The Role of Substrate Surface Geometry in the Photo-Electrochemical Behaviour of Supported TiO2 Nanotube Arrays: A Study Using Electrochemical Impedance Spectroscopy (EIS)
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD and SEM Results
2.2. Optical Absorption Properties and Photocurrent Response
2.3. EIS Studies
2.4. Photoelectrochemical Testing
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of TiO2NTs/Ti Photoanodes
3.3. Morphological, Structural and Electronic Characterization
3.4. Photoelectrochemical Characterization
3.5. EIS Measurements
3.6. Photoelectrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanzafame, P.; Abate, S.; Ampelli, C.; Genovese, C.; Passalacqua, R.; Centi, G.; Perathoner, S. Beyond Solar Fuels: Renewable Energy-Driven Chemistry. ChemSusChem 2017, 10, 4409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Yu, J.; Sun, B.; Shang, H. A Heterostructure Photoelectrode Based on Two-Dimensional Covalent Organic Framework Film Decorated TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Hydrogen Generation. Molecules 2023, 28, 822. [Google Scholar] [CrossRef] [PubMed]
- Konstantinova, E.; Savchuk, T.; Pinchuk, O.; Kytina, E.; Ivanova, E.; Volkova, L.; Zaitsev, V.; Pavlikov, A.; Elizarova, E. Photoelectron Properties and Organic Molecules Photodegradation Activity of Titania Nanotubes with CuxO Nanoparticles Heat Treated in Air and Argon. Molecules 2022, 27, 8080. [Google Scholar] [CrossRef]
- Sihor, M.; Gowrisankaran, S.; Martaus, A.; Motola, M.; Mailhot, G.; Brigante, M.; Monfort, O. Anodic TiO2 Nanotube Layers for Wastewater and Air Treatments: Assessment of Performance Using Sulfamethoxazole Degradation and N2O Reduction. Molecules 2022, 27, 8959. [Google Scholar] [CrossRef]
- He, W.; Qiu, J.; Zhuge, F.; Li, X.; Lee, J.H.; Kim, Y.D.; Kim, H.K.; Hwang, Y.H. Advantages of using Ti-mesh type electrodes for flexible dye-sensitized solar cells. Nanotechnology 2012, 23, 225602. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Q.; Zhao, T.; Zhai, J.; Jiang, L. 3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis. J. Mater. Chem. 2011, 21, 10354. [Google Scholar] [CrossRef]
- Kołodziej, J.K.; Chudecka, A.; Sulka, G.D. 3D nanoporous titania formed by anodization as a promising photoelectrode material. J. Electroanal. Chem. 2018, 823, 221. [Google Scholar] [CrossRef]
- Saboo, T.; Tavella, F.; Ampelli, C.; Perathoner, S.; Genovese, C.; Marepally, B.C.; Veyre, L.; Quadrelli, E.A.; Centi, G. Water splitting on 3D-type meso/macro porous structured photoanodes based on Ti mesh. Sol. Energy Mat. Sol. C. 2018, 178, 98. [Google Scholar] [CrossRef]
- Sanginario, A.; Hernández, S. Diagnostics of electrocatalytic systems by electrochemical impedance spectroscopy. Curr. Opin. Green Sustain. Chem. 2023, 39, 100727. [Google Scholar] [CrossRef]
- Ciucci, F. Modeling electrochemical impedance spectroscopy. Curr. Opin. Electrochem. 2019, 13, 132. [Google Scholar] [CrossRef]
- Lukács, Z.; Kristóf, T. A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy. Electrochim. Acta 2020, 363, 137199. [Google Scholar] [CrossRef]
- Cesiulis, H.; Tsyntsaru, N.; Ramanavicius, A.; Ragoisha, G. The Study of Thin Films by Electrochemical Impedance Spectroscopy. In Nanostructures and Thin Films for Multifunctional Applications. NanoScience and Technology; Tiginyanu, I., Topala, P., Ursaki, V., Eds.; Springer: Cham, Switzerland, 2016; pp. 3–42. [Google Scholar]
- Ângelo, J.; Magalhães, P.; Andrade, L.; Mendes, A. Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy. Appl. Surf. Sci. 2016, 387, 183. [Google Scholar] [CrossRef]
- Baram, N.; Ein-Eli, Y. Electrochemical impedance spectroscopy of porous TiO2 for photocatalytic applications. J. Phys. Chem. C 2010, 114, 9781. [Google Scholar] [CrossRef]
- Rüdiger, C.; Maglia, F.; Leonardi, S.M.; Sachsenhauser, M.; Sharp, I.D.; Paschos, O.; Kunze, J. Surface analytical study of carbothermally reduced titania films for electrocatalysis application. Electrochim. Acta 2012, 71, 1. [Google Scholar] [CrossRef]
- Pu, P.; Cacheta, H.; Suttera, E.M.M. Electrochemical impedance spectroscopy to study photo—Induced effects on self-organized TiO2 nanotube arrays. Electrochim. Acta 2010, 55, 5938. [Google Scholar] [CrossRef]
- Tsui, L.K.; Giovanni Zangari, G. Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: A study by electrochemical impedance spectroscopy. Electrochim. Acta 2014, 121, 203. [Google Scholar] [CrossRef]
- Yadava, P.; Pandeyb, K.; Bhattb, P.; Tripathic, B.; Kumar, M.P.; Kumar, M. Probing the electrochemical properties of TiO2/graphene composite by cyclic voltammetry and impedance spectroscopy. Mater. Sci. Eng. B 2016, 206, 22. [Google Scholar] [CrossRef]
- Bao, Z.; Haixian, X.H.; Rao, J.; Chen, L.; Wei, Y.; Li, H.; Xing, F.Z. High performance of Pt/TiO2-nanotubes/Ti mesh electrode and its application in flexible dye-sensitized solar cell. Mater. Lett. 2014, 124, 158. [Google Scholar] [CrossRef]
- Meng, M.; Feng, Y.; Li, C.; Gan, Z.; Yuan, H.; Zhang, H. Black 3D-TiO2 Nanotube Arrays on Ti Meshes for Boosted Photoelectrochemical Water Splitting. Nanomaterials 2022, 12, 1447. [Google Scholar] [CrossRef]
- Lin, L.; Liu, T.; Qie, Y.; Liu, W.; Meng, Y.; Yuan, Q.; Luan, F. Electrocatalytic Removal of Low-Concentration Uranium Using TiO2 Nanotube Arrays/Ti Mesh Electrodes. Environ. Sci. Technol. 2022, 56, 13327. [Google Scholar] [CrossRef]
- Giusi, D.; Miceli, M.; Genovese, C.; Centi, G.; Perathoner, S.; Ampelli, C. In situ electrochemical characterization of CuxO-based gas-diffusion electrodes (GDEs) for CO2 electrocatalytic reduction in presence and absence of liquid electrolyte and relationship with C2+ products formation. Appl. Cat. B 2022, 318, 121845. [Google Scholar] [CrossRef]
- Ampelli, A.; Tavella, F.; Perathoner, S.; Centi, G. Engineering of photoanodes based on ordered TiO2-nanotube arrays in solar photo-electrocatalytic (PECa) cells. Chem. Eng. J. 2017, 320, 352. [Google Scholar] [CrossRef]
- Ampelli, C.; Genovese, C.; Passalacqua, R.; Centi, G.; Perathoner, S. A gas-phase reactor powered by solar energy and ethanol for H2 Production. Appl. Therm. Eng. 2014, 70, 1270. [Google Scholar] [CrossRef]
- Ampelli, C.; Tavella, F.; Genovese, C.; Perathoner, S.; Favaro, M.; Centi, G. Analysis of the factors controlling performances of Au-modified TiO2 nanotube array based photoanode in photo-electrocatalytic (PECa) cells. J. Energy Chem. 2017, 26, 284. [Google Scholar] [CrossRef]
- Zukalova, M.; Bousa, M.; Bastl, Z.; Jirka, I.; Kavan, L. Electrochemical Doping of Compact TiO2 Thin Layers. J. Phys. Chem. C 2014, 118, 25970. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy, 2nd ed.; Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Luo, D.; Liu, B.; Fujishima, A.; Nakata, K. TiO2 Nanotube Arrays Formed on Ti Meshes with Periodically Arranged Holes for Flexible Dye-Sensitized Solar Cells. ACS Appl. Nano Mater. 2019, 2, 3943. [Google Scholar] [CrossRef]
- Lim, J.M.; Weizhen, H.; Kim, H.K.; Hwang, Y.H. Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode. Curr. Photovolt. Res. 2013, 1, 90. [Google Scholar]
- Chandrasekaran, S.; Jin Suk Chung, J.S.; Eui Jung Kim, E.J.; Hu, S.H. Advanced Nano-Structured Materials for Photocatalytic Water Splitting. J. Electrochem. Sci. Technol. 2016, 7, 1. [Google Scholar] [CrossRef]
- Passalacqua, R.; Ampelli, C.; Perathoner, S.; Centi, G. Anodically Formed TiO2 Thin Films: Evidence for a Multiparameter Dependent Photocurrent-Structure Relationship. Nanosci. Nanotechnol. Lett. 2012, 4, 142. [Google Scholar] [CrossRef]
- Kerner, Z.; Pajkossy, T. On the origin of capacitance dispersion of rough electrodes. Electrochim. Acta 2000, 46, 207. [Google Scholar] [CrossRef]
- Pajkossy, T. Impedance spectroscopy at interfaces of metals and aqueous solutions: Surface roughness, cpe, and related issues. Solid State Ion. 1997, 176, 25. [Google Scholar] [CrossRef]
- Eckhard, J.; Eckhardt, K.; Burkhardt, S.; Zahnow, J.; Elm, M.T.; Janek, J.; Klar, P.J.; Heiliger, C. Understanding the Impact of Microstructure on Charge Transport in Polycrystalline Materials Through Impedance Modelling. J. Electrochem. Soc. 2021, 168, 090516. [Google Scholar] [CrossRef]
- Douglass, E.F., Jr.; Peter, F.; Driscoll, P.F.; Liu, D.; Burnham, N.A.; Christopher, R.; Lambert, C.R.; McGimpsey, W.G. Effect of Electrode Roughness On the Capacitive Behavior of Self-Assembled Monolayers. Anal. Chem. 2008, 80, 7670. [Google Scholar] [CrossRef]
- Dyatkin, B.; Gogotsi, Y. Effects of structural disorder and surface chemistry on electric conductivity and capacitance of porous carbon electrodes. Faraday Discuss. 2014, 172, 139. [Google Scholar] [CrossRef]
- Vatamanu, J.; Hu, Z.; Bedrov, D.; Perez, C.; Gogotsi, Y. Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes. J. Phys. Chem. Lett. 2013, 4, 2829. [Google Scholar] [CrossRef]
- Paek, E.; Pak, A.J.; Hwang, G.S. Curvature Effects on the Interfacial Capacitance of Carbon Nanotubes in an Ionic Liquid. J. Phys. Chem. C 2013, 117, 23539–23546. [Google Scholar] [CrossRef]
- Gao, P.; Metz, P.; Hey, T.; Gong, Y.; Liu, D.; Edwards, D.D.; Howe, J.Y.; Huang, R.; Misture, S.T. The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets. Nat. Commun. 2017, 8, 14559. [Google Scholar] [CrossRef] [Green Version]
- Ferreira de Brito, J.; Tavella, F.; Genovese, C.; Ampelli, C.; Boldrin Zanoni, M.V.; Centi, G.; Perathoner, S. Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films. Appl. Catal. B Environ. 2018, 224, 136. [Google Scholar] [CrossRef] [Green Version]
- Tavella, F.; Genovese, C.; Garcés Pineda, F.A.; Perathoner, S.; Centi, G.; Ampelli, C. Tantalum Oxynitride Nanotube Film Arrays for Unconventional Nanostructured Photo-electrodes Active with Visible Light. Catal. Today, 2023; in press. [Google Scholar] [CrossRef]
Catalyst | Electrolyte * | Applied Potential (V vs. RHE) | H2 Production, (µmol h−1 cm−2) | Average Current Density (mA cm−2) |
---|---|---|---|---|
TiO2NTs/Ti mesh | Na2SO4 | +2.623 V | 24.4 | 5.08 |
H2SO4-KOH | +2.036 V | 9.4 | 3.03 | |
H2SO4-KOH | +2.536 V | 182.3 | 18.69 | |
TiO2NTs/Ti foil | Na2SO4 | +2.623 V | 10.5 | 1.88 |
H2SO4-KOH | +2.036 V | 5.5 | 1.16 | |
H2SO4-KOH | +2.536 V | 46.5 | 5.24 | |
TiO2 P25 | Na2SO4 | +2.623 V | 0.9 | 0.21 |
H2SO4-KOH | +2.036 V | 0.06 | 0.14 | |
H2SO4-KOH | +2.536 V | 4.82 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Pasquale, L.; Tavella, F.; Longo, V.; Favaro, M.; Perathoner, S.; Centi, G.; Ampelli, C.; Genovese, C. The Role of Substrate Surface Geometry in the Photo-Electrochemical Behaviour of Supported TiO2 Nanotube Arrays: A Study Using Electrochemical Impedance Spectroscopy (EIS). Molecules 2023, 28, 3378. https://doi.org/10.3390/molecules28083378
De Pasquale L, Tavella F, Longo V, Favaro M, Perathoner S, Centi G, Ampelli C, Genovese C. The Role of Substrate Surface Geometry in the Photo-Electrochemical Behaviour of Supported TiO2 Nanotube Arrays: A Study Using Electrochemical Impedance Spectroscopy (EIS). Molecules. 2023; 28(8):3378. https://doi.org/10.3390/molecules28083378
Chicago/Turabian StyleDe Pasquale, Luana, Francesco Tavella, Victor Longo, Marco Favaro, Siglinda Perathoner, Gabriele Centi, Claudio Ampelli, and Chiara Genovese. 2023. "The Role of Substrate Surface Geometry in the Photo-Electrochemical Behaviour of Supported TiO2 Nanotube Arrays: A Study Using Electrochemical Impedance Spectroscopy (EIS)" Molecules 28, no. 8: 3378. https://doi.org/10.3390/molecules28083378