7 | 2.8 | 423 | 405(100)/365 | Sophoraflavanone G | [33] | |
30 | 32.08/32.36 | 270 | 4.5 | 4.8 | 423 | 405/353(100)/165 | Unidentified | ||
31 | 32.55/32.87 | 270 | 5.4 | 5.9 | 423 | 405(100) | Sophoraflavanone G | [33] | |
32 | 34.31/34.52 | 282 | 3.0 | 2.4 | 409 | 231/219(100)/151 | Unidentified | ||
33 | 34.74/35.09 | 282 | 2.1 | 1.3 | 409 | 391/385/235(100)/217/165 | Unidentified | ||
34 | 35.62/35.91 | 270–366 | 6.2 | 8.2 | 409 | 391(100)/337/219/151 | Kanzonol Y | [34] | |
35 | 36.70/36.95 | 286–358 | 2.5 | 1.2 | 407 | 389/337/219(100)/187 | Unidentified | ||
36 | 37.98/38.00 | 266–370 | 3.9 | 4.3 | 407 | 337/271/233(100)/205 | Unidentified | ||
37 | 38.48/38.75 | 270 | 3.6 | 6.7 | 407 | 375/165 (100)/150 | Unidentified | ||
38 | 41.63/41.81 | 278 | 0.6 | 1.2 | 393 | 151(100) | Unidentified | ||
39 | 42.26/42.47 | 262–374 | 2.7 | 2.9 | 203 | 185/175/159/148(100) | Unidentified | ||
40 | 43.19/43.39 | 286 | 12.2 | 14.7 | 393 | 219(100) | Unidentified | ||
41 | 45.30/45.37 | 370 | 4.1 | 4.1 | 391 | 203 (100)/187/159 | Hispaglabridin A | [35] | |
42 | 46.83/46.77 | 266–298 | 2.3 | 1.9 | 405 | 343/165(100)/136 | Unidentified | ||
43 | 50.00/49.62 | 274 | 1.3 | 1.1 | 391 | 151(100)/219 | Unidentified | ||
44 | 52.22/51.60 | 282–370 | 0.4 | 0.1 | 389 | 371/203(100)/185 | Unidentified | ||
45 | 53.15/52.47 | 286–374 | 0.4 | 0.3 | 389 | 371/253(100)/135 | Unidentified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayachi, A.; Ben Younes, A.; Ben Ammar, A.; Bouzayani, B.; Samet, S.; Siala, M.; Trigui, M.; Treilhou, M.; Téné, N.; Mezghani-Jarraya, R. Effect of the Harvest Season of Anthyllis henoniana Stems on Antioxidant and Antimicrobial Activities: Phytochemical Profiling of Their Ethyl Acetate Extracts. Molecules 2023, 28, 3947. https://doi.org/10.3390/molecules28093947
Ayachi A, Ben Younes A, Ben Ammar A, Bouzayani B, Samet S, Siala M, Trigui M, Treilhou M, Téné N, Mezghani-Jarraya R. Effect of the Harvest Season of Anthyllis henoniana Stems on Antioxidant and Antimicrobial Activities: Phytochemical Profiling of Their Ethyl Acetate Extracts. Molecules. 2023; 28(9):3947. https://doi.org/10.3390/molecules28093947
Chicago/Turabian StyleAyachi, Amani, Amer Ben Younes, Ameni Ben Ammar, Bouthaina Bouzayani, Sonda Samet, Mariam Siala, Mohamed Trigui, Michel Treilhou, Nathan Téné, and Raoudha Mezghani-Jarraya. 2023. "Effect of the Harvest Season of Anthyllis henoniana Stems on Antioxidant and Antimicrobial Activities: Phytochemical Profiling of Their Ethyl Acetate Extracts" Molecules 28, no. 9: 3947. https://doi.org/10.3390/molecules28093947
APA StyleAyachi, A., Ben Younes, A., Ben Ammar, A., Bouzayani, B., Samet, S., Siala, M., Trigui, M., Treilhou, M., Téné, N., & Mezghani-Jarraya, R. (2023). Effect of the Harvest Season of Anthyllis henoniana Stems on Antioxidant and Antimicrobial Activities: Phytochemical Profiling of Their Ethyl Acetate Extracts. Molecules, 28(9), 3947. https://doi.org/10.3390/molecules28093947